//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the bison parser for LLVM assembly languages files. // //===----------------------------------------------------------------------===// %{ #include "ParserInternals.h" #include "llvm/SymbolTable.h" #include "llvm/Module.h" #include "llvm/iTerminators.h" #include "llvm/iMemory.h" #include "llvm/iOperators.h" #include "llvm/iPHINode.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "Support/STLExtras.h" #include #include #include int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit int yylex(); // declaration" of xxx warnings. int yyparse(); namespace llvm { static Module *ParserResult; std::string CurFilename; // DEBUG_UPREFS - Define this symbol if you want to enable debugging output // relating to upreferences in the input stream. // //#define DEBUG_UPREFS 1 #ifdef DEBUG_UPREFS #define UR_OUT(X) std::cerr << X #else #define UR_OUT(X) #endif #define YYERROR_VERBOSE 1 // HACK ALERT: This variable is used to implement the automatic conversion of // variable argument instructions from their old to new forms. When this // compatiblity "Feature" is removed, this should be too. // static BasicBlock *CurBB; static bool ObsoleteVarArgs; // This contains info used when building the body of a function. It is // destroyed when the function is completed. // typedef std::vector ValueList; // Numbered defs static void ResolveDefinitions(std::map &LateResolvers, std::map *FutureLateResolvers = 0); static struct PerModuleInfo { Module *CurrentModule; std::map Values; // Module level numbered definitions std::map LateResolveValues; std::vector Types; std::map LateResolveTypes; // GlobalRefs - This maintains a mapping between 's and forward // references to global values. Global values may be referenced before they // are defined, and if so, the temporary object that they represent is held // here. This is used for forward references of ConstantPointerRefs. // typedef std::map, GlobalValue*> GlobalRefsType; GlobalRefsType GlobalRefs; void ModuleDone() { // If we could not resolve some functions at function compilation time // (calls to functions before they are defined), resolve them now... Types // are resolved when the constant pool has been completely parsed. // ResolveDefinitions(LateResolveValues); // Check to make sure that all global value forward references have been // resolved! // if (!GlobalRefs.empty()) { std::string UndefinedReferences = "Unresolved global references exist:\n"; for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end(); I != E; ++I) { UndefinedReferences += " " + I->first.first->getDescription() + " " + I->first.second.getName() + "\n"; } ThrowException(UndefinedReferences); } Values.clear(); // Clear out function local definitions Types.clear(); CurrentModule = 0; } // DeclareNewGlobalValue - Called every time a new GV has been defined. This // is used to remove things from the forward declaration map, resolving them // to the correct thing as needed. // void DeclareNewGlobalValue(GlobalValue *GV, ValID D) { // Check to see if there is a forward reference to this global variable... // if there is, eliminate it and patch the reference to use the new def'n. GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(GV->getType(), D)); if (I != GlobalRefs.end()) { GlobalValue *OldGV = I->second; // Get the placeholder... I->first.second.destroy(); // Free string memory if necessary // Loop over all of the uses of the GlobalValue. The only thing they are // allowed to be is ConstantPointerRef's. assert(OldGV->hasOneUse() && "Only one reference should exist!"); User *U = OldGV->use_back(); // Must be a ConstantPointerRef... ConstantPointerRef *CPR = cast(U); // Change the const pool reference to point to the real global variable // now. This should drop a use from the OldGV. CPR->replaceUsesOfWithOnConstant(OldGV, GV); assert(OldGV->use_empty() && "All uses should be gone now!"); // Remove OldGV from the module... if (GlobalVariable *GVar = dyn_cast(OldGV)) CurrentModule->getGlobalList().erase(GVar); else CurrentModule->getFunctionList().erase(cast(OldGV)); // Remove the map entry for the global now that it has been created... GlobalRefs.erase(I); } } } CurModule; static struct PerFunctionInfo { Function *CurrentFunction; // Pointer to current function being created std::map Values; // Keep track of numbered definitions std::map LateResolveValues; std::vector Types; std::map LateResolveTypes; SymbolTable LocalSymtab; bool isDeclare; // Is this function a forward declararation? inline PerFunctionInfo() { CurrentFunction = 0; isDeclare = false; } inline void FunctionStart(Function *M) { CurrentFunction = M; } void FunctionDone() { // If we could not resolve some blocks at parsing time (forward branches) // resolve the branches now... ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); // Make sure to resolve any constant expr references that might exist within // the function we just declared itself. ValID FID; if (CurrentFunction->hasName()) { FID = ValID::create((char*)CurrentFunction->getName().c_str()); } else { unsigned Slot = CurrentFunction->getType()->getUniqueID(); // Figure out which slot number if is... ValueList &List = CurModule.Values[Slot]; for (unsigned i = 0; ; ++i) { assert(i < List.size() && "Function not found!"); if (List[i] == CurrentFunction) { FID = ValID::create((int)i); break; } } } CurModule.DeclareNewGlobalValue(CurrentFunction, FID); Values.clear(); // Clear out function local definitions Types.clear(); // Clear out function local types LocalSymtab.clear(); // Clear out function local symbol table CurrentFunction = 0; isDeclare = false; } } CurFun; // Info for the current function... static bool inFunctionScope() { return CurFun.CurrentFunction != 0; } //===----------------------------------------------------------------------===// // Code to handle definitions of all the types //===----------------------------------------------------------------------===// static int InsertValue(Value *D, std::map &ValueTab = CurFun.Values) { if (D->hasName()) return -1; // Is this a numbered definition? // Yes, insert the value into the value table... unsigned type = D->getType()->getUniqueID(); //printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D); ValueList &List = ValueTab[type]; List.push_back(D); return List.size()-1; } // TODO: FIXME when Type are not const static void InsertType(const Type *Ty, std::vector &Types) { Types.push_back(Ty); } static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) { switch (D.Type) { case ValID::NumberVal: { // Is it a numbered definition? unsigned Num = (unsigned)D.Num; // Module constants occupy the lowest numbered slots... if (Num < CurModule.Types.size()) return CurModule.Types[Num]; Num -= CurModule.Types.size(); // Check that the number is within bounds... if (Num <= CurFun.Types.size()) return CurFun.Types[Num]; break; } case ValID::NameVal: { // Is it a named definition? std::string Name(D.Name); SymbolTable *SymTab = 0; Value *N = 0; if (inFunctionScope()) { SymTab = &CurFun.CurrentFunction->getSymbolTable(); N = SymTab->lookupType(Name); } if (N == 0) { // Symbol table doesn't automatically chain yet... because the function // hasn't been added to the module... // SymTab = &CurModule.CurrentModule->getSymbolTable(); N = SymTab->lookupType(Name); if (N == 0) break; } D.destroy(); // Free old strdup'd memory... return cast(N); } default: ThrowException("Internal parser error: Invalid symbol type reference!"); } // If we reached here, we referenced either a symbol that we don't know about // or an id number that hasn't been read yet. We may be referencing something // forward, so just create an entry to be resolved later and get to it... // if (DoNotImprovise) return 0; // Do we just want a null to be returned? std::map &LateResolver = inFunctionScope() ? CurFun.LateResolveTypes : CurModule.LateResolveTypes; std::map::iterator I = LateResolver.find(D); if (I != LateResolver.end()) { return I->second; } Type *Typ = OpaqueType::get(); LateResolver.insert(std::make_pair(D, Typ)); return Typ; } static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) { SymbolTable &SymTab = inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() : CurModule.CurrentModule->getSymbolTable(); return SymTab.lookup(Ty, Name); } // getValNonImprovising - Look up the value specified by the provided type and // the provided ValID. If the value exists and has already been defined, return // it. Otherwise return null. // static Value *getValNonImprovising(const Type *Ty, const ValID &D) { if (isa(Ty)) ThrowException("Functions are not values and " "must be referenced as pointers"); switch (D.Type) { case ValID::NumberVal: { // Is it a numbered definition? unsigned type = Ty->getUniqueID(); unsigned Num = (unsigned)D.Num; // Module constants occupy the lowest numbered slots... std::map::iterator VI = CurModule.Values.find(type); if (VI != CurModule.Values.end()) { if (Num < VI->second.size()) return VI->second[Num]; Num -= VI->second.size(); } // Make sure that our type is within bounds VI = CurFun.Values.find(type); if (VI == CurFun.Values.end()) return 0; // Check that the number is within bounds... if (VI->second.size() <= Num) return 0; return VI->second[Num]; } case ValID::NameVal: { // Is it a named definition? Value *N = lookupInSymbolTable(Ty, std::string(D.Name)); if (N == 0) return 0; D.destroy(); // Free old strdup'd memory... return N; } // Check to make sure that "Ty" is an integral type, and that our // value will fit into the specified type... case ValID::ConstSIntVal: // Is it a constant pool reference?? if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) ThrowException("Signed integral constant '" + itostr(D.ConstPool64) + "' is invalid for type '" + Ty->getDescription() + "'!"); return ConstantSInt::get(Ty, D.ConstPool64); case ValID::ConstUIntVal: // Is it an unsigned const pool reference? if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) { if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) { ThrowException("Integral constant '" + utostr(D.UConstPool64) + "' is invalid or out of range!"); } else { // This is really a signed reference. Transmogrify. return ConstantSInt::get(Ty, D.ConstPool64); } } else { return ConstantUInt::get(Ty, D.UConstPool64); } case ValID::ConstFPVal: // Is it a floating point const pool reference? if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) ThrowException("FP constant invalid for type!!"); return ConstantFP::get(Ty, D.ConstPoolFP); case ValID::ConstNullVal: // Is it a null value? if (!isa(Ty)) ThrowException("Cannot create a a non pointer null!"); return ConstantPointerNull::get(cast(Ty)); case ValID::ConstantVal: // Fully resolved constant? if (D.ConstantValue->getType() != Ty) ThrowException("Constant expression type different from required type!"); return D.ConstantValue; default: assert(0 && "Unhandled case!"); return 0; } // End of switch assert(0 && "Unhandled case!"); return 0; } // getVal - This function is identical to getValNonImprovising, except that if a // value is not already defined, it "improvises" by creating a placeholder var // that looks and acts just like the requested variable. When the value is // defined later, all uses of the placeholder variable are replaced with the // real thing. // static Value *getVal(const Type *Ty, const ValID &D) { assert(Ty != Type::TypeTy && "Should use getTypeVal for types!"); // See if the value has already been defined... Value *V = getValNonImprovising(Ty, D); if (V) return V; // If we reached here, we referenced either a symbol that we don't know about // or an id number that hasn't been read yet. We may be referencing something // forward, so just create an entry to be resolved later and get to it... // Value *d = 0; switch (Ty->getPrimitiveID()) { case Type::LabelTyID: d = new BBPlaceHolder(Ty, D); break; default: d = new ValuePlaceHolder(Ty, D); break; } assert(d != 0 && "How did we not make something?"); if (inFunctionScope()) InsertValue(d, CurFun.LateResolveValues); else InsertValue(d, CurModule.LateResolveValues); return d; } //===----------------------------------------------------------------------===// // Code to handle forward references in instructions //===----------------------------------------------------------------------===// // // This code handles the late binding needed with statements that reference // values not defined yet... for example, a forward branch, or the PHI node for // a loop body. // // This keeps a table (CurFun.LateResolveValues) of all such forward references // and back patchs after we are done. // // ResolveDefinitions - If we could not resolve some defs at parsing // time (forward branches, phi functions for loops, etc...) resolve the // defs now... // static void ResolveDefinitions(std::map &LateResolvers, std::map *FutureLateResolvers) { // Loop over LateResolveDefs fixing up stuff that couldn't be resolved for (std::map::iterator LRI = LateResolvers.begin(), E = LateResolvers.end(); LRI != E; ++LRI) { ValueList &List = LRI->second; while (!List.empty()) { Value *V = List.back(); List.pop_back(); assert(!isa(V) && "Types should be in LateResolveTypes!"); ValID &DID = getValIDFromPlaceHolder(V); Value *TheRealValue = getValNonImprovising(Type::getUniqueIDType(LRI->first), DID); if (TheRealValue) { V->replaceAllUsesWith(TheRealValue); delete V; } else if (FutureLateResolvers) { // Functions have their unresolved items forwarded to the module late // resolver table InsertValue(V, *FutureLateResolvers); } else { if (DID.Type == ValID::NameVal) ThrowException("Reference to an invalid definition: '" +DID.getName()+ "' of type '" + V->getType()->getDescription() + "'", getLineNumFromPlaceHolder(V)); else ThrowException("Reference to an invalid definition: #" + itostr(DID.Num) + " of type '" + V->getType()->getDescription() + "'", getLineNumFromPlaceHolder(V)); } } } LateResolvers.clear(); } // ResolveTypeTo - A brand new type was just declared. This means that (if // name is not null) things referencing Name can be resolved. Otherwise, things // refering to the number can be resolved. Do this now. // static void ResolveTypeTo(char *Name, const Type *ToTy) { std::vector &Types = inFunctionScope() ? CurFun.Types : CurModule.Types; ValID D; if (Name) D = ValID::create(Name); else D = ValID::create((int)Types.size()); std::map &LateResolver = inFunctionScope() ? CurFun.LateResolveTypes : CurModule.LateResolveTypes; std::map::iterator I = LateResolver.find(D); if (I != LateResolver.end()) { ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy); LateResolver.erase(I); } } // ResolveTypes - At this point, all types should be resolved. Any that aren't // are errors. // static void ResolveTypes(std::map &LateResolveTypes) { if (!LateResolveTypes.empty()) { const ValID &DID = LateResolveTypes.begin()->first; if (DID.Type == ValID::NameVal) ThrowException("Reference to an invalid type: '" +DID.getName() + "'"); else ThrowException("Reference to an invalid type: #" + itostr(DID.Num)); } } // setValueName - Set the specified value to the name given. The name may be // null potentially, in which case this is a noop. The string passed in is // assumed to be a malloc'd string buffer, and is freed by this function. // // This function returns true if the value has already been defined, but is // allowed to be redefined in the specified context. If the name is a new name // for the typeplane, false is returned. // static bool setValueName(Value *V, char *NameStr) { assert(!isa(V) && "Can't set name of a Type with setValueName"); if (NameStr == 0) return false; std::string Name(NameStr); // Copy string free(NameStr); // Free old string if (V->getType() == Type::VoidTy) ThrowException("Can't assign name '" + Name + "' to a null valued instruction!"); SymbolTable &ST = inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() : CurModule.CurrentModule->getSymbolTable(); Value *Existing = ST.lookup(V->getType(), Name); if (Existing) { // Inserting a name that is already defined??? // There is only one case where this is allowed: when we are refining an // opaque type. In this case, Existing will be an opaque type. if (const Type *Ty = dyn_cast(Existing)) { if (const OpaqueType *OpTy = dyn_cast(Ty)) { // We ARE replacing an opaque type! ((OpaqueType*)OpTy)->refineAbstractTypeTo(cast(V)); return true; } } // Otherwise, we are a simple redefinition of a value, check to see if it // is defined the same as the old one... if (const Type *Ty = dyn_cast(Existing)) { if (Ty == cast(V)) return true; // Yes, it's equal. // std::cerr << "Type: " << Ty->getDescription() << " != " // << cast(V)->getDescription() << "!