//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the ARM target. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMTargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Constants.h" #include "llvm/Intrinsics.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; namespace { class ARMTargetLowering : public TargetLowering { int VarArgsFrameIndex; // FrameIndex for start of varargs area. public: ARMTargetLowering(TargetMachine &TM); virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG); virtual const char *getTargetNodeName(unsigned Opcode) const; }; } ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) : TargetLowering(TM) { addRegisterClass(MVT::i32, ARM::IntRegsRegisterClass); addRegisterClass(MVT::f32, ARM::FPRegsRegisterClass); addRegisterClass(MVT::f64, ARM::DFPRegsRegisterClass); setLoadXAction(ISD::EXTLOAD, MVT::f32, Expand); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::RET, MVT::Other, Custom); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Expand); setOperationAction(ISD::SETCC, MVT::f64, Expand); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::BRIND, MVT::i32, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SDIV, MVT::i32, Expand); setOperationAction(ISD::UDIV, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Expand); setSchedulingPreference(SchedulingForRegPressure); computeRegisterProperties(); } namespace llvm { namespace ARMISD { enum NodeType { // Start the numbering where the builting ops and target ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END+ARM::INSTRUCTION_LIST_END, /// CALL - A direct function call. CALL, /// Return with a flag operand. RET_FLAG, CMP, SELECT, BR, FSITOS, FTOSIS, FSITOD, FTOSID, FUITOS, FTOUIS, FUITOD, FTOUID, FMRRD, FMDRR, FMSTAT }; } } /// DAGFPCCToARMCC - Convert a DAG fp condition code to an ARM CC // Unordered = !N & !Z & C & V = V // Ordered = N | Z | !C | !V = N | Z | !V static ARMCC::CondCodes DAGFPCCToARMCC(ISD::CondCode CC) { switch (CC) { default: assert(0 && "Unknown fp condition code!"); // SETOEQ = (N | Z | !V) & Z = Z = EQ case ISD::SETEQ: case ISD::SETOEQ: return ARMCC::EQ; // SETOGT = (N | Z | !V) & !N & !Z = !V &!N &!Z = (N = V) & !Z = GT case ISD::SETGT: case ISD::SETOGT: return ARMCC::GT; // SETOGE = (N | Z | !V) & !N = (Z | !V) & !N = !V & !N = GE case ISD::SETGE: case ISD::SETOGE: return ARMCC::GE; // SETOLT = (N | Z | !V) & N = N = MI case ISD::SETLT: case ISD::SETOLT: return ARMCC::MI; // SETOLE = (N | Z | !V) & (N | Z) = N | Z = !C | Z = LS case ISD::SETLE: case ISD::SETOLE: return ARMCC::LS; // SETONE = (N | Z | !V) & !Z = (N | !V) & Z = !V & Z = Z = NE case ISD::SETNE: case ISD::SETONE: return ARMCC::NE; // SETO = N | Z | !V = Z | !V = !V = VC case ISD::SETO: return ARMCC::VC; // SETUO = V = VS case ISD::SETUO: return ARMCC::VS; // SETUEQ = V | Z = ?? // SETUGT = V | (!Z & !N) = !Z & !N = !Z & C = HI case ISD::SETUGT: return ARMCC::HI; // SETUGE = V | !N = !N = PL case ISD::SETUGE: return ARMCC::PL; // SETULT = V | N = ?? // SETULE = V | Z | N = ?? // SETUNE = V | !Z = !Z = NE case ISD::SETUNE: return ARMCC::NE; } } /// DAGIntCCToARMCC - Convert a DAG integer condition code to an ARM CC static ARMCC::CondCodes DAGIntCCToARMCC(ISD::CondCode CC) { switch (CC) { default: assert(0 && "Unknown integer condition code!"); case ISD::SETEQ: return ARMCC::EQ; case ISD::SETNE: return ARMCC::NE; case ISD::SETLT: return ARMCC::LT; case ISD::SETLE: return ARMCC::LE; case ISD::SETGT: return ARMCC::GT; case ISD::SETGE: return ARMCC::GE; case ISD::SETULT: return ARMCC::CC; case ISD::SETULE: return ARMCC::LS; case ISD::SETUGT: return ARMCC::HI; case ISD::SETUGE: return ARMCC::CS; } } const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case ARMISD::CALL: return "ARMISD::CALL"; case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; case ARMISD::SELECT: return "ARMISD::SELECT"; case