//===- BlockProfiling.cpp - Insert counters for block profiling -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass instruments the specified program with counters for basic block or // function profiling. This is the most basic form of profiling, which can tell // which blocks are hot, but cannot reliably detect hot paths through the CFG. // Block profiling counts the number of times each basic block executes, and // function profiling counts the number of times each function is called. // // Note that this implementation is very naive. Control equivalent regions of // the CFG should not require duplicate counters, but we do put duplicate // counters in. // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" static void insertInitializationCall(Function *MainFn, const char *FnName, GlobalValue *Array) { const Type *ArgVTy = PointerType::get(PointerType::get(Type::SByteTy)); const Type *UIntPtr = PointerType::get(Type::UIntTy); Module &M = *MainFn->getParent(); Function *InitFn = M.getOrInsertFunction(FnName, Type::VoidTy, Type::IntTy, ArgVTy, UIntPtr, Type::UIntTy, 0); // This could force argc and argv into programs that wouldn't otherwise have // them, but instead we just pass null values in. std::vector Args(4); Args[0] = Constant::getNullValue(Type::IntTy); Args[1] = Constant::getNullValue(ArgVTy); // Skip over any allocas in the entry block. BasicBlock *Entry = MainFn->begin(); BasicBlock::iterator InsertPos = Entry->begin(); while (isa(InsertPos)) ++InsertPos; Function::aiterator AI; switch (MainFn->asize()) { default: case 2: AI = MainFn->abegin(); ++AI; if (AI->getType() != ArgVTy) { Args[1] = new CastInst(AI, ArgVTy, "argv.cast", InsertPos); } else { Args[1] = AI; } case 1: AI = MainFn->abegin(); if (AI->getType() != Type::IntTy) { Args[0] = new CastInst(AI, Type::IntTy, "argc.cast", InsertPos); } else { Args[0] = AI; } case 0: break; } ConstantPointerRef *ArrayCPR = ConstantPointerRef::get(Array); std::vector GEPIndices(2, Constant::getNullValue(Type::LongTy)); Args[2] = ConstantExpr::getGetElementPtr(ArrayCPR, GEPIndices); unsigned NumElements = cast(Array->getType()->getElementType())->getNumElements(); Args[3] = ConstantUInt::get(Type::UIntTy, NumElements); new CallInst(InitFn, Args, "", InsertPos); } static void IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum, ConstantPointerRef *CounterArray) { // Insert the increment after any alloca or PHI instructions... BasicBlock::iterator InsertPos = BB->begin(); while (isa(InsertPos) || isa(InsertPos)) ++InsertPos; // Create the getelementptr constant expression std::vector Indices(2); Indices[0] = Constant::getNullValue(Type::LongTy); Indices[1] = ConstantSInt::get(Type::LongTy, CounterNum); Constant *ElementPtr = ConstantExpr::getGetElementPtr(CounterArray, Indices); // Load, increment and store the value back. Value *OldVal = new LoadInst(ElementPtr, "OldFuncCounter", InsertPos); Value *NewVal = BinaryOperator::create(Instruction::Add, OldVal, ConstantInt::get(Type::UIntTy, 1), "NewFuncCounter", InsertPos); new StoreInst(NewVal, ElementPtr, InsertPos); } namespace { class FunctionProfiler : public Pass { bool run(Module &M); }; RegisterOpt X("insert-function-profiling", "Insert instrumentation for function profiling"); } bool FunctionProfiler::run(Module &M) { Function *Main = M.getMainFunction(); if (Main == 0) { std::cerr << "WARNING: cannot insert function profiling into a module" << " with no main function!\n"; return false; // No main, no instrumentation! } unsigned NumFunctions = 0; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) ++NumFunctions; const Type *ATy = ArrayType::get(Type::UIntTy, NumFunctions); GlobalVariable *Counters = new GlobalVariable(ATy, false, GlobalValue::InternalLinkage, Constant::getNullValue(ATy), "FuncProfCounters", &M); ConstantPointerRef *CounterCPR = ConstantPointerRef::get(Counters); // Instrument all of the functions... unsigned i = 0; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) // Insert counter at the start of the function IncrementCounterInBlock(I->begin(), i++, CounterCPR); // Add the initialization call to main. insertInitializationCall(Main, "llvm_start_func_profiling", Counters); return true; } namespace { class BlockProfiler : public Pass { bool run(Module &M); }; RegisterOpt Y("insert-block-profiling", "Insert instrumentation for block profiling"); } bool BlockProfiler::run(Module &M) { Function *Main = M.getMainFunction(); if (Main == 0) { std::cerr << "WARNING: cannot insert block profiling into a module" << " with no main function!\n"; return false; // No main, no instrumentation! } unsigned NumBlocks = 0; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) NumBlocks += I->size(); const Type *ATy = ArrayType::get(Type::UIntTy, NumBlocks); GlobalVariable *Counters = new GlobalVariable(ATy, false, GlobalValue::InternalLinkage, Constant::getNullValue(ATy), "BlockProfCounters", &M); ConstantPointerRef *CounterCPR = ConstantPointerRef::get(Counters); // Instrument all of the blocks... unsigned i = 0; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB) // Insert counter at the start of the block IncrementCounterInBlock(BB, i++, CounterCPR); // Add the initialization call to main. insertInitializationCall(Main, "llvm_start_block_profiling", Counters); return true; }