\n"; } else if (const Constant *C = dyn_cast(Existing)) { if (C == V) return true; // Constants are equal to themselves } else if (GlobalVariable *EGV = dyn_cast(Existing)) { // We are allowed to redefine a global variable in two circumstances: // 1. If at least one of the globals is uninitialized or // 2. If both initializers have the same value. // if (GlobalVariable *GV = dyn_cast(V)) { if (!EGV->hasInitializer() || !GV->hasInitializer() || EGV->getInitializer() == GV->getInitializer()) { // Make sure the existing global version gets the initializer! Make // sure that it also gets marked const if the new version is. if (GV->hasInitializer() && !EGV->hasInitializer()) EGV->setInitializer(GV->getInitializer()); if (GV->isConstant()) EGV->setConstant(true); EGV->setLinkage(GV->getLinkage()); delete GV; // Destroy the duplicate! return true; // They are equivalent! } } } ThrowException("Redefinition of value named '" + Name + "' in the '" + V->getType()->getDescription() + "' type plane!"); } // Set the name V->setName(Name, &ST); // If we're in function scope if (inFunctionScope()) { // Look up the symbol in the function's local symboltable Existing = CurFun.LocalSymtab.lookup(V->getType(),Name); // If it already exists if (Existing) { // Bail ThrowException("Redefinition of value named '" + Name + "' in the '" + V->getType()->getDescription() + "' type plane!"); // otherwise, since it doesn't exist } else { // Insert it. CurFun.LocalSymtab.insert(V); } } return false; } // setTypeName - Set the specified type to the name given. The name may be // null potentially, in which case this is a noop. The string passed in is // assumed to be a malloc'd string buffer, and is freed by this function. // // This function returns true if the type has already been defined, but is // allowed to be redefined in the specified context. If the name is a new name // for the type plane, it is inserted and false is returned. static bool setTypeName(Type *T, char *NameStr) { if (NameStr == 0) return false; std::string Name(NameStr); // Copy string free(NameStr); // Free old string // We don't allow assigning names to void type if (T == Type::VoidTy) ThrowException("Can't assign name '" + Name + "' to the null type!"); SymbolTable &ST = inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() : CurModule.CurrentModule->getSymbolTable(); Type *Existing = ST.lookupType(Name); if (Existing) { // Inserting a name that is already defined??? // There is only one case where this is allowed: when we are refining an // opaque type. In this case, Existing will be an opaque type. if (const OpaqueType *OpTy = dyn_cast(Existing)) { // We ARE replacing an opaque type! ((OpaqueType*)OpTy)->refineAbstractTypeTo(T); return true; } // Otherwise, this is an attempt to redefine a type. That's okay if // the redefinition is identical to the original. This will be so if // Existing and T point to the same Type object. In this one case we // allow the equivalent redefinition. if (Existing == T) return true; // Yes, it's equal. // Any other kind of (non-equivalent) redefinition is an error. ThrowException("Redefinition of type named '" + Name + "' in the '" + T->getDescription() + "' type plane!"); } // Okay, its a newly named type. Set its name. T->setName(Name,&ST); // If we're in function scope if (inFunctionScope()) { // Look up the symbol in the function's local symboltable Existing = CurFun.LocalSymtab.lookupType(Name); // If it already exists if (Existing) { // Bail ThrowException("Redefinition of type named '" + Name + "' in the '" + T->getDescription() + "' type plane in function scope!"); // otherwise, since it doesn't exist } else { // Insert it. CurFun.LocalSymtab.insert(Name,T); } } return false; } //===----------------------------------------------------------------------===// // Code for handling upreferences in type names... // // TypeContains - Returns true if Ty directly contains E in it. // static bool TypeContains(const Type *Ty, const Type *E) { return find(Ty->subtype_begin(), Ty->subtype_end(), E) != Ty->subtype_end(); } namespace { struct UpRefRecord { // NestingLevel - The number of nesting levels that need to be popped before // this type is resolved. unsigned NestingLevel; // LastContainedTy - This is the type at the current binding level for the // type. Every time we reduce the nesting level, this gets updated. const Type *LastContainedTy; // UpRefTy - This is the actual opaque type that the upreference is // represented with. OpaqueType *UpRefTy; UpRefRecord(unsigned NL, OpaqueType *URTy) : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {} }; } // UpRefs - A list of the outstanding upreferences that need to be resolved. static std::vector UpRefs; /// HandleUpRefs - Every time we finish a new layer of types, this function is /// called. It loops through the UpRefs vector, which is a list of the /// currently active types. For each type, if the up reference is contained in /// the newly completed type, we decrement the level count. When the level /// count reaches zero, the upreferenced type is the type that is passed in: /// thus we can complete the cycle. /// static PATypeHolder HandleUpRefs(const Type *ty) { if (!ty->isAbstract()) return ty; PATypeHolder Ty(ty); UR_OUT("Type '" << Ty->getDescription() << "' newly formed. Resolving upreferences.\n" << UpRefs.size() << " upreferences active!\n"); // If we find any resolvable upreferences (i.e., those whose NestingLevel goes // to zero), we resolve them all together before we resolve them to Ty. At // the end of the loop, if there is anything to resolve to Ty, it will be in // this variable. OpaqueType *TypeToResolve = 0; for (unsigned i = 0; i != UpRefs.size(); ++i) { UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " << UpRefs[i].second->getDescription() << ") = " << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n"); if (TypeContains(Ty, UpRefs[i].LastContainedTy)) { // Decrement level of upreference unsigned Level = --UpRefs[i].NestingLevel; UpRefs[i].LastContainedTy = Ty; UR_OUT(" Uplevel Ref Level = " << Level << "\n"); if (Level == 0) { // Upreference should be resolved! if (!TypeToResolve) { TypeToResolve = UpRefs[i].UpRefTy; } else { UR_OUT(" * Resolving upreference for " << UpRefs[i].second->getDescription() << "\n"; std::string OldName = UpRefs[i].UpRefTy->getDescription()); UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); UR_OUT(" * Type '" << OldName << "' refined upreference to: " << (const void*)Ty << ", " << Ty->getDescription() << "\n"); } UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list... --i; // Do not skip the next element... } } } if (TypeToResolve) { UR_OUT(" * Resolving upreference for " << UpRefs[i].second->getDescription() << "\n"; std::string OldName = TypeToResolve->getDescription()); TypeToResolve->refineAbstractTypeTo(Ty); } return Ty; } //===----------------------------------------------------------------------===// // RunVMAsmParser - Define an interface to this parser //===----------------------------------------------------------------------===// // Module *RunVMAsmParser(const std::string &Filename, FILE *F) { llvmAsmin = F; CurFilename = Filename; llvmAsmlineno = 1; // Reset the current line number... ObsoleteVarArgs = false; // Allocate a new module to read CurModule.CurrentModule = new Module(Filename); try { yyparse(); // Parse the file. } catch (...) { // Clear the symbol table so it doesn't complain when it // gets destructed CurFun.LocalSymtab.clear(); throw; } Module *Result = ParserResult; // Check to see if they called va_start but not va_arg.. if (!ObsoleteVarArgs) if (Function *F = Result->getNamedFunction("llvm.va_start")) if (F->asize() == 1) { std::cerr << "WARNING: this file uses obsolete features. " << "Assemble and disassemble to update it.