ARMISD::CMP: return "ARMISD::CMP"; case ARMISD::BR: return "ARMISD::BR"; case ARMISD::FSITOS: return "ARMISD::FSITOS"; case ARMISD::FTOSIS: return "ARMISD::FTOSIS"; case ARMISD::FSITOD: return "ARMISD::FSITOD"; case ARMISD::FTOSID: return "ARMISD::FTOSID"; case ARMISD::FUITOS: return "ARMISD::FUITOS"; case ARMISD::FTOUIS: return "ARMISD::FTOUIS"; case ARMISD::FUITOD: return "ARMISD::FUITOD"; case ARMISD::FTOUID: return "ARMISD::FTOUID"; case ARMISD::FMRRD: return "ARMISD::FMRRD"; case ARMISD::FMDRR: return "ARMISD::FMDRR"; case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; } } class ArgumentLayout { std::vector is_reg; std::vector pos; std::vector types; public: ArgumentLayout(const std::vector &Types) { types = Types; unsigned RegNum = 0; unsigned StackOffset = 0; for(std::vector::const_iterator I = Types.begin(); I != Types.end(); ++I) { MVT::ValueType VT = *I; assert(VT == MVT::i32 || VT == MVT::f32 || VT == MVT::f64); unsigned size = MVT::getSizeInBits(VT)/32; RegNum = ((RegNum + size - 1) / size) * size; if (RegNum < 4) { pos.push_back(RegNum); is_reg.push_back(true); RegNum += size; } else { unsigned bytes = size * 32/8; StackOffset = ((StackOffset + bytes - 1) / bytes) * bytes; pos.push_back(StackOffset); is_reg.push_back(false); StackOffset += bytes; } } } unsigned getRegisterNum(unsigned argNum) { assert(isRegister(argNum)); return pos[argNum]; } unsigned getOffset(unsigned argNum) { assert(isOffset(argNum)); return pos[argNum]; } unsigned isRegister(unsigned argNum) { assert(argNum < is_reg.size()); return is_reg[argNum]; } unsigned isOffset(unsigned argNum) { return !isRegister(argNum); } MVT::ValueType getType(unsigned argNum) { assert(argNum < types.size()); return types[argNum]; } unsigned getStackSize(void) { int last = is_reg.size() - 1; if (last < 0) return 0; if (isRegister(last)) return 0; return getOffset(last) + MVT::getSizeInBits(getType(last))/8; } int lastRegArg(void) { int size = is_reg.size(); int last = 0; while(last < size && isRegister(last)) last++; last--; return last; } int lastRegNum(void) { int l = lastRegArg(); if (l < 0) return -1; unsigned r = getRegisterNum(l); MVT::ValueType t = getType(l); assert(t == MVT::i32 || t == MVT::f32 || t == MVT::f64); if (t == MVT::f64) return r + 1; return r; } }; // This transforms a ISD::CALL node into a // callseq_star <- ARMISD:CALL <- callseq_end // chain static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) { SDOperand Chain = Op.getOperand(0); unsigned CallConv = cast(Op.getOperand(1))->getValue(); assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) && "unknown calling convention"); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; bool isTailCall = cast(Op.getOperand(3))->getValue() != 0; SDOperand Callee = Op.getOperand(4); unsigned NumOps = (Op.getNumOperands() - 5) / 2; SDOperand StackPtr = DAG.getRegister(ARM::R13, MVT::i32); static const unsigned regs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; std::vector Types; for (unsigned i = 0; i < NumOps; ++i) { MVT::ValueType VT = Op.getOperand(5+2*i).getValueType(); Types.push_back(VT); } ArgumentLayout Layout(Types); unsigned NumBytes = Layout.getStackSize(); Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, MVT::i32)); //Build a sequence of stores std::vector MemOpChains; for (unsigned i = Layout.lastRegArg() + 1; i < NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); unsigned ArgOffset = Layout.getOffset(i); SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOpChains[0], MemOpChains.size()); // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. assert(Callee.getValueType() == MVT::i32); if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32); else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); // If this is a direct call, pass the chain and the callee. assert (Callee.Val); std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDOperand InFlag; for (int i = 0, e = Layout.lastRegArg(); i <= e; ++i) { SDOperand Arg = Op.getOperand(5+2*i); unsigned RegNum = Layout.getRegisterNum(i); unsigned Reg1 = regs[RegNum]; MVT::ValueType VT = Layout.getType(i); assert(VT == Arg.getValueType()); assert(VT == MVT::i32 || VT == MVT::f32 || VT == MVT::f64); // Add argument register to the end of the list so that it is known live // into the call. Ops.push_back(DAG.getRegister(Reg1, MVT::i32)); if (VT == MVT::f64) { unsigned Reg2 = regs[RegNum + 1]; SDOperand SDReg1 = DAG.getRegister(Reg1, MVT::i32); SDOperand SDReg2 = DAG.getRegister(Reg2, MVT::i32); Ops.push_back(DAG.getRegister(Reg2, MVT::i32)); SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag); SDOperand Ops[] = {Chain, SDReg1, SDReg2, Arg, InFlag}; Chain = DAG.getNode(ARMISD::FMRRD, VTs, Ops, InFlag.Val ? 5 : 4); } else { if (VT == MVT::f32) Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Arg); Chain = DAG.getCopyToReg(Chain, Reg1, Arg, InFlag); } InFlag = Chain.getValue(1); } std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. unsigned CallOpc = ARMISD::CALL; if (InFlag.Val) Ops.push_back(InFlag); Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); std::vector ResultVals; NodeTys.clear(); // If the call has results, copy the values out of the ret val registers. MVT::ValueType VT = Op.Val->getValueType(0); if (VT != MVT::Other) { assert(VT == MVT::i32 || VT == MVT::f32 || VT == MVT::f64); SDOperand Value1 = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag); Chain = Value1.getValue(1); InFlag = Value1.getValue(2); NodeTys.push_back(VT); if (VT == MVT::i32) { ResultVals.push_back(Value1); if (Op.Val->getValueType(1) == MVT::i32) { SDOperand Value2 = DAG.getCopyFromReg(Chain, ARM::R1, MVT::i32, InFlag); Chain = Value2.getValue(1); ResultVals.push_back(Value2); NodeTys.push_back(VT); } } if (VT == MVT::f32) { SDOperand Value = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Value1); ResultVals.push_back(Value); } if (VT == MVT::f64) { SDOperand Value2 = DAG.getCopyFromReg(Chain, ARM::R1, MVT::i32, InFlag); Chain = Value2.getValue(1); SDOperand Value = DAG.getNode(ARMISD::FMDRR, MVT::f64, Value1, Value2); ResultVals.push_back(Value); } } Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, DAG.getConstant(NumBytes, MVT::i32)); NodeTys.push_back(MVT::Other); if (ResultVals.empty()) return Chain; ResultVals.push_back(Chain); SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0], ResultVals.size()); return Res.getValue(Op.ResNo); } static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) { SDOperand Copy; SDOperand Chain = Op.getOperand(0); SDOperand R0 = DAG.getRegister(ARM::R0, MVT::i32); SDOperand R1 = DAG.getRegister(ARM::R1, MVT::i32); switch(Op.getNumOperands()) { default: assert(0 && "Do not know how to return this many arguments!"); abort(); case 1: { SDOperand LR = DAG.getRegister(ARM::R14, MVT::i32); return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Chain); } case 3: { SDOperand Val = Op.getOperand(1); assert(Val.getValueType() == MVT::i32 || Val.getValueType() == MVT::f32 || Val.getValueType() == MVT::f64); if (Val.getValueType() == MVT::f64) { SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag); SDOperand Ops[] = {Chain, R0, R1, Val}; Copy = DAG.getNode(ARMISD::FMRRD, VTs, Ops, 4); } else { if (Val.getValueType() == MVT::f32) Val = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Val); Copy = DAG.getCopyToReg(Chain, R0, Val, SDOperand()); } if (DAG.getMachineFunction().liveout_empty()) { DAG.getMachineFunction().addLiveOut(ARM::R0); if (Val.getValueType() == MVT::f64) DAG.getMachineFunction().addLiveOut(ARM::R1); } break; } case 5: Copy = DAG.getCopyToReg(Chain, ARM::R1, Op.getOperand(3), SDOperand()); Copy = DAG.getCopyToReg(Copy, ARM::R0, Op.getOperand(1), Copy.getValue(1)); // If we haven't noted the