//===-- PhyRegAlloc.cpp ---------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Traditional graph-coloring global register allocator currently used // by the SPARC back-end. // // NOTE: This register allocator has some special support // for the Reoptimizer, such as not saving some registers on calls to // the first-level instrumentation function. // // NOTE 2: This register allocator can save its state in a global // variable in the module it's working on. This feature is not // thread-safe; if you have doubts, leave it turned off. // //===----------------------------------------------------------------------===// #include "AllocInfo.h" #include "IGNode.h" #include "PhyRegAlloc.h" #include "RegAllocCommon.h" #include "RegClass.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/iOther.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/CodeGen/FunctionLiveVarInfo.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineInstrAnnot.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/InstIterator.h" #include "llvm/Target/TargetInstrInfo.h" #include "Support/CommandLine.h" #include "Support/SetOperations.h" #include "Support/STLExtras.h" #include namespace llvm { RegAllocDebugLevel_t DEBUG_RA; /// The reoptimizer wants to be able to grovel through the register /// allocator's state after it has done its job. This is a hack. /// PhyRegAlloc::SavedStateMapTy ExportedFnAllocState; const bool SaveStateToModule = true; static cl::opt DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA), cl::desc("enable register allocation debugging information"), cl::values( clEnumValN(RA_DEBUG_None , "n", "disable debug output"), clEnumValN(RA_DEBUG_Results, "y", "debug output for allocation results"), clEnumValN(RA_DEBUG_Coloring, "c", "debug output for graph coloring step"), clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"), clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"), clEnumValN(RA_DEBUG_Verbose, "v", "extra debug output"), 0)); static cl::opt SaveRegAllocState("save-ra-state", cl::Hidden, cl::desc("write reg. allocator state into module")); FunctionPass *getRegisterAllocator(TargetMachine &T) { return new PhyRegAlloc (T); } void PhyRegAlloc::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired (); AU.addRequired (); } /// Initialize interference graphs (one in each reg class) and IGNodeLists /// (one in each IG). The actual nodes will be pushed later. /// void PhyRegAlloc::createIGNodeListsAndIGs() { if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n"; LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin(); LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end(); for (; HMI != HMIEnd ; ++HMI ) { if (HMI->first) { LiveRange *L = HMI->second; // get the LiveRange if (!L) { if (DEBUG_RA) std::cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: " << RAV(HMI->first) << "****\n"; continue; } // if the Value * is not null, and LR is not yet written to the IGNodeList if (!(L->getUserIGNode()) ) { RegClass *const RC = // RegClass of first value in the LR RegClassList[ L->getRegClassID() ]; RC->addLRToIG(L); // add this LR to an IG } } } // init RegClassList for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->createInterferenceGraph(); if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "LRLists Created!\n"; } /// Add all interferences for a given instruction. Interference occurs only /// if the LR of Def (Inst or Arg) is of the same reg class as that of live /// var. The live var passed to this function is the LVset AFTER the /// instruction. /// void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet, bool isCallInst) { ValueSet::const_iterator LIt = LVSet->begin(); // get the live range of instruction const LiveRange *const LROfDef = LRI->getLiveRangeForValue( Def ); IGNode *const IGNodeOfDef = LROfDef->getUserIGNode(); assert( IGNodeOfDef ); RegClass *const RCOfDef = LROfDef->getRegClass(); // for each live var in live variable set for ( ; LIt != LVSet->end(); ++LIt) { if (DEBUG_RA >= RA_DEBUG_Verbose) std::cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> "; // get the live range corresponding to live var LiveRange *LROfVar = LRI->getLiveRangeForValue(*LIt); // LROfVar can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above if (LROfVar) if (LROfDef != LROfVar) // do not set interf for same LR if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same RCOfDef->setInterference( LROfDef, LROfVar); } } /// For a call instruction, this method sets the CallInterference flag in /// the LR of each variable live in the Live Variable Set live after the /// call instruction (except the return value of the call instruction - since /// the return value does not interfere with that call itself). /// void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, const ValueSet *LVSetAft) { if (DEBUG_RA >= RA_DEBUG_Interference) std::cerr << "\n For call inst: " << *MInst; // for each live var in live variable set after machine inst for (ValueSet::const_iterator LIt = LVSetAft->begin(), LEnd = LVSetAft->end(); LIt != LEnd; ++LIt) { // get the live range corresponding to live var LiveRange *const LR = LRI->getLiveRangeForValue(*LIt ); // LR can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above if (LR ) { if (DEBUG_RA >= RA_DEBUG_Interference) { std::cerr << "\n\tLR after Call: "; printSet(*LR); } LR->setCallInterference(); if (DEBUG_RA >= RA_DEBUG_Interference) { std::cerr << "\n ++After adding call interference for LR: " ; printSet(*LR); } } } // Now find the LR of the return value of the call // We do this because, we look at the LV set *after* the instruction // to determine, which LRs must be saved across calls. The return value // of the call is live in this set - but it does not interfere with call // (i.e., we can allocate a volatile register to the return value) CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst); if (const Value *RetVal = argDesc->getReturnValue()) { LiveRange *RetValLR = LRI->getLiveRangeForValue( RetVal ); assert( RetValLR && "No LR for RetValue of call"); RetValLR->clearCallInterference(); } // If the CALL is an indirect call, find the LR of the function pointer. // That has a call interference because it conflicts with outgoing args. if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) { LiveRange *AddrValLR = LRI->getLiveRangeForValue( AddrVal ); assert( AddrValLR && "No LR for indirect addr val of call"); AddrValLR->setCallInterference(); } } /// Create interferences in the IG of each RegClass, and calculate the spill /// cost of each Live Range (it is done in this method to save another pass /// over the code). /// void PhyRegAlloc::buildInterferenceGraphs() { if (DEBUG_RA >= RA_DEBUG_Interference) std::cerr << "Creating interference graphs ...