\n"; ObsoleteVarArgs = true; } if (ObsoleteVarArgs) { // If the user is making use of obsolete varargs intrinsics, adjust them for // the user. if (Function *F = Result->getNamedFunction("llvm.va_start")) { assert(F->asize() == 1 && "Obsolete va_start takes 1 argument!"); const Type *RetTy = F->getFunctionType()->getParamType(0); RetTy = cast(RetTy)->getElementType(); Function *NF = Result->getOrInsertFunction("llvm.va_start", RetTy, 0); while (!F->use_empty()) { CallInst *CI = cast(F->use_back()); Value *V = new CallInst(NF, "", CI); new StoreInst(V, CI->getOperand(1), CI); CI->getParent()->getInstList().erase(CI); } Result->getFunctionList().erase(F); } if (Function *F = Result->getNamedFunction("llvm.va_end")) { assert(F->asize() == 1 && "Obsolete va_end takes 1 argument!"); const Type *ArgTy = F->getFunctionType()->getParamType(0); ArgTy = cast(ArgTy)->getElementType(); Function *NF = Result->getOrInsertFunction("llvm.va_end", Type::VoidTy, ArgTy, 0); while (!F->use_empty()) { CallInst *CI = cast(F->use_back()); Value *V = new LoadInst(CI->getOperand(1), "", CI); new CallInst(NF, V, "", CI); CI->getParent()->getInstList().erase(CI); } Result->getFunctionList().erase(F); } if (Function *F = Result->getNamedFunction("llvm.va_copy")) { assert(F->asize() == 2 && "Obsolete va_copy takes 2 argument!"); const Type *ArgTy = F->getFunctionType()->getParamType(0); ArgTy = cast(ArgTy)->getElementType(); Function *NF = Result->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, 0); while (!F->use_empty()) { CallInst *CI = cast(F->use_back()); Value *V = new CallInst(NF, CI->getOperand(2), "", CI); new StoreInst(V, CI->getOperand(1), CI); CI->getParent()->getInstList().erase(CI); } Result->getFunctionList().erase(F); } } llvmAsmin = stdin; // F is about to go away, don't use it anymore... ParserResult = 0; return Result; } } // End llvm namespace using namespace llvm; %} %union { llvm::Module *ModuleVal; llvm::Function *FunctionVal; std::pair *ArgVal; llvm::BasicBlock *BasicBlockVal; llvm::TerminatorInst *TermInstVal; llvm::Instruction *InstVal; llvm::Constant *ConstVal; const llvm::Type *PrimType; llvm::PATypeHolder *TypeVal; llvm::Value *ValueVal; std::vector > *ArgList; std::vector *ValueList; std::list *TypeList; std::list > *PHIList; // Represent the RHS of PHI node std::vector > *JumpTable; std::vector *ConstVector; llvm::GlobalValue::LinkageTypes Linkage; int64_t SInt64Val; uint64_t UInt64Val; int SIntVal; unsigned UIntVal; double FPVal; bool BoolVal; char *StrVal; // This memory is strdup'd! llvm::ValID ValIDVal; // strdup'd memory maybe! llvm::Instruction::BinaryOps BinaryOpVal; llvm::Instruction::TermOps TermOpVal; llvm::Instruction::MemoryOps MemOpVal; llvm::Instruction::OtherOps OtherOpVal; llvm::Module::Endianness Endianness; } %type Module FunctionList %type Function FunctionProto FunctionHeader BasicBlockList %type BasicBlock InstructionList %type BBTerminatorInst %type Inst InstVal MemoryInst %type ConstVal ConstExpr %type ConstVector %type ArgList ArgListH %type ArgVal %type PHIList %type ValueRefList ValueRefListE // For call param lists %type IndexList // For GEP derived indices %type TypeListI ArgTypeListI %type JumpTable %type GlobalType // GLOBAL or CONSTANT? %type OptVolatile // 'volatile' or not %type OptLinkage %type BigOrLittle // ValueRef - Unresolved reference to a definition or BB %type ValueRef ConstValueRef SymbolicValueRef %type ResolvedVal // pair // Tokens and types for handling constant integer values // // ESINT64VAL - A negative number within long long range %token ESINT64VAL // EUINT64VAL - A positive number within uns. long long range %token EUINT64VAL %type EINT64VAL %token SINTVAL // Signed 32 bit ints... %token UINTVAL // Unsigned 32 bit ints... %type INTVAL %token FPVAL // Float or Double constant // Built in types... %type Types TypesV UpRTypes UpRTypesV %type SIntType UIntType IntType FPType PrimType // Classifications %token VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG %token FLOAT DOUBLE TYPE LABEL %token VAR_ID LABELSTR STRINGCONSTANT %type Name OptName OptAssign %token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK %token DECLARE GLOBAL CONSTANT VOLATILE %token TO DOTDOTDOT NULL_TOK CONST INTERNAL LINKONCE WEAK APPENDING %token OPAQUE NOT EXTERNAL TARGET ENDIAN POINTERSIZE LITTLE BIG // Basic Block Terminating Operators %token RET BR SWITCH INVOKE UNWIND // Binary Operators %type BinaryOps // all the binary operators %type ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories %token ADD SUB MUL DIV REM AND OR XOR %token SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators // Memory Instructions %token MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR // Other Operators %type ShiftOps %token PHI_TOK CALL CAST SELECT SHL SHR VAARG VANEXT %token VA_ARG // FIXME: OBSOLETE %start Module %% // Handle constant integer size restriction and conversion... // INTVAL : SINTVAL; INTVAL : UINTVAL { if ($1 > (uint32_t)INT32_MAX) // Outside of my range! ThrowException("Value too large for type!"); $$ = (int32_t)$1; }; EINT64VAL : ESINT64VAL; // These have same type and can't cause problems... EINT64VAL : EUINT64VAL { if ($1 > (uint64_t)INT64_MAX) // Outside of my range! ThrowException("Value too large for type!"); $$ = (int64_t)$1; }; // Operations that are notably excluded from this list include: // RET, BR, & SWITCH because they end basic blocks and are treated specially. // ArithmeticOps: ADD | SUB | MUL | DIV | REM; LogicalOps : AND | OR | XOR; SetCondOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE; BinaryOps : ArithmeticOps | LogicalOps | SetCondOps; ShiftOps : SHL | SHR; // These are some types that allow classification if we only want a particular // thing... for example, only a signed, unsigned, or integral type. SIntType : LONG | INT | SHORT | SBYTE; UIntType : ULONG | UINT | USHORT | UBYTE; IntType : SIntType | UIntType; FPType : FLOAT | DOUBLE; // OptAssign - Value producing statements have an optional assignment component OptAssign : Name '=' { $$ = $1; } | /*empty*/ { $$ = 0; }; OptLinkage : INTERNAL { $$ = GlobalValue::InternalLinkage; } | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } | WEAK { $$ = GlobalValue::WeakLinkage; } | APPENDING { $$ = GlobalValue::AppendingLinkage; } | /*empty*/ { $$ = GlobalValue::ExternalLinkage; }; //===----------------------------------------------------------------------===// // Types includes all predefined types... except void, because it can only be // used in specific contexts (function returning void for example). To have // access to it, a user must explicitly use TypesV. // // TypesV includes all of 'Types', but it also includes the void type. TypesV : Types | VOID { $$ = new PATypeHolder($1); }; UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); }; Types : UpRTypes { if (!UpRefs.empty()) ThrowException("Invalid upreference in type: " + (*$1)->getDescription()); $$ = $1; }; // Derived types are added later... // PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT ; PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL; UpRTypes : OPAQUE { $$ = new PATypeHolder(OpaqueType::get()); } | PrimType { $$ = new PATypeHolder($1); }; UpRTypes : SymbolicValueRef { // Named types are also simple types... $$ = new PATypeHolder(getTypeVal($1)); }; // Include derived types in the Types production. // UpRTypes : '\\' EUINT64VAL { // Type UpReference if ($2 > (uint64_t)~0U) ThrowException("Value out of range!"); OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector... $$ = new PATypeHolder(OT); UR_OUT("New Upreference!