//===-- Instructions.cpp - Implement the LLVM instructions ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements all of the non-inline methods for the LLVM instruction // classes. // //===----------------------------------------------------------------------===// #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Support/CallSite.h" using namespace llvm; unsigned CallSite::getCallingConv() const { if (CallInst *CI = dyn_cast(I)) return CI->getCallingConv(); else return cast(I)->getCallingConv(); } void CallSite::setCallingConv(unsigned CC) { if (CallInst *CI = dyn_cast(I)) CI->setCallingConv(CC); else cast(I)->setCallingConv(CC); } //===----------------------------------------------------------------------===// // TerminatorInst Class //===----------------------------------------------------------------------===// TerminatorInst::TerminatorInst(Instruction::TermOps iType, Use *Ops, unsigned NumOps, Instruction *IB) : Instruction(Type::VoidTy, iType, Ops, NumOps, "", IB) { } TerminatorInst::TerminatorInst(Instruction::TermOps iType, Use *Ops, unsigned NumOps, BasicBlock *IAE) : Instruction(Type::VoidTy, iType, Ops, NumOps, "", IAE) { } //===----------------------------------------------------------------------===// // PHINode Class //===----------------------------------------------------------------------===// PHINode::PHINode(const PHINode &PN) : Instruction(PN.getType(), Instruction::PHI, new Use[PN.getNumOperands()], PN.getNumOperands()), ReservedSpace(PN.getNumOperands()) { Use *OL = OperandList; for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) { OL[i].init(PN.getOperand(i), this); OL[i+1].init(PN.getOperand(i+1), this); } } PHINode::~PHINode() { delete [] OperandList; } // removeIncomingValue - Remove an incoming value. This is useful if a // predecessor basic block is deleted. Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { unsigned NumOps = getNumOperands(); Use *OL = OperandList; assert(Idx*2 < NumOps && "BB not in PHI node!"); Value *Removed = OL[Idx*2]; // Move everything after this operand down. // // FIXME: we could just swap with the end of the list, then erase. However, // client might not expect this to happen. The code as it is thrashes the // use/def lists, which is kinda lame. for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) { OL[i-2] = OL[i]; OL[i-2+1] = OL[i+1]; } // Nuke the last value. OL[NumOps-2].set(0); OL[NumOps-2+1].set(0); NumOperands = NumOps-2; // If the PHI node is dead, because it has zero entries, nuke it now. if (NumOps == 2 && DeletePHIIfEmpty) { // If anyone is using this PHI, make them use a dummy value instead... replaceAllUsesWith(UndefValue::get(getType())); eraseFromParent(); } return Removed; } /// resizeOperands - resize operands - This adjusts the length of the operands /// list according to the following behavior: /// 1. If NumOps == 0, grow the operand list in response to a push_back style /// of operation. This grows the number of ops by 1.5 times. /// 2. If NumOps > NumOperands, reserve space for NumOps operands. /// 3. If NumOps == NumOperands, trim the reserved space. /// void PHINode::resizeOperands(unsigned NumOps) { if (NumOps == 0) { NumOps = (getNumOperands())*3/2; if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common. } else if (NumOps*2 > NumOperands) { // No resize needed. if (ReservedSpace >= NumOps) return; } else if (NumOps == NumOperands) { if (ReservedSpace == NumOps) return; } else { return; } ReservedSpace = NumOps; Use *NewOps = new Use[NumOps]; Use *OldOps = OperandList; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { NewOps[i].init(OldOps[i], this); OldOps[i].set(0); } delete [] OldOps; OperandList = NewOps; } /// hasConstantValue - If the specified PHI node always merges together the same /// value, return the value, otherwise return null. /// Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const { // If the PHI node only has one incoming value, eliminate the PHI node... if (getNumIncomingValues() == 1) return getIncomingValue(0); // Otherwise if all of the incoming values are the same for the PHI, replace // the PHI node with the incoming value. // Value *InVal = 0; bool HasUndefInput = false; for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) if (isa(getIncomingValue(i))) HasUndefInput = true; else if (getIncomingValue(i) != this) // Not the PHI node itself... if (InVal && getIncomingValue(i) != InVal) return 0; // Not the same, bail out. else InVal = getIncomingValue(i); // The only case that could cause InVal to