\n"; unsigned BBLoopDepthCost; for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end(); BBI != BBE; ++BBI) { const MachineBasicBlock &MBB = *BBI; const BasicBlock *BB = MBB.getBasicBlock(); // find the 10^(loop_depth) of this BB BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB)); // get the iterator for machine instructions MachineBasicBlock::const_iterator MII = MBB.begin(); // iterate over all the machine instructions in BB for ( ; MII != MBB.end(); ++MII) { const MachineInstr *MInst = *MII; // get the LV set after the instruction const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB); bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpcode()); if (isCallInst) { // set the isCallInterference flag of each live range which extends // across this call instruction. This information is used by graph // coloring algorithm to avoid allocating volatile colors to live ranges // that span across calls (since they have to be saved/restored) setCallInterferences(MInst, &LVSetAI); } // iterate over all MI operands to find defs for (MachineInstr::const_val_op_iterator OpI = MInst->begin(), OpE = MInst->end(); OpI != OpE; ++OpI) { if (OpI.isDef()) // create a new LR since def addInterference(*OpI, &LVSetAI, isCallInst); // Calculate the spill cost of each live range LiveRange *LR = LRI->getLiveRangeForValue(*OpI); if (LR) LR->addSpillCost(BBLoopDepthCost); } // Mark all operands of pseudo-instructions as interfering with one // another. This must be done because pseudo-instructions may be // expanded to multiple instructions by the assembler, so all the // operands must get distinct registers. if (TM.getInstrInfo().isPseudoInstr(MInst->getOpcode())) addInterf4PseudoInstr(MInst); // Also add interference for any implicit definitions in a machine // instr (currently, only calls have this). unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); for (unsigned z=0; z < NumOfImpRefs; z++) if (MInst->getImplicitOp(z).isDef()) addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst ); } // for all machine instructions in BB } // for all BBs in function // add interferences for function arguments. Since there are no explicit // defs in the function for args, we have to add them manually addInterferencesForArgs(); if (DEBUG_RA >= RA_DEBUG_Interference) std::cerr << "Interference graphs calculated!\n"; } /// Mark all operands of the given MachineInstr as interfering with one /// another. /// void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) { bool setInterf = false; // iterate over MI operands to find defs for (MachineInstr::const_val_op_iterator It1 = MInst->begin(), ItE = MInst->end(); It1 != ItE; ++It1) { const LiveRange *LROfOp1 = LRI->getLiveRangeForValue(*It1); assert((LROfOp1 || It1.isDef()) && "No LR for Def in PSEUDO insruction"); MachineInstr::const_val_op_iterator It2 = It1; for (++It2; It2 != ItE; ++It2) { const LiveRange *LROfOp2 = LRI->getLiveRangeForValue(*It2); if (LROfOp2) { RegClass *RCOfOp1 = LROfOp1->getRegClass(); RegClass *RCOfOp2 = LROfOp2->getRegClass(); if (RCOfOp1 == RCOfOp2 ){ RCOfOp1->setInterference( LROfOp1, LROfOp2 ); setInterf = true; } } // if Op2 has a LR } // for all other defs in machine instr } // for all operands in an instruction if (!setInterf && MInst->getNumOperands() > 2) { std::cerr << "\nInterf not set for any operand in pseudo instr:\n"; std::cerr << *MInst; assert(0 && "Interf not set for pseudo instr with > 2 operands" ); } } /// Add interferences for incoming arguments to a function. /// void PhyRegAlloc::addInterferencesForArgs() { // get the InSet of root BB const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front()); for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) { // add interferences between args and LVars at start addInterference(AI, &InSet, false); if (DEBUG_RA >= RA_DEBUG_Interference) std::cerr << " - %% adding interference for argument " << RAV(AI) << "\n"; } } /// The following are utility functions used solely by updateMachineCode and /// the functions that it calls. They should probably be folded back into /// updateMachineCode at some point. /// // used by: updateMachineCode (1 time), PrependInstructions (1 time) inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII) { MII = MBB.insert(MII, newMI); ++MII; } // used by: AppendInstructions (1 time) inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII) { ++MII; // insert before the next instruction MII = MBB.insert(MII, newMI); } // used by: updateMachineCode (1 time) inline void DeleteInstruction(MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII) { MII = MBB.erase(MII); } // used by: updateMachineCode (1 time) inline void SubstituteInPlace(MachineInstr* newMI, MachineBasicBlock& MBB, MachineBasicBlock::iterator MII) { *MII = newMI; } // used by: updateMachineCode (2 times) inline void PrependInstructions(std::vector &IBef, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII, const std::string& msg) { if (!IBef.empty()) { MachineInstr* OrigMI = *MII; std::vector::iterator AdIt; for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) { if (DEBUG_RA) { if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI; std::cerr << msg << "PREPENDed instr:\n " << **AdIt << "\n"; } InsertBefore(*AdIt, MBB, MII); } } } // used by: updateMachineCode (1 time) inline void AppendInstructions(std::vector &IAft, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII, const std::string& msg) { if (!IAft.empty()) { MachineInstr* OrigMI = *MII; std::vector::iterator AdIt; for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) { if (DEBUG_RA) { if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI; std::cerr << msg << "APPENDed instr:\n " << **AdIt << "\n"; } InsertAfter(*AdIt, MBB, MII); } } } /// Set the registers for operands in the given MachineInstr, if a register was /// successfully allocated. Return true if any of its operands has been marked /// for spill. /// bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst) { bool instrNeedsSpills = false; // First, set the registers for operands in the machine instruction // if a register was successfully allocated. Do this first because we // will need to know which registers are already used by this instr'n. for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { MachineOperand& Op = MInst->getOperand(OpNum); if (Op.getType() == MachineOperand::MO_VirtualRegister || Op.getType() == MachineOperand::MO_CCRegister) { const Value *const Val = Op.getVRegValue(); if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) { // Remember if any operand needs spilling instrNeedsSpills |= LR->isMarkedForSpill(); // An operand may have a color whether or not it needs spilling if (LR->hasColor()) MInst->SetRegForOperand(OpNum, MRI.getUnifiedRegNum(LR->getRegClassID(), LR->getColor())); } } } // for each operand return instrNeedsSpills; } /// Mark allocated registers (using markAllocatedRegs()) on the instruction /// that MII points to. Then, if it's a call instruction, insert caller-saving /// code before and after it. Finally, insert spill code before and after it, /// using insertCode4SpilledLR(). /// void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII, MachineBasicBlock &MBB) { MachineInstr* MInst = *MII; unsigned Opcode = MInst->getOpcode(); // Reset tmp stack positions so they can be reused for each machine instr. MF->getInfo()->popAllTempValues(); // Mark the operands for which regs have been allocated. bool instrNeedsSpills = markAllocatedRegs(*MII); #ifndef NDEBUG // Mark that the operands have been updated. Later, // setRelRegsUsedByThisInst() is called to find registers used by each // MachineInst, and it should not be used for an instruction until // this is done. This flag just serves as a sanity check. OperandsColoredMap[MInst] = true; #endif // Now insert caller-saving code before/after the call. // Do this before inserting spill code since some registers must be // used by save/restore and spill code should not use those registers. if (TM.getInstrInfo().isCall(Opcode)) { AddedInstrns &AI = AddedInstrMap[MInst]; insertCallerSavingCode(AI.InstrnsBefore, AI.InstrnsAfter, MInst, MBB.getBasicBlock()); } // Now insert spill code for remaining operands not allocated to // registers. This must be done even for call return instructions // since those are not handled by the special code above. if (instrNeedsSpills) for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { MachineOperand& Op = MInst->getOperand(OpNum); if (Op.getType() == MachineOperand::MO_VirtualRegister || Op.getType() == MachineOperand::MO_CCRegister) { const Value* Val = Op.getVRegValue(); if (const LiveRange *LR = LRI->getLiveRangeForValue(Val)) if (LR->isMarkedForSpill()) insertCode4SpilledLR(LR, MII, MBB, OpNum); } } // for each operand } /// Iterate over all the MachineBasicBlocks in the current function and set /// the allocated registers for each instruction (using updateInstruction()), /// after register allocation is complete. Then move code out of delay slots. /// void PhyRegAlloc::updateMachineCode() { // Insert any instructions needed at method entry MachineBasicBlock::iterator MII = MF->front().begin(); PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF->front(), MII, "At function entry: \n"); assert(AddedInstrAtEntry.InstrnsAfter.empty() && "InstrsAfter should be unnecessary since we are just inserting at " "the function entry point here."); for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end(); BBI != BBE; ++BBI) { MachineBasicBlock &MBB = *BBI; // Iterate over all machine instructions in BB and mark operands with // their assigned registers or insert spill code, as appropriate. // Also, fix operands of call/return instructions. for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII) if (! TM.getInstrInfo().isDummyPhiInstr((*MII)->getOpcode())) updateInstruction(MII, MBB); // Now, move code out of delay slots of branches and returns if needed. // (Also, move "after" code from calls to the last delay slot instruction.) // Moving code out of delay slots is needed in 2 situations: // (1) If this is a branch and it needs instructions inserted after it, // move any existing instructions out of the delay slot so that the // instructions can go into the delay slot. This only supports the // case that #instrsAfter <= #delay slots. // // (2) If any instruction in the delay slot needs // instructions inserted, move it out of the delay slot and before the // branch because putting code before or after it would be VERY BAD! // // If the annul bit of the branch is set, neither of these is legal! // If so, we need to handle spill differently but annulling is not yet used. for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII) if (unsigned delaySlots = TM.getInstrInfo().getNumDelaySlots((*MII)->getOpcode())) { MachineInstr *MInst = *MII, *DelaySlotMI = *(MII+1); // Check the 2 conditions above: // (1) Does a branch need instructions added after it? // (2) O/w does delay slot instr. need instrns before or after? bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpcode()) || TM.getInstrInfo().isReturn(MInst->getOpcode())); bool cond1 = (isBranch && AddedInstrMap.count(MInst) && AddedInstrMap[MInst].InstrnsAfter.size() > 0); bool cond2 = (AddedInstrMap.count(DelaySlotMI) && (AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 || AddedInstrMap[DelaySlotMI].InstrnsAfter.size() > 0)); if (cond1 || cond2) { assert((MInst->getOpCodeFlags() & AnnulFlag) == 0 && "FIXME: Moving an annulled delay slot instruction!"); assert(delaySlots==1 && "InsertBefore does not yet handle >1 delay slots!"); InsertBefore(DelaySlotMI, MBB, MII); // MII pts back to branch // In case (1), delete it and don't replace with anything! // Otherwise (i.e., case (2) only) replace it with a NOP. if (cond1) { DeleteInstruction(MBB, ++MII); // MII now points to next inst. --MII; // reset MII for ++MII of loop } else SubstituteInPlace(BuildMI(TM.getInstrInfo().getNOPOpCode(),1), MBB, MII+1); // replace with NOP if (DEBUG_RA) { std::cerr << "\nRegAlloc: Moved instr. with added code: " << *DelaySlotMI << " out of delay slots of instr: " << *MInst; } } else // For non-branch instr with delay slots (probably a call), move // InstrAfter to the instr. in the last delay slot. move2DelayedInstr(*MII, *(MII+delaySlots)); } // Finally iterate over all instructions in BB and insert before/after for (MachineBasicBlock::iterator MII=MBB.begin(); MII != MBB.end(); ++MII) { MachineInstr *MInst = *MII; // do not process Phis if (TM.getInstrInfo().isDummyPhiInstr(MInst->getOpcode())) continue; // if there are any added instructions... if (AddedInstrMap.count(MInst)) { AddedInstrns &CallAI = AddedInstrMap[MInst]; #ifndef NDEBUG bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpcode()) || TM.getInstrInfo().isReturn(MInst->getOpcode())); assert((!isBranch || AddedInstrMap[MInst].InstrnsAfter.size() <= TM.getInstrInfo().getNumDelaySlots(MInst->getOpcode())) && "Cannot put more than #delaySlots instrns after " "branch or return! Need to handle temps differently."); #endif #ifndef NDEBUG // Temporary sanity checking code to detect whether the same machine // instruction is ever inserted twice before/after a call. // I suspect this is happening but am not sure. --Vikram, 7/1/03. std::set instrsSeen; for (int i = 0, N = CallAI.InstrnsBefore.size(); i < N; ++i) { assert(instrsSeen.count(CallAI.InstrnsBefore[i]) == 0 && "Duplicate machine instruction in InstrnsBefore!"); instrsSeen.insert(CallAI.InstrnsBefore[i]); } for (int i = 0, N = CallAI.InstrnsAfter.size(); i < N; ++i) { assert(instrsSeen.count(CallAI.InstrnsAfter[i]) == 0 && "Duplicate machine instruction in InstrnsBefore/After!"); instrsSeen.insert(CallAI.InstrnsAfter[i]); } #endif // Now add the instructions before/after this MI. // We do this here to ensure that spill for an instruction is inserted // as close as possible to an instruction (see above insertCode4Spill) if (! CallAI.InstrnsBefore.empty()) PrependInstructions(CallAI.InstrnsBefore, MBB, MII,""); if (! CallAI.InstrnsAfter.empty()) AppendInstructions(CallAI.InstrnsAfter, MBB, MII,""); } // if there are any added instructions } // for each machine instruction } } /// Insert spill code for AN operand whose LR was spilled. May be called /// repeatedly for a single MachineInstr if it has many spilled operands. On /// each call, it finds a register which is not live at that instruction and /// also which is not used by other spilled operands of the same /// instruction. Then it uses this register temporarily to accommodate the /// spilled value. /// void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, MachineBasicBlock::iterator& MII, MachineBasicBlock &MBB, const unsigned OpNum) { MachineInstr *MInst = *MII; const BasicBlock *BB = MBB.getBasicBlock(); assert((! TM.getInstrInfo().isCall(MInst->getOpcode()) || OpNum == 0) && "Outgoing arg of a call must be handled elsewhere (func arg ok)"); assert(! TM.getInstrInfo().isReturn(MInst->getOpcode()) && "Return value of a ret must be handled elsewhere"); MachineOperand& Op = MInst->getOperand(OpNum); bool isDef = Op.isDef(); bool isUse = Op.isUse(); unsigned RegType = MRI.getRegTypeForLR(LR); int SpillOff = LR->getSpillOffFromFP(); RegClass *RC = LR->getRegClass(); // Get the live-variable set to find registers free before this instr. const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB); #ifndef NDEBUG // If this instr. is in the delay slot of a branch or return, we need to // include all live variables before that branch or return -- we don't want to // trample those! Verify that the set is included in the LV set before MInst. if (MII != MBB.begin()) { MachineInstr *PredMI = *(MII-1); if (unsigned DS = TM.getInstrInfo().getNumDelaySlots(PredMI->getOpcode())) assert(set_difference(LVI->getLiveVarSetBeforeMInst(PredMI), LVSetBef) .empty() && "Live-var set before branch should be included in " "live-var set of each delay slot instruction!"); } #endif MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); std::vector MIBef, MIAft; std::vector AdIMid; // Choose a register to hold the spilled value, if one was not preallocated. // This may insert code before and after MInst to free up the value. If so, // this code should be first/last in the spill sequence before/after MInst. int TmpRegU=(LR->hasColor() ? MRI.getUnifiedRegNum(LR->getRegClassID(),LR->getColor()) : getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef,MIAft)); // Set the operand first so that it this register does not get used // as a scratch register for later calls to getUsableUniRegAtMI below MInst->SetRegForOperand(OpNum, TmpRegU); // get the added instructions for this instruction AddedInstrns &AI = AddedInstrMap[MInst]; // We may need a scratch register to copy the spilled value to/from memory. // This may itself have to insert code to free up a scratch register. // Any such code should go before (after) the spill code for a load (store). // The scratch reg is not marked as used because it is only used // for the copy and not used across MInst. int scratchRegType = -1; int scratchReg = -1; if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef, MInst, MIBef, MIAft); assert(scratchReg != MRI.getInvalidRegNum()); } if (isUse) { // for a USE, we have to load the value of LR from stack to a TmpReg // and use the TmpReg as one operand of instruction // actual loading instruction(s) MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU, RegType, scratchReg); // the actual load should be after the instructions to free up TmpRegU MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end()); AdIMid.clear(); } if (isDef) { // if this is a Def // for a DEF, we have to store the value produced by this instruction // on the stack position allocated for this LR // actual storing instruction(s) MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff, RegType, scratchReg); MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end()); } // if !DEF // Finally, insert the entire spill code sequences before/after MInst AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end()); AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end()); if (DEBUG_RA) { std::cerr << "\nFor Inst:\n " << *MInst; std::cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex(); std::cerr << "; added Instructions:"; for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump)); for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump)); } } /// Insert caller saving/restoring instructions before/after a call machine /// instruction (before or after any other instructions that were inserted for /// the call). /// void PhyRegAlloc::insertCallerSavingCode(std::vector &instrnsBefore, std::vector &instrnsAfter, MachineInstr *CallMI, const BasicBlock *BB) { assert(TM.getInstrInfo().isCall(CallMI->getOpcode())); // hash set to record which registers were saved/restored hash_set PushedRegSet; CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); // if the call is to a instrumentation function, do not insert save and // restore instructions the instrumentation function takes care of save // restore for volatile regs. // // FIXME: this should be made general, not specific to the reoptimizer! const Function *Callee = argDesc->getCallInst()->getCalledFunction(); bool isLLVMFirstTrigger = Callee && Callee->getName() == "llvm_first_trigger"; // Now check if the call has a return value (using argDesc) and if so, // find the LR of the TmpInstruction representing the return value register. // (using the last or second-last *implicit operand* of the call MI). // Insert it to to the PushedRegSet since we must not save that register // and restore it after the call. // We do this because, we look at the LV set *after* the instruction // to determine, which LRs must be saved across calls. The return value // of the call is live in this set - but we must not save/restore it. if (const Value *origRetVal = argDesc->getReturnValue()) { unsigned retValRefNum = (CallMI->getNumImplicitRefs() - (argDesc->getIndirectFuncPtr()? 1 : 2)); const TmpInstruction* tmpRetVal = cast(CallMI->getImplicitRef(retValRefNum)); assert(tmpRetVal->getOperand(0) == origRetVal && tmpRetVal->getType() == origRetVal->getType() && "Wrong implicit ref?"); LiveRange *RetValLR = LRI->getLiveRangeForValue(tmpRetVal); assert(RetValLR && "No LR for RetValue of call"); if (! RetValLR->isMarkedForSpill()) PushedRegSet.insert(MRI.getUnifiedRegNum(RetValLR->getRegClassID(), RetValLR->getColor())); } const ValueSet &LVSetAft = LVI->getLiveVarSetAfterMInst(CallMI, BB); ValueSet::const_iterator LIt = LVSetAft.begin(); // for each live var in live variable set after machine inst for( ; LIt != LVSetAft.end(); ++LIt) { // get the live range corresponding to live var LiveRange *const LR = LRI->getLiveRangeForValue(*LIt); // LR can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above if (LR) { if (! LR->isMarkedForSpill()) { assert(LR->hasColor() && "LR is neither spilled nor colored?"); unsigned RCID = LR->getRegClassID(); unsigned Color = LR->getColor(); if (MRI.isRegVolatile(RCID, Color) ) { // if this is a call to the first-level reoptimizer // instrumentation entry point, and the register is not // modified by call, don't save and restore it. if (isLLVMFirstTrigger && !MRI.modifiedByCall(RCID, Color)) continue; // if the value is in both LV sets (i.e., live before and after // the call machine instruction) unsigned Reg = MRI.getUnifiedRegNum(RCID, Color); // if we haven't already pushed this register... if( PushedRegSet.find(Reg) == PushedRegSet.end() ) { unsigned RegType = MRI.getRegTypeForLR(LR); // Now get two instructions - to push on stack and pop from stack // and add them to InstrnsBefore and InstrnsAfter of the // call instruction int StackOff = MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); //---- Insert code for pushing the reg on stack ---------- std::vector AdIBef, AdIAft; // We may need a scratch register to copy the saved value // to/from memory. This may itself have to insert code to // free up a scratch register. Any such code should go before // the save code. The scratch register, if any, is by default // temporary and not "used" by the instruction unless the // copy code itself decides to keep the value in the scratch reg. int scratchRegType = -1; int scratchReg = -1; if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { // Find a register not live in the LVSet before CallMI const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(CallMI, BB); scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef, CallMI, AdIBef, AdIAft); assert(scratchReg != MRI.getInvalidRegNum()); } if (AdIBef.size() > 0) instrnsBefore.insert(instrnsBefore.end(), AdIBef.begin(), AdIBef.end()); MRI.cpReg2MemMI(instrnsBefore, Reg, MRI.getFramePointer(), StackOff, RegType, scratchReg); if (AdIAft.size() > 0) instrnsBefore.insert(instrnsBefore.end(), AdIAft.begin(), AdIAft.end()); //---- Insert code for popping