R0+R1 are live out, do so now. if (DAG.getMachineFunction().liveout_empty()) { DAG.getMachineFunction().addLiveOut(ARM::R0); DAG.getMachineFunction().addLiveOut(ARM::R1); } break; } //We must use RET_FLAG instead of BRIND because BRIND doesn't have a flag return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1)); } static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType PtrVT = Op.getValueType(); ConstantPoolSDNode *CP = cast(Op); Constant *C = CP->getConstVal(); SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment()); return CPI; } static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { GlobalValue *GV = cast(Op)->getGlobal(); int alignment = 2; SDOperand CPAddr = DAG.getConstantPool(GV, MVT::i32, alignment); return DAG.getLoad(MVT::i32, DAG.getEntryNode(), CPAddr, NULL, 0); } static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG, unsigned VarArgsFrameIndex) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); SrcValueSDNode *SV = cast(Op.getOperand(2)); return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(), SV->getOffset()); } static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG, int &VarArgsFrameIndex) { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); SSARegMap *RegMap = MF.getSSARegMap(); unsigned NumArgs = Op.Val->getNumValues()-1; SDOperand Root = Op.getOperand(0); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; static const unsigned REGS[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; std::vector Types(Op.Val->value_begin(), Op.Val->value_end() - 1); ArgumentLayout Layout(Types); std::vector ArgValues; for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) { MVT::ValueType VT = Types[ArgNo]; SDOperand Value; if (Layout.isRegister(ArgNo)) { assert(VT == MVT::i32 || VT == MVT::f32 || VT == MVT::f64); unsigned RegNum = Layout.getRegisterNum(ArgNo); unsigned Reg1 = REGS[RegNum]; unsigned VReg1 = RegMap->createVirtualRegister(&ARM::IntRegsRegClass); SDOperand Value1 = DAG.getCopyFromReg(Root, VReg1, MVT::i32); MF.addLiveIn(Reg1, VReg1); if (VT == MVT::f64) { unsigned Reg2 = REGS[RegNum + 1]; unsigned VReg2 = RegMap->createVirtualRegister(&ARM::IntRegsRegClass); SDOperand Value2 = DAG.getCopyFromReg(Root, VReg2, MVT::i32); MF.addLiveIn(Reg2, VReg2); Value = DAG.getNode(ARMISD::FMDRR, MVT::f64, Value1, Value2); } else { Value = Value1; if (VT == MVT::f32) Value = DAG.getNode(ISD::BIT_CONVERT, VT, Value); } } else { // If the argument is actually used, emit a load from the right stack // slot. if (!Op.Val->hasNUsesOfValue(0, ArgNo)) { unsigned Offset = Layout.getOffset(ArgNo); unsigned Size = MVT::getSizeInBits(VT)/8; int FI = MFI->CreateFixedObject(Size, Offset); SDOperand FIN = DAG.getFrameIndex(FI, VT); Value = DAG.getLoad(VT, Root, FIN, NULL, 0); } else { Value = DAG.getNode(ISD::UNDEF, VT); } } ArgValues.push_back(Value); } unsigned NextRegNum = Layout.lastRegNum() + 1; if (isVarArg) { //If this function is vararg we must store the remaing //registers so that they can be acessed with va_start VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(MVT::i32)/8, -16 + NextRegNum * 4); SmallVector MemOps; for (unsigned RegNo = NextRegNum; RegNo < 4; ++RegNo) { int RegOffset = - (4 - RegNo) * 4; int FI = MFI->CreateFixedObject(MVT::getSizeInBits(MVT::i32)/8, RegOffset); SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); unsigned VReg = RegMap->createVirtualRegister(&ARM::IntRegsRegClass); MF.addLiveIn(REGS[RegNo], VReg); SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32); SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); MemOps.push_back(Store); } Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size()); } ArgValues.push_back(Root); // Return the new list of results. std::vector RetVT(Op.Val->value_begin(), Op.Val->value_end()); return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size()); } static