//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the target machine instructions to the code generator. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETINSTRINFO_H #define LLVM_TARGET_TARGETINSTRINFO_H #include "Support/DataTypes.h" #include #include class MachineInstr; class TargetMachine; class Value; class Type; class Instruction; class Constant; class Function; class MachineCodeForInstruction; //--------------------------------------------------------------------------- // Data types used to define information about a single machine instruction //--------------------------------------------------------------------------- typedef int MachineOpCode; typedef unsigned InstrSchedClass; const MachineOpCode INVALID_MACHINE_OPCODE = -1; //--------------------------------------------------------------------------- // struct TargetInstrDescriptor: // Predefined information about each machine instruction. // Designed to initialized statically. // const unsigned M_NOP_FLAG = 1 << 0; const unsigned M_BRANCH_FLAG = 1 << 1; const unsigned M_CALL_FLAG = 1 << 2; const unsigned M_RET_FLAG = 1 << 3; const unsigned M_ARITH_FLAG = 1 << 4; const unsigned M_CC_FLAG = 1 << 6; const unsigned M_LOGICAL_FLAG = 1 << 6; const unsigned M_INT_FLAG = 1 << 7; const unsigned M_FLOAT_FLAG = 1 << 8; const unsigned M_CONDL_FLAG = 1 << 9; const unsigned M_LOAD_FLAG = 1 << 10; const unsigned M_PREFETCH_FLAG = 1 << 11; const unsigned M_STORE_FLAG = 1 << 12; const unsigned M_DUMMY_PHI_FLAG = 1 << 13; const unsigned M_PSEUDO_FLAG = 1 << 14; // Pseudo instruction // 3-addr instructions which really work like 2-addr ones, eg. X86 add/sub const unsigned M_2_ADDR_FLAG = 1 << 15; // M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic // block? Typically this is things like return and branch instructions. // Various passes use this to insert code into the bottom of a basic block, but // before control flow occurs. const unsigned M_TERMINATOR_FLAG = 1 << 16; struct TargetInstrDescriptor { const char * Name; // Assembly language mnemonic for the opcode. int numOperands; // Number of args; -1 if variable #args int resultPos; // Position of the result; -1 if no result unsigned maxImmedConst; // Largest +ve constant in IMMMED field or 0. bool immedIsSignExtended; // Is IMMED field sign-extended? If so, // smallest -ve value is -(maxImmedConst+1). unsigned numDelaySlots; // Number of delay slots after instruction unsigned latency; // Latency in machine cycles InstrSchedClass schedClass; // enum identifying instr sched class unsigned Flags; // flags identifying machine instr class unsigned TSFlags; // Target Specific Flag values const unsigned *ImplicitUses; // Registers implicitly read by this instr const unsigned *ImplicitDefs; // Registers implicitly defined by this instr }; //--------------------------------------------------------------------------- /// /// TargetInstrInfo - Interface to description of machine instructions /// class TargetInstrInfo { const TargetInstrDescriptor* desc; // raw array to allow static init'n unsigned descSize; // number of entries in the desc array unsigned numRealOpCodes; // number of non-dummy op codes TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT public: TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned descSize, unsigned numRealOpCodes); virtual ~TargetInstrInfo(); // Invariant: All instruction sets use opcode #0 as the PHI instruction enum { PHI = 0 }; unsigned getNumRealOpCodes() const { return numRealOpCodes; } unsigned getNumTotalOpCodes() const { return descSize; } /// get - Return the machine instruction descriptor that corresponds to the /// specified instruction opcode. /// const TargetInstrDescriptor& get(MachineOpCode opCode) const { assert(opCode >= 0 && opCode < (int)descSize); return desc[opCode]; } const char *getName(MachineOpCode opCode) const { return get(opCode).Name; } int getNumOperands(MachineOpCode opCode) const { return get(opCode).numOperands; } int getResultPos(MachineOpCode opCode) const { return get(opCode).resultPos; } unsigned getNumDelaySlots(MachineOpCode opCode) const { return get(opCode).numDelaySlots; } InstrSchedClass getSchedClass(MachineOpCode opCode) const { return get(opCode).schedClass; } const unsigned *getImplicitUses(MachineOpCode opCode) const { return get(opCode).ImplicitUses; } const unsigned *getImplicitDefs(MachineOpCode opCode) const { return get(opCode).ImplicitDefs; } // // Query instruction class flags according to the machine-independent // flags listed above. // bool isNop(MachineOpCode opCode) const { return get(opCode).Flags & M_NOP_FLAG; } bool isBranch(MachineOpCode opCode) const { return get(opCode).Flags & M_BRANCH_FLAG; } bool isCall(MachineOpCode opCode) const { return get(opCode).Flags & M_CALL_FLAG; } bool isReturn(MachineOpCode opCode) const { return get(opCode).Flags & M_RET_FLAG; } bool isControlFlow(MachineOpCode opCode) const { return get(opCode).Flags & M_BRANCH_FLAG || get(opCode).Flags & M_CALL_FLAG || get(opCode).Flags & M_RET_FLAG; } bool isArith(MachineOpCode opCode) const { return get(opCode).Flags & M_ARITH_FLAG; } bool isCCInstr(MachineOpCode opCode) const { return get(opCode).Flags & M_CC_FLAG; } bool isLogical(MachineOpCode opCode) const { return get(opCode).Flags & M_LOGICAL_FLAG; } bool isIntInstr(MachineOpCode opCode) const { return get(opCode).Flags & M_INT_FLAG; } bool isFloatInstr(MachineOpCode opCode) const { return get(opCode).Flags & M_FLOAT_FLAG; } bool isConditional(MachineOpCode opCode) const { return get(opCode).Flags & M_CONDL_FLAG; } bool isLoad(MachineOpCode opCode) const { return get(opCode).Flags & M_LOAD_FLAG; } bool isPrefetch(MachineOpCode opCode) const { return get(opCode).Flags & M_PREFETCH_FLAG; } bool isLoadOrPrefetch(MachineOpCode opCode) const { return get(opCode).Flags & M_LOAD_FLAG || get(opCode).Flags & M_PREFETCH_FLAG; } bool isStore(MachineOpCode opCode) const { return get(opCode).Flags & M_STORE_FLAG; } bool isMemoryAccess(MachineOpCode opCode) const { return get(opCode).Flags & M_LOAD_FLAG || get(opCode).Flags & M_PREFETCH_FLAG || get(opCode).Flags & M_STORE_FLAG; } bool isDummyPhiInstr(MachineOpCode opCode) const { return get(opCode).Flags & M_DUMMY_PHI_FLAG; } bool isPseudoInstr(MachineOpCode opCode) const { return get(opCode).Flags & M_PSEUDO_FLAG; } bool isTwoAddrInstr(MachineOpCode opCode) const { return get(opCode).Flags & M_2_ADDR_FLAG; } bool isTerminatorInstr(unsigned Opcode) const { return get(Opcode).Flags & M_TERMINATOR_FLAG; } // Check if an instruction can be issued before its operands are ready, // or if a subsequent instruction that uses its result can be issued // before the results are ready. // Default to true since most instructions on many architectures allow this. // virtual bool hasOperandInterlock(MachineOpCode opCode) const { return true; } virtual bool hasResultInterlock(MachineOpCode opCode) const { return true; } // // Latencies for individual instructions and instruction pairs // virtual int minLatency(MachineOpCode opCode) const { return get(opCode).latency; } virtual int maxLatency(MachineOpCode opCode) const { return get(opCode).latency; } // // Which operand holds an immediate constant? Returns -1 if none // virtual int getImmedConstantPos(MachineOpCode opCode) const { return -1; // immediate position is machine specific, so say -1 == "none" } // Check if the specified constant fits in the immediate field // of this machine instruction // virtual bool constantFitsInImmedField(MachineOpCode opCode, int64_t intValue) const; // Return the largest +ve constant that can be held in the IMMMED field // of this machine instruction. // isSignExtended is set to true if the value is sign-extended before use // (this is true for all immediate fields in SPARC instructions). // Return 0 if the instruction has no IMMED field. // virtual uint64_t maxImmedConstant(MachineOpCode opCode, bool &isSignExtended) const { isSignExtended = get(opCode).immedIsSignExtended; return get(opCode).maxImmedConst; } //------------------------------------------------------------------------- // Queries about representation of LLVM quantities (e.g., constants) //------------------------------------------------------------------------- /// ConstantTypeMustBeLoaded - Test if this type of constant must be loaded /// from memory into a register, i.e., cannot be set bitwise in register and /// cannot use immediate fields of instructions. Note that this only makes /// sense for primitive types. /// virtual bool ConstantTypeMustBeLoaded(const