the reg from the stack ---------- AdIBef.clear(); AdIAft.clear(); // We may need a scratch register to copy the saved value // from memory. This may itself have to insert code to // free up a scratch register. Any such code should go // after the save code. As above, scratch is not marked "used". scratchRegType = -1; scratchReg = -1; if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { // Find a register not live in the LVSet after CallMI scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetAft, CallMI, AdIBef, AdIAft); assert(scratchReg != MRI.getInvalidRegNum()); } if (AdIBef.size() > 0) instrnsAfter.insert(instrnsAfter.end(), AdIBef.begin(), AdIBef.end()); MRI.cpMem2RegMI(instrnsAfter, MRI.getFramePointer(), StackOff, Reg, RegType, scratchReg); if (AdIAft.size() > 0) instrnsAfter.insert(instrnsAfter.end(), AdIAft.begin(), AdIAft.end()); PushedRegSet.insert(Reg); if(DEBUG_RA) { std::cerr << "\nFor call inst:" << *CallMI; std::cerr << " -inserted caller saving instrs: Before:\n\t "; for_each(instrnsBefore.begin(), instrnsBefore.end(), std::mem_fun(&MachineInstr::dump)); std::cerr << " -and After:\n\t "; for_each(instrnsAfter.begin(), instrnsAfter.end(), std::mem_fun(&MachineInstr::dump)); } } // if not already pushed } // if LR has a volatile color } // if LR has color } // if there is a LR for Var } // for each value in the LV set after instruction } /// Returns the unified register number of a temporary register to be used /// BEFORE MInst. If no register is available, it will pick one and modify /// MIBef and MIAft to contain instructions used to free up this returned /// register. /// int PhyRegAlloc::getUsableUniRegAtMI(const int RegType, const ValueSet *LVSetBef, MachineInstr *MInst, std::vector& MIBef, std::vector& MIAft) { RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType)); int RegU = getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef); if (RegU == -1) { // we couldn't find an unused register. Generate code to free up a reg by // saving it on stack and restoring after the instruction int TmpOff = MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); RegU = getUniRegNotUsedByThisInst(RC, RegType, MInst); // Check if we need a scratch register to copy this register to memory. int scratchRegType = -1; if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef, MInst, MIBef, MIAft); assert(scratchReg != MRI.getInvalidRegNum()); // We may as well hold the value in the scratch register instead // of copying it to memory and back. But we have to mark the // register as used by this instruction, so it does not get used // as a scratch reg. by another operand or anyone else. ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg)); MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType); MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType); } else { // the register can be copied directly to/from memory so do it. MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType); MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType); } } return RegU; } /// Returns the register-class register number of a new unused register that /// can be used to accommodate a temporary value. May be called repeatedly /// for a single MachineInstr. On each call, it finds a register which is not /// live at that instruction and which is not used by any spilled operands of /// that instruction. /// int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType, const MachineInstr *MInst, const ValueSet* LVSetBef) { RC->clearColorsUsed(); // Reset array if (LVSetBef == NULL) { LVSetBef = &LVI->getLiveVarSetBeforeMInst(MInst); assert(LVSetBef != NULL && "Unable to get live-var set before MInst?"); } ValueSet::const_iterator LIt = LVSetBef->begin(); // for each live var in live variable set after machine inst for ( ; LIt != LVSetBef->end(); ++LIt) { // Get the live range corresponding to live var, and its RegClass LiveRange *const LRofLV = LRI->getLiveRangeForValue(*LIt ); // LR can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor()) RC->markColorsUsed(LRofLV->getColor(), MRI.getRegTypeForLR(LRofLV), RegType); } // It is possible that one operand of this MInst was already spilled // and it received some register temporarily. If that's the case, // it is recorded in machine operand. We must skip such registers. setRelRegsUsedByThisInst(RC, RegType, MInst); int unusedReg = RC->getUnusedColor(RegType); // find first unused color if (unusedReg >= 0) return MRI.getUnifiedRegNum(RC->getID(), unusedReg); return -1; } /// Return the unified register number of a register in class RC which is not /// used by any operands of MInst. /// int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, const int RegType, const MachineInstr *MInst) { RC->clearColorsUsed(); setRelRegsUsedByThisInst(RC, RegType, MInst); // find the first unused color int unusedReg = RC->getUnusedColor(RegType); assert(unusedReg >= 0 && "FATAL: No free register could be found in reg class!!"); return MRI.getUnifiedRegNum(RC->getID(), unusedReg); } /// Modify the IsColorUsedArr of register class RC, by setting the bits /// corresponding to register RegNo. This is a helper method of /// setRelRegsUsedByThisInst(). /// static void markRegisterUsed(int RegNo, RegClass *RC, int RegType, const TargetRegInfo &TRI) { unsigned classId = 0; int classRegNum = TRI.getClassRegNum(RegNo, classId); if (RC->getID() == classId) RC->markColorsUsed(classRegNum, RegType, RegType); } void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType, const MachineInstr *MI) { assert(OperandsColoredMap[MI] == true && "Illegal to call setRelRegsUsedByThisInst() until colored operands " "are marked for an instruction."); // Add the registers already marked as used by the instruction. Both // explicit and implicit operands are set. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) if (MI->getOperand(i).hasAllocatedReg()) markRegisterUsed(MI->getOperand(i).getAllocatedRegNum(), RC, RegType,MRI); for (unsigned i = 0, e = MI->getNumImplicitRefs(); i != e; ++i) if (MI->getImplicitOp(i).hasAllocatedReg()) markRegisterUsed(MI->getImplicitOp(i).getAllocatedRegNum(), RC, RegType,MRI); // Add all of the scratch registers that are used to save values across the // instruction (e.g., for saving state register values). std::pair IR = ScratchRegsUsed.equal_range(MI); for (ScratchRegsUsedTy::iterator I = IR.first; I != IR.second; ++I) markRegisterUsed(I->second, RC, RegType, MRI); // If there are implicit references, mark their allocated regs as well for (unsigned z=0; z < MI->getNumImplicitRefs(); z++) if (const LiveRange* LRofImpRef = LRI->getLiveRangeForValue(MI->getImplicitRef(z))) if (LRofImpRef->hasColor()) // this implicit reference is in a LR that received a color RC->markColorsUsed(LRofImpRef->getColor(), MRI.getRegTypeForLR(LRofImpRef), RegType); } /// If there are delay slots for an instruction, the instructions added after /// it must really go after the delayed instruction(s). So, we Move the /// InstrAfter of that instruction to the corresponding delayed instruction /// using the following method. /// void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI, const MachineInstr *DelayedMI) { // "added after" instructions of the original instr std::vector &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter; if (DEBUG_RA && OrigAft.size() > 0) { std::cerr << "\nRegAlloc: Moved InstrnsAfter for: " << *OrigMI; std::cerr << " to last delay slot instrn: " << *DelayedMI; } // "added after" instructions of the delayed instr std::vector &DelayedAft=AddedInstrMap[DelayedMI].InstrnsAfter; // go thru all the "added after instructions" of the original instruction // and append them to the "added after instructions" of the delayed // instructions DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end()); // empty the "added after instructions" of the original instruction OrigAft.clear(); } void PhyRegAlloc::colorIncomingArgs() { MRI.colorMethodArgs(Fn, *LRI, AddedInstrAtEntry.InstrnsBefore, AddedInstrAtEntry.InstrnsAfter); } /// Determine whether the suggested color of each live range is really usable, /// and then call its setSuggestedColorUsable() method to record the answer. A /// suggested color is NOT usable when the suggested color is volatile AND /// when there are call interferences. /// void PhyRegAlloc::markUnusableSugColors() { LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin(); LiveRangeMapType::const_iterator HMIEnd = (LRI->getLiveRangeMap())->end(); for (; HMI != HMIEnd ; ++HMI ) { if (HMI->first) { LiveRange *L = HMI->second; // get the LiveRange if (L && L->hasSuggestedColor ()) L->setSuggestedColorUsable (!(MRI.isRegVolatile (L->getRegClassID (), L->getSuggestedColor ()) && L->isCallInterference ())); } } // for all LR's in hash map } /// For each live range that is spilled, allocates a new spill position on the /// stack, and set the stack offsets of the live range that will be spilled to /// that position. This must be called just after coloring the LRs. /// void PhyRegAlloc::allocateStackSpace4SpilledLRs() { if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n"; LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin(); LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end(); for ( ; HMI != HMIEnd ; ++HMI) { if (HMI->first && HMI->second) { LiveRange *L = HMI->second; // get the LiveRange if (L->isMarkedForSpill()) { // NOTE: allocating size of long Type ** int stackOffset = MF->getInfo()->allocateSpilledValue(Type::LongTy); L->setSpillOffFromFP(stackOffset); if (DEBUG_RA) std::cerr << " LR# " << L->getUserIGNode()->getIndex() << ": stack-offset = " << stackOffset << "\n"; } } } // for all LR's in hash map } void PhyRegAlloc::saveStateForValue (std::vector &state, const Value *V, unsigned Insn, int Opnd) { LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap ()->find (V); LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap ()->end (); AllocInfo::AllocStateTy AllocState = AllocInfo::NotAllocated; int Placement = -1; if ((HMI != HMIEnd) && HMI->second) { LiveRange *L = HMI->second; assert ((L->hasColor () || L->isMarkedForSpill ()) && "Live range exists but not colored or spilled"); if (L->hasColor ()) { AllocState = AllocInfo::Allocated; Placement = MRI.getUnifiedRegNum (L->getRegClassID (), L->getColor ()); } else if (L->isMarkedForSpill ()) { AllocState = AllocInfo::Spilled; assert (L->hasSpillOffset () && "Live range marked for spill but has no spill offset"); Placement = L->getSpillOffFromFP (); } } state.push_back (AllocInfo (Insn, Opnd, AllocState, Placement)); } /// Save the global register allocation decisions made by the register /// allocator so that they can be accessed later (sort of like "poor man's /// debug info"). /// void PhyRegAlloc::saveState () { std::vector &state = FnAllocState[Fn]; unsigned Insn = 0; for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II!=IE; ++II){ saveStateForValue (state, (*II), Insn, -1); for (unsigned i = 0; i < (*II)->getNumOperands (); ++i) { const Value *V = (*II)->getOperand (i); // Don't worry about it unless it's something whose reg. we'll need. if (!isa (V) && !isa (V)) continue; saveStateForValue (state, V, Insn, i); } ++Insn; } } /// Check the saved state filled in by saveState(), and abort if it looks /// wrong. Only used when debugging. FIXME: Currently it just prints out /// the state, which isn't quite as useful. /// void PhyRegAlloc::verifySavedState () { std::vector &state = FnAllocState[Fn]; unsigned Insn = 0; for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II!