//=- ARMScheduleA9.td - ARM Cortex-A9 Scheduling Definitions -*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the itinerary class data for the ARM Cortex A9 processors. // //===----------------------------------------------------------------------===// // // Ad-hoc scheduling information derived from pretty vague "Cortex-A9 Technical // Reference Manual". // // Functional units def A9_Issue : FuncUnit; // issue def A9_Pipe0 : FuncUnit; // pipeline 0 def A9_Pipe1 : FuncUnit; // pipeline 1 def A9_LSPipe : FuncUnit; // LS pipe def A9_NPipe : FuncUnit; // NEON ALU/MUL pipe def A9_DRegsVFP: FuncUnit; // FP register set, VFP side def A9_DRegsN : FuncUnit; // FP register set, NEON side // Dual issue pipeline represented by A9_Pipe0 | A9_Pipe1 // def CortexA9Itineraries : ProcessorItineraries< [A9_NPipe, A9_DRegsN, A9_DRegsVFP, A9_LSPipe, A9_Pipe0, A9_Pipe1, A9_Issue], [ // Two fully-pipelined integer ALU pipelines // FIXME: There are no operand latencies for these instructions at all! // // Move instructions, unconditional InstrItinData], [1]>, InstrItinData], [1, 1]>, InstrItinData], [1, 1]>, InstrItinData], [2, 2, 1]>, // // No operand cycles InstrItinData]>, // // Binary Instructions that produce a result InstrItinData], [2, 2]>, InstrItinData], [2, 2, 2]>, InstrItinData], [2, 2, 1]>, InstrItinData], [2, 2, 1, 1]>, // // Unary Instructions that produce a result InstrItinData], [2, 2]>, InstrItinData], [2, 1]>, InstrItinData], [2, 1, 1]>, // // Compare instructions InstrItinData], [2]>, InstrItinData], [2, 2]>, InstrItinData], [2, 1]>, InstrItinData], [2, 1, 1]>, // // Move instructions, conditional InstrItinData], [2]>, InstrItinData], [2, 1]>, InstrItinData], [2, 1]>, InstrItinData], [2, 1, 1]>, // Integer multiply pipeline // InstrItinData, InstrStage<2, [A9_Pipe0]>], [4, 1, 1]>, InstrItinData, InstrStage<2, [A9_Pipe0]>], [4, 1, 1, 2]>, InstrItinData, InstrStage<2, [A9_Pipe0]>], [4, 1, 1]>, InstrItinData, InstrStage<2, [A9_Pipe0]>], [4, 1, 1, 2]>, InstrItinData, InstrStage<3, [A9_Pipe0]>], [4, 5, 1, 1]>, InstrItinData, InstrStage<3, [A9_Pipe0]>], [4, 5, 1, 1]>, // Branch // // no delay slots, so the latency of a branch is unimportant InstrItinData]>, // VFP and NEON shares the same register file. This means that every VFP // instruction should wait for full completion of the consecutive NEON // instruction and vice-versa. We model this behavior with two artificial FUs: // DRegsVFP and DRegsVFP. // // Every VFP instruction: // - Acquires DRegsVFP resource for 1 cycle // - Reserves DRegsN resource for the whole duration (including time to // register file writeback!). // Every NEON instruction does the same but with FUs swapped. // // Since the reserved FU cannot be acquired this models precisly "cross-domain" // stalls. // VFP // Issue through integer pipeline, and execute in NEON unit. // FP Special Register to Integer Register File Move InstrItinData, InstrStage<2, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>]>, // // Single-precision FP Unary InstrItinData, // Extra latency cycles since wbck is 2 cycles InstrStage<3, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [1, 1]>, // // Double-precision FP Unary InstrItinData, // Extra latency cycles since wbck is 2 cycles InstrStage<3, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [1, 1]>, // // Single-precision FP Compare InstrItinData, // Extra latency cycles since wbck is 4 cycles InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [1, 1]>, // // Double-precision FP Compare InstrItinData, // Extra latency cycles since wbck is 4 cycles InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [1, 1]>, // // Single to Double FP Convert InstrItinData, InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1]>, // // Double to Single FP Convert InstrItinData, InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1]>, // // Single to Half FP Convert InstrItinData, InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1]>, // // Half to Single FP Convert InstrItinData, InstrStage<3, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [2, 1]>, // // Single-Precision FP to Integer Convert InstrItinData, InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1]>, // // Double-Precision FP to Integer Convert InstrItinData, InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1]>, // // Integer to Single-Precision FP Convert InstrItinData, InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1]>, // // Integer to Double-Precision FP Convert InstrItinData, InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1]>, // // Single-precision FP ALU InstrItinData, InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1, 1]>, // // Double-precision FP ALU InstrItinData, InstrStage<5, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1, 1]>, // // Single-precision FP Multiply InstrItinData, InstrStage<6, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [5, 1, 1]>, // // Double-precision FP Multiply InstrItinData, InstrStage<7, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [6, 1, 1]>, // // Single-precision FP MAC InstrItinData, InstrStage<9, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [8, 0, 1, 1]>, // // Double-precision FP MAC InstrItinData, InstrStage<10, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [9, 0, 1, 1]>, // // Single-precision FP DIV InstrItinData, InstrStage<16, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<10, [A9_NPipe]>], [15, 1, 1]>, // // Double-precision FP DIV InstrItinData, InstrStage<26, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<20, [A9_NPipe]>], [25, 1, 1]>, // // Single-precision FP SQRT InstrItinData, InstrStage<18, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<13, [A9_NPipe]>], [17, 