//===-- ConstantRange.cpp - ConstantRange implementation ------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Represent a range of possible values that may occur when the program is run // for an integral value. This keeps track of a lower and upper bound for the // constant, which MAY wrap around the end of the numeric range. To do this, it // keeps track of a [lower, upper) bound, which specifies an interval just like // STL iterators. When used with boolean values, the following are important // ranges (other integral ranges use min/max values for special range values): // // [F, F) = {} = Empty set // [T, F) = {T} // [F, T) = {F} // [T, T) = {F, T} = Full set // //===----------------------------------------------------------------------===// #include "llvm/Support/ConstantRange.h" #include "llvm/Constants.h" #include "llvm/Instruction.h" #include "llvm/Type.h" #include "llvm/Support/Streams.h" #include using namespace llvm; static ConstantIntegral *Next(ConstantIntegral *CI) { if (ConstantBool *CB = dyn_cast(CI)) return ConstantBool::get(!CB->getValue()); Constant *Result = ConstantExpr::getAdd(CI, ConstantInt::get(CI->getType(), 1)); return cast(Result); } static bool LT(ConstantIntegral *A, ConstantIntegral *B) { Constant *C = ConstantExpr::getSetLT(A, B); assert(isa(C) && "Constant folding of integrals not impl??"); return cast(C)->getValue(); } static bool LTE(ConstantIntegral *A, ConstantIntegral *B) { Constant *C = ConstantExpr::getSetLE(A, B); assert(isa(C) && "Constant folding of integrals not impl??"); return cast(C)->getValue(); } static bool GT(ConstantIntegral *A, ConstantIntegral *B) { return LT(B, A); } static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B) { return LT(A, B) ? A : B; } static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B) { return GT(A, B) ? A : B; } /// Initialize a full (the default) or empty set for the specified type. /// ConstantRange::ConstantRange(const Type *Ty, bool Full) { assert(Ty->isIntegral() && "Cannot make constant range of non-integral type!"); if (Full) Lower = Upper = ConstantIntegral::getMaxValue(Ty); else Lower = Upper = ConstantIntegral::getMinValue(Ty); } /// Initialize a range to hold the single specified value. /// ConstantRange::ConstantRange(Constant *V) : Lower(cast(V)), Upper(Next(cast(V))) { } /// Initialize a range of values explicitly... this will assert out if /// Lower==Upper and Lower != Min or Max for its type (or if the two constants /// have different types) /// ConstantRange::ConstantRange(Constant *L, Constant *U) : Lower(cast(L)), Upper(cast(U)) { assert(Lower->getType() == Upper->getType() && "Incompatible types for ConstantRange!"); // Make sure that if L & U are equal that they are either Min or Max... assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) || L == ConstantIntegral::getMinValue(L->getType()))) && "Lower == Upper, but they aren't min or max for type!"); } /// Initialize a set of values that all satisfy the condition with C. /// ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) { switch (SetCCOpcode) { default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!"); case Instruction::SetEQ: Lower = C; Upper = Next(C); return; case Instruction::SetNE: Upper = C; Lower = Next(C); return; case Instruction::SetLT: Lower = ConstantIntegral::getMinValue(C->getType()); Upper = C; return; case Instruction::SetGT: Lower = Next(C); Upper = ConstantIntegral::getMinValue(C->getType()); // Min = Next(Max) return; case Instruction::SetLE: Lower = ConstantIntegral::getMinValue(C->getType()); Upper = Next(C); return; case Instruction::SetGE: Lower = C; Upper = ConstantIntegral::getMinValue(C->getType()); // Min = Next(Max) return; } } /// getType - Return the LLVM data type of this range. /// const Type *ConstantRange::getType() const { return Lower->getType(); } /// isFullSet - Return true if this set contains all of the elements possible /// for this data-type bool ConstantRange::isFullSet() const { return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType()); } /// isEmptySet - Return true if this set contains no members. /// bool ConstantRange::isEmptySet() const { return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType()); } /// isWrappedSet - Return true if this set wraps around the top of the range, /// for example: [100, 8) /// bool ConstantRange::isWrappedSet() const { return GT(Lower, Upper); } /// getSingleElement - If this set contains a single element, return it, /// otherwise return null. ConstantIntegral *ConstantRange::getSingleElement() const { if (Upper == Next(Lower)) // Is it a single element range? return Lower; return 0; } /// getSetSize - Return the number of elements in this set. /// uint64_t ConstantRange::getSetSize() const { if (isEmptySet()) return 0; if (getType() == Type::BoolTy) { if (Lower != Upper) // One of T or F in the set... return 1; return 2; // Must be full set... } // Simply subtract the bounds... Constant *Result = ConstantExpr::getSub(Upper, Lower); return cast(Result)->getZExtValue(); } /// contains - Return true if the specified value is in