\n"); } | UpRTypesV '(' ArgTypeListI ')' { // Function derived type? std::vector Params; mapto($3->begin(), $3->end(), std::back_inserter(Params), std::mem_fun_ref(&PATypeHolder::get)); bool isVarArg = Params.size() && Params.back() == Type::VoidTy; if (isVarArg) Params.pop_back(); $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg))); delete $3; // Delete the argument list delete $1; // Delete the return type handle } | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type? $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2))); delete $4; } | '{' TypeListI '}' { // Structure type? std::vector Elements; mapto($2->begin(), $2->end(), std::back_inserter(Elements), std::mem_fun_ref(&PATypeHolder::get)); $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements))); delete $2; } | '{' '}' { // Empty structure type? $$ = new PATypeHolder(StructType::get(std::vector())); } | UpRTypes '*' { // Pointer type? $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1))); delete $1; }; // TypeList - Used for struct declarations and as a basis for function type // declaration type lists // TypeListI : UpRTypes { $$ = new std::list(); $$->push_back(*$1); delete $1; } | TypeListI ',' UpRTypes { ($$=$1)->push_back(*$3); delete $3; }; // ArgTypeList - List of types for a function type declaration... ArgTypeListI : TypeListI | TypeListI ',' DOTDOTDOT { ($$=$1)->push_back(Type::VoidTy); } | DOTDOTDOT { ($$ = new std::list())->push_back(Type::VoidTy); } | /*empty*/ { $$ = new std::list(); }; // ConstVal - The various declarations that go into the constant pool. This // production is used ONLY to represent constants that show up AFTER a 'const', // 'constant' or 'global' token at global scope. Constants that can be inlined // into other expressions (such as integers and constexprs) are handled by the // ResolvedVal, ValueRef and ConstValueRef productions. // ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr const ArrayType *ATy = dyn_cast($1->get()); if (ATy == 0) ThrowException("Cannot make array constant with type: '" + (*$1)->getDescription() + "'!"); const Type *ETy = ATy->getElementType(); int NumElements = ATy->getNumElements(); // Verify that we have the correct size... if (NumElements != -1 && NumElements != (int)$3->size()) ThrowException("Type mismatch: constant sized array initialized with " + utostr($3->size()) + " arguments, but has size of " + itostr(NumElements) + "!"); // Verify all elements are correct type! for (unsigned i = 0; i < $3->size(); i++) { if (ETy != (*$3)[i]->getType()) ThrowException("Element #" + utostr(i) + " is not of type '" + ETy->getDescription() +"' as required!\nIt is of type '"+ (*$3)[i]->getType()->getDescription() + "'."); } $$ = ConstantArray::get(ATy, *$3); delete $1; delete $3; } | Types '[' ']' { const ArrayType *ATy = dyn_cast($1->get()); if (ATy == 0) ThrowException("Cannot make array constant with type: '" + (*$1)->getDescription() + "'!"); int NumElements = ATy->getNumElements(); if (NumElements != -1 && NumElements != 0) ThrowException("Type mismatch: constant sized array initialized with 0" " arguments, but has size of " + itostr(NumElements) +"!"); $$ = ConstantArray::get(ATy, std::vector()); delete $1; } | Types 'c' STRINGCONSTANT { const ArrayType *ATy = dyn_cast($1->get()); if (ATy == 0) ThrowException("Cannot make array constant with type: '" + (*$1)->getDescription() + "'!"); int NumElements = ATy->getNumElements(); const Type *ETy = ATy->getElementType(); char *EndStr = UnEscapeLexed($3, true); if (NumElements != -1 && NumElements != (EndStr-$3)) ThrowException("Can't build string constant of size " + itostr((int)(EndStr-$3)) + " when array has size " + itostr(NumElements) + "!"); std::vector Vals; if (ETy == Type::SByteTy) { for (char *C = $3; C != EndStr; ++C) Vals.push_back(ConstantSInt::get(ETy, *C)); } else if (ETy == Type::UByteTy) { for (char *C = $3; C != EndStr; ++C) Vals.push_back(ConstantUInt::get(ETy, (unsigned char)*C)); } else { free($3); ThrowException("Cannot build string arrays of non byte sized elements!"); } free($3); $$ = ConstantArray::get(ATy, Vals); delete $1; } | Types '{' ConstVector '}' { const StructType *STy = dyn_cast($1->get()); if (STy == 0) ThrowException("Cannot make struct constant with type: '" + (*$1)->getDescription() + "'!"); if ($3->size() != STy->getNumContainedTypes()) ThrowException("Illegal number of initializers for structure type!"); // Check to ensure that constants are compatible with the type initializer! for (unsigned i = 0, e = $3->size(); i != e; ++i) if ((*$3)[i]->getType() != STy->getElementType(i)) ThrowException("Expected type '" + STy->getElementType(i)->getDescription() + "' for element #" + utostr(i) + " of structure initializer!"); $$ = ConstantStruct::get(STy, *$3); delete $1; delete $3; } | Types '{' '}' { const StructType *STy = dyn_cast($1->get()); if (STy == 0) ThrowException("Cannot make struct constant with type: '" + (*$1)->getDescription() + "'!"); if (STy->getNumContainedTypes() != 0) ThrowException("Illegal number of initializers for structure type!"); $$ = ConstantStruct::get(STy, std::vector()); delete $1; } | Types NULL_TOK { const PointerType *PTy = dyn_cast($1->get()); if (PTy == 0) ThrowException("Cannot make null pointer constant with type: '" + (*$1)->getDescription() + "'!"); $$ = ConstantPointerNull::get(PTy); delete $1; } | Types SymbolicValueRef { const PointerType *Ty = dyn_cast($1->get()); if (Ty == 0) ThrowException("Global const reference must be a pointer type!"); // ConstExprs can exist in the body of a function, thus creating // ConstantPointerRefs whenever they refer to a variable. Because we are in // the context of a function, getValNonImprovising will search the functions // symbol table instead of the module symbol table for the global symbol, // which throws things all off. To get around this, we just tell // getValNonImprovising that we are at global scope here. // Function *SavedCurFn = CurFun.CurrentFunction; CurFun.CurrentFunction = 0; Value *V = getValNonImprovising(Ty, $2); CurFun.CurrentFunction = SavedCurFn; // If this is an initializer for a constant pointer, which is referencing a // (currently) undefined variable, create a stub now that shall be replaced // in the future with the right type of variable. // if (V == 0) { assert(isa(Ty) && "Globals may only be used as pointers!"); const PointerType *PT = cast(Ty); // First check to see if the forward references value is already created! PerModuleInfo::GlobalRefsType::iterator I = CurModule.GlobalRefs.find(std::make_pair(PT, $2)); if (I != CurModule.GlobalRefs.end()) { V = I->second; // Placeholder already exists, use it... $2.destroy(); } else { // Create a placeholder for the global variable reference... GlobalVariable *GV = new GlobalVariable(PT->getElementType(), false, GlobalValue::ExternalLinkage); // Keep track of the fact that we have a forward ref to recycle it CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV)); // Must temporarily push this value into the module table... CurModule.CurrentModule->getGlobalList().push_back(GV); V = GV; } } GlobalValue *GV = cast(V); $$ = ConstantPointerRef::get(GV); delete $1; // Free the type handle } | Types ConstExpr { if ($1->get() != $2->getType()) ThrowException("Mismatched types for constant expression!"); $$ = $2; delete $1; } | Types ZEROINITIALIZER { $$ = Constant::getNullValue($1->get()); delete $1; }; ConstVal : SIntType EINT64VAL { // integral constants if (!ConstantSInt::isValueValidForType($1, $2)) ThrowException("Constant value doesn't fit in type!"); $$ = ConstantSInt::get($1, $2); } | UIntType EUINT64VAL { // integral constants if (!ConstantUInt::isValueValidForType($1, $2)) ThrowException("Constant value doesn't fit in type!"); $$ = ConstantUInt::get($1, $2); } | BOOL TRUETOK { // Boolean constants $$ = ConstantBool::True; } | BOOL FALSETOK { // Boolean constants $$ = ConstantBool::False; } | FPType FPVAL { // Float & Double constants $$ = ConstantFP::get($1, $2); }; ConstExpr: CAST '(' ConstVal TO Types ')' { if (!