SDOperand GetCMP(ISD::CondCode CC, SDOperand LHS, SDOperand RHS, SelectionDAG &DAG) { MVT::ValueType vt = LHS.getValueType(); assert(vt == MVT::i32 || vt == MVT::f32 || vt == MVT::f64); SDOperand Cmp = DAG.getNode(ARMISD::CMP, MVT::Flag, LHS, RHS); if (vt != MVT::i32) Cmp = DAG.getNode(ARMISD::FMSTAT, MVT::Flag, Cmp); return Cmp; } static SDOperand GetARMCC(ISD::CondCode CC, MVT::ValueType vt, SelectionDAG &DAG) { assert(vt == MVT::i32 || vt == MVT::f32 || vt == MVT::f64); if (vt == MVT::i32) return DAG.getConstant(DAGIntCCToARMCC(CC), MVT::i32); else return DAG.getConstant(DAGFPCCToARMCC(CC), MVT::i32); } static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) { SDOperand LHS = Op.getOperand(0); SDOperand RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDOperand TrueVal = Op.getOperand(2); SDOperand FalseVal = Op.getOperand(3); SDOperand Cmp = GetCMP(CC, LHS, RHS, DAG); SDOperand ARMCC = GetARMCC(CC, LHS.getValueType(), DAG); return DAG.getNode(ARMISD::SELECT, MVT::i32, TrueVal, FalseVal, ARMCC, Cmp); } static SDOperand LowerBR_CC(SDOperand Op, SelectionDAG &DAG) { SDOperand Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDOperand LHS = Op.getOperand(2); SDOperand RHS = Op.getOperand(3); SDOperand Dest = Op.getOperand(4); SDOperand Cmp = GetCMP(CC, LHS, RHS, DAG); SDOperand ARMCC = GetARMCC(CC, LHS.getValueType(), DAG); return DAG.getNode(ARMISD::BR, MVT::Other, Chain, Dest, ARMCC, Cmp); } static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { SDOperand IntVal = Op.getOperand(0); assert(IntVal.getValueType() == MVT::i32); MVT::ValueType vt = Op.getValueType(); assert(vt == MVT::f32 || vt == MVT::f64); SDOperand Tmp = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, IntVal); ARMISD::NodeType op = vt == MVT::f32 ? ARMISD::FSITOS : ARMISD::FSITOD; return DAG.getNode(op, vt, Tmp); } static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { assert(Op.getValueType() == MVT::i32); SDOperand FloatVal = Op.getOperand(0); MVT::ValueType vt = FloatVal.getValueType(); assert(vt == MVT::f32 || vt == MVT::f64); ARMISD::NodeType op = vt == MVT::f32 ? ARMISD::FTOSIS : ARMISD::FTOSID; SDOperand Tmp = DAG.getNode(op, MVT::f32, FloatVal); return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Tmp); } static SDOperand LowerUINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { SDOperand IntVal = Op.getOperand(0); assert(IntVal.getValueType() == MVT::i32); MVT::ValueType vt = Op.getValueType(); assert(vt == MVT::f32 || vt == MVT::f64); SDOperand Tmp = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, IntVal); ARMISD::NodeType op = vt == MVT::f32 ? ARMISD::FUITOS : ARMISD::FUITOD; return DAG.getNode(op, vt, Tmp); } static SDOperand LowerFP_TO_UINT(SDOperand Op, SelectionDAG &DAG) { assert(Op.getValueType() == MVT::i32); SDOperand FloatVal = Op.getOperand(0); MVT::ValueType vt = FloatVal.getValueType(); assert(vt == MVT::f32 || vt == MVT::f64); ARMISD::NodeType op = vt == MVT::f32 ? ARMISD::FTOUIS : ARMISD::FTOUID; SDOperand Tmp = DAG.getNode(op, MVT::f32, FloatVal); return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Tmp); } SDOperand ARMTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: assert(0 && "Should not custom lower this!"); abort(); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex); case ISD::CALL: return LowerCALL(Op, DAG); case ISD::RET: return LowerRET(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex); } } //===----------------------------------------------------------------------===// // Instruction Selector Implementation //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------===// /// ARMDAGToDAGISel - ARM specific code to select ARM machine /// instructions for SelectionDAG operations. /// namespace { class ARMDAGToDAGISel : public SelectionDAGISel { ARMTargetLowering Lowering; public: ARMDAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(Lowering), Lowering(TM) { } SDNode *Select(SDOperand Op); virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); bool SelectAddrRegImm(SDOperand N, SDOperand &Offset, SDOperand &Base); bool SelectAddrMode1(SDOperand N, SDOperand &Arg, SDOperand &Shift, SDOperand &ShiftType); bool SelectAddrMode5(SDOperand N, SDOperand &Arg, SDOperand &Offset); // Include the pieces autogenerated from the target description. #include "ARMGenDAGISel.inc" }; void ARMDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); DAG.setRoot(SelectRoot(DAG.getRoot())); DAG.RemoveDeadNodes(); ScheduleAndEmitDAG(DAG); } static bool isInt12Immediate(SDNode *N, short &Imm) { if (N->getOpcode() != ISD::Constant) return false; int32_t t = cast(N)->getValue(); int max = 1<<12; int min = -max; if (t > min && t < max) { Imm = t; return true; } else return false; } static bool isInt12Immediate(SDOperand Op, short &Imm) { return isInt12Immediate(Op.Val, Imm); } static uint32_t rotateL(uint32_t x) { uint32_t bit31 = (x & (1 << 31)) >> 31; uint32_t t = x << 1; return t | bit31; } static bool isUInt8Immediate(uint32_t x) { return x < (1 << 8); } static bool isRotInt8Immediate(uint32_t x) { int r; for (r = 0; r < 16; r++) { if (isUInt8Immediate(x)) return true; x = rotateL(rotateL(x)); } return false; } bool ARMDAGToDAGISel::SelectAddrMode1(SDOperand N, SDOperand &Arg, SDOperand &Shift, SDOperand &ShiftType) { switch(N.getOpcode()) { case ISD::Constant: { uint32_t val = cast(N)->getValue(); if(!isRotInt8Immediate(val)) { Constant *C = ConstantInt::get(Type::UIntTy, val); int alignment = 2; SDOperand Addr = CurDAG->getTargetConstantPool(C, MVT::i32, alignment); SDOperand Z = CurDAG->getTargetConstant(0, MVT::i32); SDNode *n = CurDAG->getTargetNode(ARM::ldr, MVT::i32, Z, Addr); Arg = SDOperand(n, 0); } else Arg = CurDAG->getTargetConstant(val, MVT::i32); Shift = CurDAG->getTargetConstant(0, MVT::i32); ShiftType = CurDAG->getTargetConstant(ARMShift::LSL, MVT::i32); return true; } case ISD::SRA: Arg = N.getOperand(0); Shift = N.getOperand(1); ShiftType = CurDAG->getTargetConstant(ARMShift::ASR, MVT::i32); return true; case ISD::SRL: Arg = N.getOperand(0); Shift = N.getOperand(1); ShiftType = CurDAG->getTargetConstant(ARMShift::LSR, MVT::i32); return true; case ISD::SHL: Arg = N.getOperand(0); Shift = N.getOperand(1); ShiftType = CurDAG->getTargetConstant(ARMShift::LSL, MVT::i32); return true; } Arg = N; Shift = CurDAG->getTargetConstant(0, MVT::i32); ShiftType = CurDAG->getTargetConstant(ARMShift::LSL, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode5(SDOperand N, SDOperand &Arg, SDOperand &Offset) { //TODO: detect offset Offset = CurDAG->getTargetConstant(0, MVT::i32); Arg = N; return true; } //register plus/minus 12 bit offset bool ARMDAGToDAGISel::SelectAddrRegImm(SDOperand N, SDOperand &Offset, SDOperand &Base) { if (FrameIndexSDNode *FIN = dyn_cast(N)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } if (N.getOpcode() == ISD::ADD) { short imm = 0; if (isInt12Immediate(N.getOperand(1), imm)) { Offset = CurDAG->getTargetConstant(imm, MVT::i32); if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) { Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType()); } else { Base = N.getOperand(0); } return true; // [r+i] } } Offset = CurDAG->getTargetConstant(0, MVT::i32); if (FrameIndexSDNode *FI = dyn_cast(N)) { Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType()); } else Base = N; return true; //any address fits in a register } SDNode *ARMDAGToDAGISel::Select(SDOperand Op) { SDNode *N = Op.Val; switch (N->getOpcode()) { default: return SelectCode(Op); break; } return NULL; } } // end anonymous namespace /// createARMISelDag - This pass converts a legalized DAG into a /// ARM-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createARMISelDag(TargetMachine &TM) { return new ARMDAGToDAGISel(TM); }