the set. /// bool ConstantRange::contains(ConstantInt *Val) const { if (Lower == Upper) { if (isFullSet()) return true; return false; } if (!isWrappedSet()) return LTE(Lower, Val) && LT(Val, Upper); return LTE(Lower, Val) || LT(Val, Upper); } /// subtract - Subtract the specified constant from the endpoints of this /// constant range. ConstantRange ConstantRange::subtract(ConstantInt *CI) const { assert(CI->getType() == getType() && getType()->isInteger() && "Cannot subtract from different type range or non-integer!"); // If the set is empty or full, don't modify the endpoints. if (Lower == Upper) return *this; return ConstantRange(ConstantExpr::getSub(Lower, CI), ConstantExpr::getSub(Upper, CI)); } // intersect1Wrapped - This helper function is used to intersect two ranges when // it is known that LHS is wrapped and RHS isn't. // static ConstantRange intersect1Wrapped(const ConstantRange &LHS, const ConstantRange &RHS) { assert(LHS.isWrappedSet() && !RHS.isWrappedSet()); // Check to see if we overlap on the Left side of RHS... // if (LT(RHS.getLower(), LHS.getUpper())) { // We do overlap on the left side of RHS, see if we overlap on the right of // RHS... if (GT(RHS.getUpper(), LHS.getLower())) { // Ok, the result overlaps on both the left and right sides. See if the // resultant interval will be smaller if we wrap or not... // if (LHS.getSetSize() < RHS.getSetSize()) return LHS; else return RHS; } else { // No overlap on the right, just on the left. return ConstantRange(RHS.getLower(), LHS.getUpper()); } } else { // We don't overlap on the left side of RHS, see if we overlap on the right // of RHS... if (GT(RHS.getUpper(), LHS.getLower())) { // Simple overlap... return ConstantRange(LHS.getLower(), RHS.getUpper()); } else { // No overlap... return ConstantRange(LHS.getType(), false); } } } /// intersect - Return the range that results from the intersection of this /// range with another range. /// ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { assert(getType() == CR.getType() && "ConstantRange types don't agree!"); // Handle common special cases if (isEmptySet() || CR.isFullSet()) return *this; if (isFullSet() || CR.isEmptySet()) return CR; if (!isWrappedSet()) { if (!CR.isWrappedSet()) { ConstantIntegral *L = Max(Lower, CR.Lower); ConstantIntegral *U = Min(Upper, CR.Upper); if (LT(L, U)) // If range isn't empty... return ConstantRange(L, U); else return ConstantRange(getType(), false); // Otherwise, return empty set } else return intersect1Wrapped(CR, *this); } else { // We know "this" is wrapped... if (!CR.isWrappedSet()) return intersect1Wrapped(*this, CR); else { // Both ranges are wrapped... ConstantIntegral *L = Max(Lower, CR.Lower); ConstantIntegral *U = Min(Upper, CR.Upper); return ConstantRange(L, U); } } return *this; } /// union - Return the range that results from the union of this range with /// another range. The resultant range is guaranteed to include the elements of /// both sets, but may contain more. For example, [3, 9) union [12,15) is [3, /// 15), which includes 9, 10, and 11, which were not included in either set /// before. /// ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { assert(getType() == CR.getType() && "ConstantRange types don't agree!"); assert(0 && "Range union not implemented yet!"); return *this; } /// zeroExtend - Return a new range in the specified integer type, which must /// be strictly larger than the current type. The returned range will /// correspond to the possible range of values if the source range had been /// zero extended. ConstantRange ConstantRange::zeroExtend(const Type *Ty) const { assert(getLower()->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() && "Not a value extension"); if (isFullSet()) { // Change a source full set into [0, 1 << 8*numbytes) unsigned SrcTySize = getLower()->getType()->getPrimitiveSize(); return ConstantRange(Constant::getNullValue(Ty), ConstantInt::get(Ty, 1ULL << SrcTySize*8)); } Constant *Lower = getLower(); Constant *Upper = getUpper(); return ConstantRange(ConstantExpr::getCast(Instruction::ZExt, Lower, Ty), ConstantExpr::getCast(Instruction::ZExt, Upper, Ty)); } /// truncate - Return a new range in the specified integer type, which must be /// strictly smaller than the current type. The returned range will /// correspond to the possible range of values if the source range had been /// truncated to the specified type. ConstantRange ConstantRange::truncate(const Type *Ty) const { assert(getLower()->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() && "Not a value truncation"); uint64_t Size = 1ULL << Ty->getPrimitiveSize()*8; if (isFullSet() || getSetSize() >= Size) return ConstantRange(getType()); return ConstantRange( ConstantExpr::getCast(Instruction::Trunc, getLower(), Ty), ConstantExpr::getCast(Instruction::Trunc, getUpper(), Ty)); } /// print - Print out the bounds to a stream... /// void ConstantRange::print(std::ostream &OS) const { OS << "[" << *Lower << "," << *Upper << " )"; } /// dump - Allow printing from a debugger easily... /// void ConstantRange::dump() const { print(llvm_cerr); }