1]>, // // Double-precision FP SQRT InstrItinData, InstrStage<33, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<28, [A9_NPipe]>], [32, 1]>, // // Integer to Single-precision Move InstrItinData, // Extra 1 latency cycle since wbck is 2 cycles InstrStage<3, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [1, 1]>, // // Integer to Double-precision Move InstrItinData, // Extra 1 latency cycle since wbck is 2 cycles InstrStage<3, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [1, 1, 1]>, // // Single-precision to Integer Move InstrItinData, InstrStage<2, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [1, 1]>, // // Double-precision to Integer Move InstrItinData, InstrStage<2, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [1, 1, 1]>, // // Single-precision FP Load // use A9_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<2, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>]>, // // Double-precision FP Load // use A9_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<2, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>]>, // // FP Load Multiple // use A9_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<2, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>]>, // // Single-precision FP Store // use A9_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<2, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>]>, // // Double-precision FP Store // use A9_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<2, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>]>, // // FP Store Multiple // use A9_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<2, [A9_DRegsN], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>]>, // NEON // Issue through integer pipeline, and execute in NEON unit. // FIXME: Neon pipeline and LdSt unit are multiplexed. // Add some syntactic sugar to model this! // VLD1 // FIXME: We don't model this instruction properly InstrItinData, InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>]>, // // VLD2 // FIXME: We don't model this instruction properly InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>], [2, 2, 1]>, // // VLD3 // FIXME: We don't model this instruction properly InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>], [2, 2, 2, 1]>, // // VLD4 // FIXME: We don't model this instruction properly InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>], [2, 2, 2, 2, 1]>, // // VST // FIXME: We don't model this instruction properly InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Issue], 0>, InstrStage<1, [A9_Pipe0, A9_Pipe1]>, InstrStage<1, [A9_LSPipe], 0>, InstrStage<1, [A9_NPipe]>]>, // // Double-register Integer Unary InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 2]>, // // Quad-register Integer Unary InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 2]>, // // Double-register Integer Q-Unary InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1]>, // // Quad-register Integer CountQ-Unary InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1]>, // // Double-register Integer Binary InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [3, 2, 2]>, // // Quad-register Integer Binary InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [3, 2, 2]>, // // Double-register Integer Subtract InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [3, 2, 1]>, // // Quad-register Integer Subtract InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [3, 2, 1]>, // // Double-register Integer Shift InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [3, 1, 1]>, // // Quad-register Integer Shift InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [3, 1, 1]>, // // Double-register Integer Shift (4 cycle) InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1, 1]>, // // Quad-register Integer Shift (4 cycle) InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 1, 1]>, // // Double-register Integer Binary (4 cycle) InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 2, 2]>, // // Quad-register Integer Binary (4 cycle) InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 2, 2]>, // // Double-register Integer Subtract (4 cycle) InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 2, 1]>, // // Quad-register Integer Subtract (4 cycle) InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [4, 2, 1]>, // // Double-register Integer Count InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [3, 2, 2]>, // // Quad-register Integer Count // Result written in N3, but that is relative to the last cycle of multicycle, // so we use 4 for those cases InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [4, 2, 2]>, // // Double-register Absolute Difference and Accumulate InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [6, 3, 2, 1]>, // // Quad-register Absolute Difference and Accumulate InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [6, 3, 2, 1]>, // // Double-register Integer Pair Add Long InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [6, 3, 1]>, // // Quad-register Integer Pair Add Long InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [6, 3, 1]>, // // Double-register Integer Multiply (.8, .16) InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [6, 2, 2]>, // // Quad-register Integer Multiply (.8, .16) InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [7, 2, 2]>, // // Double-register Integer Multiply (.32) InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [7, 2, 1]>, // // Quad-register Integer Multiply (.32) InstrItinData, // Extra latency cycles since wbck is 9 cycles InstrStage<10, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<4, [A9_NPipe]>], [9, 2, 1]>, // // Double-register Integer Multiply-Accumulate (.8, .16) InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [6, 3, 2, 2]>, // // Double-register Integer Multiply-Accumulate (.32) InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [7, 3, 2, 1]>, // // Quad-register Integer Multiply-Accumulate (.8, .16) InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [7, 3, 2, 2]>, // // Quad-register Integer Multiply-Accumulate (.32) InstrItinData, // Extra latency cycles since wbck is 9 cycles InstrStage<10, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<4, [A9_NPipe]>], [9, 3, 2, 1]>, // // Move Immediate InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [3]>, // // Double-register Permute Move InstrItinData, // FIXME: all latencies are arbitrary, no information is available InstrStage<3, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_LSPipe]>], [2, 1]>, // // Quad-register Permute Move // Result written in N2, but that is relative to the last cycle of multicycle, // so we use 3 for those cases InstrItinData, // FIXME: all latencies are arbitrary, no information is available InstrStage<4, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [3, 1]>, // // Integer to Single-precision Move InstrItinData, // FIXME: all latencies are arbitrary, no information is available InstrStage<3, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [2, 1]>, // // Integer to Double-precision Move InstrItinData, // FIXME: all latencies are arbitrary, no information is available InstrStage<3, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [2, 1, 1]>, // // Single-precision to Integer Move InstrItinData, // FIXME: all latencies are arbitrary, no information is available InstrStage<3, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [2, 1]>, // // Double-precision to Integer Move InstrItinData, // FIXME: all latencies are arbitrary, no information is available InstrStage<3, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [2, 2, 1]>, // // Integer to Lane Move InstrItinData, // FIXME: all latencies are arbitrary, no information is available InstrStage<4, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [3, 1, 1]>, // // Double-register FP Unary InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [5, 2]>, // // Quad-register FP Unary // Result written in N5, but that is relative to the last cycle of multicycle, // so we use 6 for those cases InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [6, 2]>, // // Double-register FP Binary // FIXME: We're using this itin for many instructions and [2, 2] here is too // optimistic. InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [5, 2, 2]>, // // Quad-register FP Binary // Result written in N5, but that is relative to the last cycle of multicycle, // so we use 6 for those cases // FIXME: We're using this itin for many instructions and [2, 2] here is too // optimistic. InstrItinData, // Extra latency cycles since wbck is 8 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [6, 2, 2]>, // // Double-register FP Multiple-Accumulate InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [6, 3, 2, 1]>, // // Quad-register FP Multiple-Accumulate // Result written in N9, but that is relative to the last cycle of multicycle, // so we use 10 for those cases InstrItinData, // Extra latency cycles since wbck is 9 cycles InstrStage<10, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<4, [A9_NPipe]>], [8, 4, 2, 1]>, // // Double-register Reciprical Step InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [6, 2, 2]>, // // Quad-register Reciprical Step InstrItinData, // Extra latency cycles since wbck is 9 cycles InstrStage<10, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<4, [A9_NPipe]>], [8, 2, 2]>, // // Double-register Permute InstrItinData, // Extra latency cycles since wbck is 6 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [2, 2, 1, 1]>, // // Quad-register Permute // Result written in N2, but that is relative to the last cycle of multicycle, // so we use 3 for those cases InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [3, 3, 1, 1]>, // // Quad-register Permute (3 cycle issue) // Result written in N2, but that is relative to the last cycle of multicycle, // so we use 4 for those cases InstrItinData, // Extra latency cycles since wbck is 8 cycles InstrStage<9, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<3, [A9_LSPipe]>], [4, 4, 1, 1]>, // // Double-register VEXT InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<7, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<1, [A9_NPipe]>], [2, 1, 1]>, // // Quad-register VEXT InstrItinData, // Extra latency cycles since wbck is 9 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [3, 1, 1]>, // // VTB InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [3, 2, 1]>, InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [3, 2, 2, 1]>, InstrItinData, // Extra latency cycles since wbck is 8 cycles InstrStage<9, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<3, [A9_NPipe]>], [4, 2, 2, 3, 1]>, InstrItinData, // Extra latency cycles since wbck is 8 cycles InstrStage<9, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<3, [A9_NPipe]>], [4, 2, 2, 3, 3, 1]>, // // VTBX InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [3, 1, 2, 1]>, InstrItinData, // Extra latency cycles since wbck is 7 cycles InstrStage<8, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [3, 1, 2, 2, 1]>, InstrItinData, // Extra latency cycles since wbck is 8 cycles InstrStage<9, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<3, [A9_NPipe]>], [4, 1, 2, 2, 3, 1]>, InstrItinData, // Extra latency cycles since wbck is 8 cycles InstrStage<9, [A9_DRegsVFP], 0, Reserved>, InstrStage<1, [A9_Pipe1]>, InstrStage<2, [A9_NPipe]>], [4, 1, 2, 2, 3, 3, 1]> ]>;