$3->getType()->isFirstClassType()) ThrowException("cast constant expression from a non-primitive type: '" + $3->getType()->getDescription() + "'!"); if (!$5->get()->isFirstClassType()) ThrowException("cast constant expression to a non-primitive type: '" + $5->get()->getDescription() + "'!"); $$ = ConstantExpr::getCast($3, $5->get()); delete $5; } | GETELEMENTPTR '(' ConstVal IndexList ')' { if (!isa($3->getType())) ThrowException("GetElementPtr requires a pointer operand!"); // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct // indices to uint struct indices for compatibility. generic_gep_type_iterator::iterator> GTI = gep_type_begin($3->getType(), $4->begin(), $4->end()), GTE = gep_type_end($3->getType(), $4->begin(), $4->end()); for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI) if (isa(*GTI)) // Only change struct indices if (ConstantUInt *CUI = dyn_cast((*$4)[i])) if (CUI->getType() == Type::UByteTy) (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy); const Type *IdxTy = GetElementPtrInst::getIndexedType($3->getType(), *$4, true); if (!IdxTy) ThrowException("Index list invalid for constant getelementptr!"); std::vector IdxVec; for (unsigned i = 0, e = $4->size(); i != e; ++i) if (Constant *C = dyn_cast((*$4)[i])) IdxVec.push_back(C); else ThrowException("Indices to constant getelementptr must be constants!"); delete $4; $$ = ConstantExpr::getGetElementPtr($3, IdxVec); } | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' { if ($3->getType() != Type::BoolTy) ThrowException("Select condition must be of boolean type!"); if ($5->getType() != $7->getType()) ThrowException("Select operand types must match!"); $$ = ConstantExpr::getSelect($3, $5, $7); } | BinaryOps '(' ConstVal ',' ConstVal ')' { if ($3->getType() != $5->getType()) ThrowException("Binary operator types must match!"); $$ = ConstantExpr::get($1, $3, $5); } | ShiftOps '(' ConstVal ',' ConstVal ')' { if ($5->getType() != Type::UByteTy) ThrowException("Shift count for shift constant must be unsigned byte!"); if (!$3->getType()->isInteger()) ThrowException("Shift constant expression requires integer operand!"); $$ = ConstantExpr::get($1, $3, $5); }; // ConstVector - A list of comma separated constants. ConstVector : ConstVector ',' ConstVal { ($$ = $1)->push_back($3); } | ConstVal { $$ = new std::vector(); $$->push_back($1); }; // GlobalType - Match either GLOBAL or CONSTANT for global declarations... GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; }; //===----------------------------------------------------------------------===// // Rules to match Modules //===----------------------------------------------------------------------===// // Module rule: Capture the result of parsing the whole file into a result // variable... // Module : FunctionList { $$ = ParserResult = $1; CurModule.ModuleDone(); }; // FunctionList - A list of functions, preceeded by a constant pool. // FunctionList : FunctionList Function { $$ = $1; CurFun.FunctionDone(); } | FunctionList FunctionProto { $$ = $1; } | FunctionList IMPLEMENTATION { $$ = $1; } | ConstPool { $$ = CurModule.CurrentModule; // Resolve circular types before we parse the body of the module ResolveTypes(CurModule.LateResolveTypes); }; // ConstPool - Constants with optional names assigned to them. ConstPool : ConstPool OptAssign CONST ConstVal { if (!setValueName($4, $2)) InsertValue($4); } | ConstPool OptAssign TYPE TypesV { // Types can be defined in the const pool // Eagerly resolve types. This is not an optimization, this is a // requirement that is due to the fact that we could have this: // // %list = type { %list * } // %list = type { %list * } ; repeated type decl // // If types are not resolved eagerly, then the two types will not be // determined to be the same type! // ResolveTypeTo($2, $4->get()); // TODO: FIXME when Type are not const if (!setTypeName(const_cast($4->get()), $2)) { // If this is not a redefinition of a type... if (!$2) { InsertType($4->get(), inFunctionScope() ? CurFun.Types : CurModule.Types); } } delete $4; } | ConstPool FunctionProto { // Function prototypes can be in const pool } | ConstPool OptAssign OptLinkage GlobalType ConstVal { const Type *Ty = $5->getType(); // Global declarations appear in Constant Pool Constant *Initializer = $5; if (Initializer == 0) ThrowException("Global value initializer is not a constant!"); GlobalVariable *GV = new GlobalVariable(Ty, $4, $3, Initializer); if (!setValueName(GV, $2)) { // If not redefining... CurModule.CurrentModule->getGlobalList().push_back(GV); int Slot = InsertValue(GV, CurModule.Values); if (Slot != -1) { CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot)); } else { CurModule.DeclareNewGlobalValue(GV, ValID::create( (char*)GV->getName().c_str())); } } } | ConstPool OptAssign EXTERNAL GlobalType Types { const Type *Ty = *$5; // Global declarations appear in Constant Pool GlobalVariable *GV = new GlobalVariable(Ty,$4,GlobalValue::ExternalLinkage); if (!setValueName(GV, $2)) { // If not redefining... CurModule.CurrentModule->getGlobalList().push_back(GV); int Slot = InsertValue(GV, CurModule.Values); if (Slot != -1) { CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot)); } else { assert(GV->hasName() && "Not named and not numbered!?"); CurModule.DeclareNewGlobalValue(GV, ValID::create( (char*)GV->getName().c_str())); } } delete $5; } | ConstPool TARGET TargetDefinition { } | /* empty: end of list */ { }; BigOrLittle : BIG { $$ = Module::BigEndian; }; BigOrLittle : LITTLE { $$ = Module::LittleEndian; }; TargetDefinition : ENDIAN '=' BigOrLittle { CurModule.CurrentModule->setEndianness($3); } | POINTERSIZE '=' EUINT64VAL { if ($3 == 32) CurModule.CurrentModule->setPointerSize(Module::Pointer32); else if ($3 == 64) CurModule.CurrentModule->setPointerSize(Module::Pointer64); else ThrowException("Invalid pointer size: '" + utostr($3) + "'!"); }; //===----------------------------------------------------------------------===// // Rules to match Function Headers //===----------------------------------------------------------------------===// Name : VAR_ID | STRINGCONSTANT; OptName : Name | /*empty*/ { $$ = 0; }; ArgVal : Types OptName { if (*$1 == Type::VoidTy) ThrowException("void typed arguments are invalid!"); $$ = new std::pair($1, $2); }; ArgListH : ArgListH ',' ArgVal { $$ = $1; $1->push_back(*$3); delete $3; } | ArgVal { $$ = new std::vector >(); $$->push_back(*$1); delete $1; }; ArgList : ArgListH { $$ = $1; } | ArgListH ',' DOTDOTDOT { $$ = $1; $$->push_back(std::pair(new PATypeHolder(Type::VoidTy), 0)); } | DOTDOTDOT { $$ = new std::vector >(); $$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0)); } | /* empty */ { $$ = 0; }; FunctionHeaderH : TypesV Name '(' ArgList ')' { UnEscapeLexed($2); std::string FunctionName($2); if (!