=IE; ++II) { const Instruction *I = *II; MachineCodeForInstruction &Instrs = MachineCodeForInstruction::get (I); std::cerr << "Instruction:\n" << " " << *I << "\n" << "MachineCodeForInstruction:\n"; for (unsigned i = 0, n = Instrs.size (); i != n; ++i) std::cerr << " " << *Instrs[i] << "\n"; std::cerr << "FnAllocState:\n"; for (unsigned i = 0; i < state.size (); ++i) { AllocInfo &S = state[i]; if (Insn == S.Instruction) std::cerr << " " << S << "\n"; } std::cerr << "----------\n"; ++Insn; } } /// Finish the job of saveState(), by collapsing FnAllocState into an LLVM /// Constant and stuffing it inside the Module. (NOTE: Soon, there will be /// other, better ways of storing the saved state; this one is cumbersome and /// does not work well with the JIT.) /// bool PhyRegAlloc::doFinalization (Module &M) { if (!SaveRegAllocState) return false; // Nothing to do here, unless we're saving state. // If saving state into the module, just copy new elements to the // correct global. if (!SaveStateToModule) { ExportedFnAllocState = FnAllocState; // FIXME: should ONLY copy new elements in FnAllocState return false; } // Convert FnAllocState to a single Constant array and add it // to the Module. ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), 0); std::vector TV; TV.push_back (Type::UIntTy); TV.push_back (AT); PointerType *PT = PointerType::get (StructType::get (TV)); std::vector allstate; for (Module::iterator I = M.begin (), E = M.end (); I != E; ++I) { Function *F = I; if (F->isExternal ()) continue; if (FnAllocState.find (F) == FnAllocState.end ()) { allstate.push_back (ConstantPointerNull::get (PT)); } else { std::vector &state = FnAllocState[F]; // Convert state into an LLVM ConstantArray, and put it in a // ConstantStruct (named S) along with its size. std::vector stateConstants; for (unsigned i = 0, s = state.size (); i != s; ++i) stateConstants.push_back (state[i].toConstant ()); unsigned Size = stateConstants.size (); ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), Size); std::vector TV; TV.push_back (Type::UIntTy); TV.push_back (AT); StructType *ST = StructType::get (TV); std::vector CV; CV.push_back (ConstantUInt::get (Type::UIntTy, Size)); CV.push_back (ConstantArray::get (AT, stateConstants)); Constant *S = ConstantStruct::get (ST, CV); GlobalVariable *GV = new GlobalVariable (ST, true, GlobalValue::InternalLinkage, S, F->getName () + ".regAllocState", &M); // Have: { uint, [Size x { uint, int, uint, int }] } * // Cast it to: { uint, [0 x { uint, int, uint, int }] } * Constant *CE = ConstantExpr::getCast (ConstantPointerRef::get (GV), PT); allstate.push_back (CE); } } unsigned Size = allstate.size (); // Final structure type is: // { uint, [Size x { uint, [0 x { uint, int, uint, int }] } *] } std::vector TV2; TV2.push_back (Type::UIntTy); ArrayType *AT2 = ArrayType::get (PT, Size); TV2.push_back (AT2); StructType *ST2 = StructType::get (TV2); std::vector CV2; CV2.push_back (ConstantUInt::get (Type::UIntTy, Size)); CV2.push_back (ConstantArray::get (AT2, allstate)); new GlobalVariable (ST2, true, GlobalValue::ExternalLinkage, ConstantStruct::get (ST2, CV2), "_llvm_regAllocState", &M); return false; // No error. } /// Allocate registers for the machine code previously generated for F using /// the graph-coloring algorithm. /// bool PhyRegAlloc::runOnFunction (Function &F) { if (DEBUG_RA) std::cerr << "\n********* Function "<< F.getName () << " ***********\n"; Fn = &F; MF = &MachineFunction::get (Fn); LVI = &getAnalysis (); LRI = new LiveRangeInfo (Fn, TM, RegClassList); LoopDepthCalc = &getAnalysis (); // Create each RegClass for the target machine and add it to the // RegClassList. This must be done before calling constructLiveRanges(). for (unsigned rc = 0; rc != NumOfRegClasses; ++rc) RegClassList.push_back (new RegClass (Fn, &TM.getRegInfo (), MRI.getMachineRegClass (rc))); LRI->constructLiveRanges(); // create LR info if (DEBUG_RA >= RA_DEBUG_LiveRanges) LRI->printLiveRanges(); createIGNodeListsAndIGs(); // create IGNode list and IGs buildInterferenceGraphs(); // build IGs in all reg classes if (DEBUG_RA >= RA_DEBUG_LiveRanges) { // print all LRs in all reg classes for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->printIGNodeList(); // print IGs in all register classes for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->printIG(); } LRI->coalesceLRs(); // coalesce all live ranges if (DEBUG_RA >= RA_DEBUG_LiveRanges) { // print all LRs in all reg classes for (unsigned rc=0; rc < NumOfRegClasses; rc++) RegClassList[rc]->printIGNodeList(); // print IGs in all register classes for (unsigned rc=0; rc < NumOfRegClasses; rc++) RegClassList[rc]->printIG(); } // mark un-usable suggested color before graph coloring algorithm. // When this is done, the graph coloring algo will not reserve // suggested color unnecessarily - they can be used by another LR markUnusableSugColors(); // color all register classes using the graph coloring algo for (unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->colorAllRegs(); // After graph coloring, if some LRs did not receive a color (i.e, spilled) // a position for such spilled LRs allocateStackSpace4SpilledLRs(); // Reset the temp. area on the stack before use by the first instruction. // This will also happen after updating each instruction. MF->getInfo()->popAllTempValues(); // color incoming args - if the correct color was not received // insert code to copy to the correct register colorIncomingArgs(); // Save register allocation state for this function in a Constant. if (SaveRegAllocState) saveState(); if (DEBUG_RA) { // Check our work. verifySavedState (); } // Now update the machine code with register names and add any additional // code inserted by the register allocator to the instruction stream. updateMachineCode(); if (DEBUG_RA) { std::cerr << "\n**** Machine Code After Register Allocation:\n\n"; MF->dump(); } // Tear down temporary data structures for (unsigned rc = 0; rc < NumOfRegClasses; ++rc) delete RegClassList[rc]; RegClassList.clear (); AddedInstrMap.clear (); OperandsColoredMap.clear (); ScratchRegsUsed.clear (); AddedInstrAtEntry.clear (); delete LRI; if (DEBUG_RA) std::cerr << "\nRegister allocation complete!\n"; return false; // Function was not modified } } // End llvm namespace