Constant* CV) const; // Test if this constant may not fit in the immediate field of the // machine instructions (probably) generated for this instruction. // virtual bool ConstantMayNotFitInImmedField(const Constant* CV, const Instruction* I) const { return true; // safe but very conservative } /// createNOPinstr - returns the target's implementation of NOP, which is /// usually a pseudo-instruction, implemented by a degenerate version of /// another instruction, e.g. X86: xchg ax, ax; SparcV9: sethi g0, 0 /// virtual MachineInstr* createNOPinstr() const = 0; /// isNOPinstr - not having a special NOP opcode, we need to know if a given /// instruction is interpreted as an `official' NOP instr, i.e., there may be /// more than one way to `do nothing' but only one canonical way to slack off. /// virtual bool isNOPinstr(const MachineInstr &MI) const = 0; //------------------------------------------------------------------------- // Code generation support for creating individual machine instructions // // WARNING: These methods are Sparc specific // //------------------------------------------------------------------------- // Get certain common op codes for the current target. this and all the // Create* methods below should be moved to a machine code generation class // virtual MachineOpCode getNOPOpCode() const { abort(); } // Get the value of an integral constant in the form that must // be put into the machine register. The specified constant is interpreted // as (i.e., converted if necessary to) the specified destination type. The // result is always returned as an uint64_t, since the representation of // int64_t and uint64_t are identical. The argument can be any known const. // // isValidConstant is set to true if a valid constant was found. // virtual uint64_t ConvertConstantToIntType(const TargetMachine &target, const Value *V, const Type *destType, bool &isValidConstant) const { abort(); } // Create an instruction sequence to put the constant `val' into // the virtual register `dest'. `val' may be a Constant or a // GlobalValue, viz., the constant address of a global variable or function. // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Symbolic constants or constants that must be accessed from memory // are added to the constant pool via MachineFunction::get(F). // virtual void CreateCodeToLoadConst(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const { abort(); } // Create an instruction sequence to copy an integer value `val' // to a floating point value `dest' by copying to memory and back. // val must be an integral type. dest must be a Float or Double. // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateCodeToCopyIntToFloat(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& MI) const { abort(); } // Similarly, create an instruction sequence to copy an FP value // `val' to an integer value `dest' by copying to memory and back. // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateCodeToCopyFloatToInt(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& MI) const { abort(); } // Create instruction(s) to copy src to dest, for arbitrary types // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateCopyInstructionsByType(const TargetMachine& target, Function* F, Value* src, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& MI) const { abort(); } // Create instruction sequence to produce a sign-extended register value // from an arbitrary sized value (sized in bits, not bytes). // The generated instructions are appended to `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateSignExtensionInstructions(const TargetMachine& target, Function* F, Value* srcVal, Value* destVal, unsigned numLowBits, std::vector& mvec, MachineCodeForInstruction& MI) const { abort(); } // Create instruction sequence to produce a zero-extended register value // from an arbitrary sized value (sized in bits, not bytes). // The generated instructions are appended to `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via mcff. // virtual void CreateZeroExtensionInstructions(const TargetMachine& target, Function* F, Value* srcVal, Value* destVal, unsigned srcSizeInBits, std::vector& mvec, MachineCodeForInstruction& mcfi) const { abort(); } }; #endif