(*$1)->isFirstClassType() && *$1 != Type::VoidTy) ThrowException("LLVM functions cannot return aggregate types!"); std::vector ParamTypeList; if ($4) { // If there are arguments... for (std::vector >::iterator I = $4->begin(); I != $4->end(); ++I) ParamTypeList.push_back(I->first->get()); } bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy; if (isVarArg) ParamTypeList.pop_back(); const FunctionType *FT = FunctionType::get(*$1, ParamTypeList, isVarArg); const PointerType *PFT = PointerType::get(FT); delete $1; Function *Fn = 0; // Is the function already in symtab? if ((Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) { // Yes it is. If this is the case, either we need to be a forward decl, // or it needs to be. if (!CurFun.isDeclare && !Fn->isExternal()) ThrowException("Redefinition of function '" + FunctionName + "'!"); // Make sure to strip off any argument names so we can't get conflicts... for (Function::aiterator AI = Fn->abegin(), AE = Fn->aend(); AI != AE; ++AI) AI->setName(""); } else { // Not already defined? Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName, CurModule.CurrentModule); InsertValue(Fn, CurModule.Values); CurModule.DeclareNewGlobalValue(Fn, ValID::create($2)); } free($2); // Free strdup'd memory! CurFun.FunctionStart(Fn); // Add all of the arguments we parsed to the function... if ($4) { // Is null if empty... if (isVarArg) { // Nuke the last entry assert($4->back().first->get() == Type::VoidTy && $4->back().second == 0&& "Not a varargs marker!"); delete $4->back().first; $4->pop_back(); // Delete the last entry } Function::aiterator ArgIt = Fn->abegin(); for (std::vector >::iterator I =$4->begin(); I != $4->end(); ++I, ++ArgIt) { delete I->first; // Delete the typeholder... if (setValueName(ArgIt, I->second)) // Insert arg into symtab... assert(0 && "No arg redef allowed!"); InsertValue(ArgIt); } delete $4; // We're now done with the argument list } }; BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function FunctionHeader : OptLinkage FunctionHeaderH BEGIN { $$ = CurFun.CurrentFunction; // Make sure that we keep track of the linkage type even if there was a // previous "declare". $$->setLinkage($1); // Resolve circular types before we parse the body of the function. ResolveTypes(CurFun.LateResolveTypes); }; END : ENDTOK | '}'; // Allow end of '}' to end a function Function : BasicBlockList END { $$ = $1; }; FunctionProto : DECLARE { CurFun.isDeclare = true; } FunctionHeaderH { $$ = CurFun.CurrentFunction; CurFun.FunctionDone(); }; //===----------------------------------------------------------------------===// // Rules to match Basic Blocks //===----------------------------------------------------------------------===// ConstValueRef : ESINT64VAL { // A reference to a direct constant $$ = ValID::create($1); } | EUINT64VAL { $$ = ValID::create($1); } | FPVAL { // Perhaps it's an FP constant? $$ = ValID::create($1); } | TRUETOK { $$ = ValID::create(ConstantBool::True); } | FALSETOK { $$ = ValID::create(ConstantBool::False); } | NULL_TOK { $$ = ValID::createNull(); } | ConstExpr { $$ = ValID::create($1); }; // SymbolicValueRef - Reference to one of two ways of symbolically refering to // another value. // SymbolicValueRef : INTVAL { // Is it an integer reference...? $$ = ValID::create($1); } | Name { // Is it a named reference...? $$ = ValID::create($1); }; // ValueRef - A reference to a definition... either constant or symbolic ValueRef : SymbolicValueRef | ConstValueRef; // ResolvedVal - a pair. This is used only in cases where the // type immediately preceeds the value reference, and allows complex constant // pool references (for things like: 'ret [2 x int] [ int 12, int 42]') ResolvedVal : Types ValueRef { $$ = getVal(*$1, $2); delete $1; }; BasicBlockList : BasicBlockList BasicBlock { ($$ = $1)->getBasicBlockList().push_back($2); } | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks ($$ = $1)->getBasicBlockList().push_back($2); }; // Basic blocks are terminated by branching instructions: // br, br/cc, switch, ret // BasicBlock : InstructionList OptAssign BBTerminatorInst { if (setValueName($3, $2)) { assert(0 && "No redefn allowed!"); } InsertValue($3); $1->getInstList().push_back($3); InsertValue($1); $$ = $1; } | LABELSTR InstructionList OptAssign BBTerminatorInst { if (setValueName($4, $3)) { assert(0 && "No redefn allowed!"); } InsertValue($4); $2->getInstList().push_back($4); if (setValueName($2, $1)) { assert(0 && "No label redef allowed!"); } InsertValue($2); $$ = $2; }; InstructionList : InstructionList Inst { $1->getInstList().push_back($2); $$ = $1; } | /* empty */ { $$ = CurBB = new BasicBlock(); }; BBTerminatorInst : RET ResolvedVal { // Return with a result... $$ = new ReturnInst($2); } | RET VOID { // Return with no result... $$ = new ReturnInst(); } | BR LABEL ValueRef { // Unconditional Branch... $$ = new BranchInst(cast(getVal(Type::LabelTy, $3))); } // Conditional Branch... | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef { $$ = new BranchInst(cast(getVal(Type::LabelTy, $6)), cast(getVal(Type::LabelTy, $9)), getVal(Type::BoolTy, $3)); } | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' { SwitchInst *S = new SwitchInst(getVal($2, $3), cast(getVal(Type::LabelTy, $6))); $$ = S; std::vector >::iterator I = $8->begin(), E = $8->end(); for (; I != E; ++I) S->addCase(I->first, I->second); delete $8; } | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' { SwitchInst *S = new SwitchInst(getVal($2, $3), cast(getVal(Type::LabelTy, $6))); $$ = S; } | INVOKE TypesV ValueRef '(' ValueRefListE ')' TO ResolvedVal UNWIND ResolvedVal { const PointerType *PFTy; const FunctionType *Ty; if (!(PFTy = dyn_cast($2->get())) || !(Ty = dyn_cast(PFTy->getElementType()))) { // Pull out the types of all of the arguments... std::vector ParamTypes; if ($5) { for (std::vector::iterator I = $5->begin(), E = $5->end(); I != E; ++I) ParamTypes.push_back((*I)->getType()); } bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; if (isVarArg) ParamTypes.pop_back(); Ty = FunctionType::get($2->get(), ParamTypes, isVarArg); PFTy = PointerType::get(Ty); } Value *V = getVal(PFTy, $3); // Get the function we're calling... BasicBlock *Normal = dyn_cast($8); BasicBlock *Except = dyn_cast($10); if (Normal == 0 || Except == 0) ThrowException("Invoke instruction without label destinations!"); // Create the call node... if (!$5) { // Has no arguments? $$ = new InvokeInst(V, Normal, Except, std::vector()); } else { // Has arguments? // Loop through FunctionType's arguments and ensure they are specified // correctly! // FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); std::vector::iterator ArgI = $5->begin(), ArgE = $5->end(); for (; ArgI != ArgE && I != E; ++ArgI, ++I) if ((*ArgI)->getType() != *I) ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" + (*I)->getDescription() + "'!"); if (I != E || (ArgI != ArgE && !Ty->isVarArg())) ThrowException("Invalid number of parameters detected!"); $$ = new InvokeInst(V, Normal, Except, *$5); } delete $2; delete $5; } | UNWIND { $$ = new UnwindInst(); }; JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef { $$ = $1; Constant *V = cast(getValNonImprovising($2, $3)); if (V == 0) ThrowException("May only switch on a constant pool value!"); $$->push_back(std::make_pair(V, cast(getVal($5, $6)))); } | IntType ConstValueRef ',' LABEL ValueRef { $$ = new std::vector >(); Constant *V = cast(getValNonImprovising($1, $2)); if (V == 0) ThrowException("May only switch on a constant pool value!"); $$->push_back(std::make_pair(V, cast(getVal($4, $5)))); }; Inst : OptAssign InstVal { // Is this definition named?? if so, assign the name... if (setValueName($2, $1)) { assert(0 && "No redefin allowed!"); } InsertValue($2); $$ = $2; }; PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes $$ = new std::list >(); $$->push_back(std::make_pair(getVal(*$1, $3), cast(getVal(Type::LabelTy, $5)))); delete $1; } | PHIList ',' '[' ValueRef ',' ValueRef ']' { $$ = $1; $1->push_back(std::make_pair(getVal($1->front().first->getType(), $4), cast(getVal(Type::LabelTy, $6)))); }; ValueRefList : ResolvedVal { // Used for call statements, and memory insts... $$ = new std::vector(); $$->push_back($1); } | ValueRefList ',' ResolvedVal { $$ = $1; $1->push_back($3); }; // ValueRefListE - Just like ValueRefList, except that it may also be empty! ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; }; InstVal : ArithmeticOps Types ValueRef ',' ValueRef { if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint()) ThrowException("Arithmetic operator requires integer or FP operands!"); $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5)); if ($$ == 0) ThrowException("binary operator returned null!"); delete $2; } | LogicalOps Types ValueRef ',' ValueRef { if (!(*$2)->isIntegral()) ThrowException("Logical operator requires integral operands!"); $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5)); if ($$ == 0) ThrowException("binary operator returned null!"); delete $2; } | SetCondOps Types ValueRef ',' ValueRef { $$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5)); if ($$ == 0) ThrowException("binary operator returned null!"); delete $2; } | NOT ResolvedVal { std::cerr << "WARNING: Use of eliminated 'not' instruction:" << " Replacing with 'xor'.\n"; Value *Ones = ConstantIntegral::getAllOnesValue($2->getType()); if (Ones == 0) ThrowException("Expected integral type for not instruction!"); $$ = BinaryOperator::create(Instruction::Xor, $2, Ones); if ($$ == 0) ThrowException("Could not create a xor instruction!"); } | ShiftOps ResolvedVal ',' ResolvedVal { if ($4->getType() != Type::UByteTy) ThrowException("Shift amount must be ubyte!"); if (!$2->getType()->isInteger()) ThrowException("Shift constant expression requires integer operand!"); $$ = new ShiftInst($1, $2, $4); } | CAST ResolvedVal TO Types { if (!$4->get()->isFirstClassType()) ThrowException("cast instruction to a non-primitive type: '" + $4->get()->getDescription() + "'!"); $$ = new CastInst($2, *$4); delete $4; } | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal { if ($2->getType() != Type::BoolTy) ThrowException("select condition must be boolean!"); if ($4->getType() != $6->getType()) ThrowException("select value types should match!"); $$ = new SelectInst($2, $4, $6); } | VA_ARG ResolvedVal ',' Types { // FIXME: This is emulation code for an obsolete syntax. This should be // removed at some point. if (!ObsoleteVarArgs) { std::cerr << "WARNING: this file uses obsolete features. " << "Assemble and disassemble to update it.\n"; ObsoleteVarArgs = true; } // First, load the valist... Instruction *CurVAList = new LoadInst($2, ""); CurBB->getInstList().push_back(CurVAList); // Emit the vaarg instruction. $$ = new VAArgInst(CurVAList, *$4); // Now we must advance the pointer and update it in memory. Instruction *TheVANext = new VANextInst(CurVAList, *$4); CurBB->getInstList().push_back(TheVANext); CurBB->getInstList().push_back(new StoreInst(TheVANext, $2)); delete $4; } | VAARG ResolvedVal ',' Types { $$ = new VAArgInst($2, *$4); delete $4; } | VANEXT ResolvedVal ',' Types { $$ = new VANextInst($2, *$4); delete $4; } | PHI_TOK PHIList { const Type *Ty = $2->front().first->getType(); if (!Ty->isFirstClassType()) ThrowException("PHI node operands must be of first class type!"); $$ = new PHINode(Ty); $$->op_reserve($2->size()*2); while ($2->begin() != $2->end()) { if ($2->front().first->getType() != Ty) ThrowException("All elements of a PHI node must be of the same type!"); cast($$)->addIncoming($2->front().first, $2->front().second); $2->pop_front(); } delete $2; // Free the list... } | CALL TypesV ValueRef '(' ValueRefListE ')' { const PointerType *PFTy; const FunctionType *Ty; if (!(PFTy = dyn_cast($2->get())) || !(Ty = dyn_cast(PFTy->getElementType()))) { // Pull out the types of all of the arguments... std::vector ParamTypes; if ($5) { for (std::vector::iterator I = $5->begin(), E = $5->end(); I != E; ++I) ParamTypes.push_back((*I)->getType()); } bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; if (isVarArg) ParamTypes.pop_back(); Ty = FunctionType::get($2->get(), ParamTypes, isVarArg); PFTy = PointerType::get(Ty); } Value *V = getVal(PFTy, $3); // Get the function we're calling... // Create the call node... if (!$5) { // Has no arguments? // Make sure no arguments is a good thing! if (Ty->getNumParams() != 0) ThrowException("No arguments passed to a function that " "expects arguments!"); $$ = new CallInst(V, std::vector()); } else { // Has arguments? // Loop through FunctionType's arguments and ensure they are specified // correctly! // FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); std::vector::iterator ArgI = $5->begin(), ArgE = $5->end(); for (; ArgI != ArgE && I != E; ++ArgI, ++I) if ((*ArgI)->getType() != *I) ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" + (*I)->getDescription() + "'!"); if (I != E || (ArgI != ArgE && !Ty->isVarArg())) ThrowException("Invalid number of parameters detected!"); $$ = new CallInst(V, *$5); } delete $2; delete $5; } | MemoryInst { $$ = $1; }; // IndexList - List of indices for GEP based instructions... IndexList : ',' ValueRefList { $$ = $2; } | /* empty */ { $$ = new std::vector(); }; OptVolatile : VOLATILE { $$ = true; } | /* empty */ { $$ = false; }; MemoryInst : MALLOC Types { $$ = new MallocInst(*$2); delete $2; } | MALLOC Types ',' UINT ValueRef { $$ = new MallocInst(*$2, getVal($4, $5)); delete $2; } | ALLOCA Types { $$ = new AllocaInst(*$2); delete $2; } | ALLOCA Types ',' UINT ValueRef { $$ = new AllocaInst(*$2, getVal($4, $5)); delete $2; } | FREE ResolvedVal { if (!isa($2->getType())) ThrowException("Trying to free nonpointer type " + $2->getType()->getDescription() + "!"); $$ = new FreeInst($2); } | OptVolatile LOAD Types ValueRef { if (!isa($3->get())) ThrowException("Can't load from nonpointer type: " + (*$3)->getDescription()); $$ = new LoadInst(getVal(*$3, $4), "", $1); delete $3; } | OptVolatile STORE ResolvedVal ',' Types ValueRef { const PointerType *PT = dyn_cast($5->get()); if (!PT) ThrowException("Can't store to a nonpointer type: " + (*$5)->getDescription()); const Type *ElTy = PT->getElementType(); if (ElTy != $3->getType()) ThrowException("Can't store '" + $3->getType()->getDescription() + "' into space of type '" + ElTy->getDescription() + "'!"); $$ = new StoreInst($3, getVal(*$5, $6), $1); delete $5; } | GETELEMENTPTR Types ValueRef IndexList { if (!isa($2->get())) ThrowException("getelementptr insn requires pointer operand!"); // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct // indices to uint struct indices for compatibility. generic_gep_type_iterator::iterator> GTI = gep_type_begin($2->get(), $4->begin(), $4->end()), GTE = gep_type_end($2->get(), $4->begin(), $4->end()); for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI) if (isa(*GTI)) // Only change struct indices if (ConstantUInt *CUI = dyn_cast((*$4)[i])) if (CUI->getType() == Type::UByteTy) (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy); if (!GetElementPtrInst::getIndexedType(*$2, *$4, true)) ThrowException("Invalid getelementptr indices for type '" + (*$2)->getDescription()+ "'!"); $$ = new GetElementPtrInst(getVal(*$2, $3), *$4); delete $2; delete $4; }; %% int yyerror(const char *ErrorMsg) { std::string where = std::string((CurFilename == "-") ? std::string("") : CurFilename) + ":" + utostr((unsigned) llvmAsmlineno) + ": "; std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading "; if (yychar == YYEMPTY || yychar == 0) errMsg += "end-of-file."; else errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'"; ThrowException(errMsg); return 0; }