be null is if we have a PHI node // that only has entries for itself. In this case, there is no entry into the // loop, so kill the PHI. // if (InVal == 0) InVal = UndefValue::get(getType()); // If we have a PHI node like phi(X, undef, X), where X is defined by some // instruction, we cannot always return X as the result of the PHI node. Only // do this if X is not an instruction (thus it must dominate the PHI block), // or if the client is prepared to deal with this possibility. if (HasUndefInput && !AllowNonDominatingInstruction) if (Instruction *IV = dyn_cast(InVal)) // If it's in the entry block, it dominates everything. if (IV->getParent() != &IV->getParent()->getParent()->front()) return 0; // Cannot guarantee that InVal dominates this PHINode. // All of the incoming values are the same, return the value now. return InVal; } //===----------------------------------------------------------------------===// // CallInst Implementation //===----------------------------------------------------------------------===// CallInst::~CallInst() { delete [] OperandList; } void CallInst::init(Value *Func, const std::vector &Params) { NumOperands = Params.size()+1; Use *OL = OperandList = new Use[Params.size()+1]; OL[0].init(Func, this); const FunctionType *FTy = cast(cast(Func->getType())->getElementType()); assert((Params.size() == FTy->getNumParams() || (FTy->isVarArg() && Params.size() > FTy->getNumParams())) && "Calling a function with bad signature"); for (unsigned i = 0, e = Params.size(); i != e; ++i) OL[i+1].init(Params[i], this); } void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) { NumOperands = 3; Use *OL = OperandList = new Use[3]; OL[0].init(Func, this); OL[1].init(Actual1, this); OL[2].init(Actual2, this); const FunctionType *FTy = cast(cast(Func->getType())->getElementType()); assert((FTy->getNumParams() == 2 || (FTy->isVarArg() && FTy->getNumParams() == 0)) && "Calling a function with bad signature"); } void CallInst::init(Value *Func, Value *Actual) { NumOperands = 2; Use *OL = OperandList = new Use[2]; OL[0].init(Func, this); OL[1].init(Actual, this); const FunctionType *FTy = cast(cast(Func->getType())->getElementType()); assert((FTy->getNumParams() == 1 || (FTy->isVarArg() && FTy->getNumParams() == 0)) && "Calling a function with bad signature"); } void CallInst::init(Value *Func) { NumOperands = 1; Use *OL = OperandList = new Use[1]; OL[0].init(Func, this); const FunctionType *MTy = cast(cast(Func->getType())->getElementType()); assert(MTy->getNumParams() == 0 && "Calling a function with bad signature"); } CallInst::CallInst(Value *Func, const std::vector &Params, const std::string &Name, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, Name, InsertBefore) { init(Func, Params); } CallInst::CallInst(Value *Func, const std::vector &Params, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, Name, InsertAtEnd) { init(Func, Params); } CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2, const std::string &Name, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, Name, InsertBefore) { init(Func, Actual1, Actual2); } CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, Name, InsertAtEnd) { init(Func, Actual1, Actual2); } CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, Name, InsertBefore) { init(Func, Actual); } CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, Name, InsertAtEnd) { init(Func, Actual); } CallInst::CallInst(Value *Func, const std::string &Name, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, Name, InsertBefore) { init(Func); } CallInst::CallInst(Value *Func, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, Name, InsertAtEnd) { init(Func); } CallInst::CallInst(const CallInst &CI) : Instruction(CI.getType(), Instruction::Call, new Use[CI.getNumOperands()], CI.getNumOperands()) { SubclassData = CI.SubclassData; Use *OL = OperandList; Use *InOL = CI.OperandList; for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i) OL[i].init(InOL[i], this); } //===----------------------------------------------------------------------===// // InvokeInst Implementation //===----------------------------------------------------------------------===// InvokeInst::~InvokeInst() { delete [] OperandList; } void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, const std::vector &Params) { NumOperands = 3+Params.size(); Use *OL = OperandList = new Use[3+Params.size()]; OL[0].init(Fn, this); OL[1].init(IfNormal, this); OL[2].init(IfException, this); const FunctionType *FTy = cast(cast(Fn->getType())->getElementType()); assert((Params.size() == FTy->getNumParams()) || (FTy->isVarArg() && Params.size() > FTy->getNumParams()) && "Calling a function with bad signature"); for (unsigned i = 0, e = Params.size(); i != e; i++) OL[i+3].init(Params[i], this); } InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, const std::vector &Params, const std::string &Name, Instruction *InsertBefore) : TerminatorInst(cast(cast(Fn->getType()) ->getElementType())->getReturnType(), Instruction::Invoke, 0, 0, Name, InsertBefore) { init(Fn, IfNormal, IfException, Params); } InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, const std::vector &Params, const std::string &Name, BasicBlock *InsertAtEnd) : TerminatorInst(cast(cast(Fn->getType()) ->getElementType())->getReturnType(), Instruction::Invoke, 0, 0, Name, InsertAtEnd) { init(Fn, IfNormal, IfException, Params); } InvokeInst::InvokeInst(const InvokeInst &II) : TerminatorInst(II.getType(), Instruction::Invoke, new Use[II.getNumOperands()], II.getNumOperands()) { SubclassData = II.SubclassData; Use *OL = OperandList, *InOL = II.OperandList; for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i) OL[i].init(InOL[i], this); } BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { return getSuccessor(idx); } unsigned InvokeInst::getNumSuccessorsV() const { return getNumSuccessors(); } void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { return setSuccessor(idx, B); } //===----------------------------------------------------------------------===// // ReturnInst Implementation //===----------------------------------------------------------------------===// void ReturnInst::init(Value *retVal) { if (retVal && retVal->getType() != Type::VoidTy) { assert(!isa(retVal) && "Cannot return basic block. Probably using the incorrect ctor"); NumOperands = 1; RetVal.init(retVal, this); } } unsigned ReturnInst::getNumSuccessorsV() const { return getNumSuccessors(); } // Out-of-line ReturnInst method, put here so the C++ compiler can choose to // emit the vtable for the class in this translation unit. void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { assert(0 && "ReturnInst has no successors!"); } BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { assert(0 && "ReturnInst has no successors!"); abort(); return 0; } //===----------------------------------------------------------------------===// // UnwindInst Implementation //===----------------------------------------------------------------------===// unsigned UnwindInst::getNumSuccessorsV() const { return getNumSuccessors(); } void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { assert(0 && "UnwindInst has no successors!"); } BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const { assert(0 && "UnwindInst has no successors!"); abort(); return 0; } //===----------------------------------------------------------------------===// // UnreachableInst Implementation //===----------------------------------------------------------------------===// unsigned UnreachableInst::getNumSuccessorsV() const { return getNumSuccessors(); } void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { assert(0 && "UnwindInst has no successors!"); } BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { assert(0 && "UnwindInst has no successors!"); abort(); return 0; } //===----------------------------------------------------------------------===// // BranchInst Implementation //===----------------------------------------------------------------------===// void BranchInst::AssertOK() { if (isConditional()) assert(getCondition()->getType() == Type::BoolTy && "May only branch on boolean predicates!"); } BranchInst::BranchInst(const BranchInst &BI) : TerminatorInst(Instruction::Br, Ops, BI.getNumOperands()) { OperandList[0].init(BI.getOperand(0), this); if (BI.getNumOperands() != 1) { assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); OperandList[1].init(BI.getOperand(1), this); OperandList[2].init(BI.getOperand(2), this); } } BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { return getSuccessor(idx); } unsigned BranchInst::getNumSuccessorsV() const { return getNumSuccessors(); } void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { setSuccessor(idx, B); } //===----------------------------------------------------------------------===// // AllocationInst Implementation //===----------------------------------------------------------------------===// static Value *getAISize(Value *Amt) { if (!Amt) Amt = ConstantUInt::get(Type::UIntTy, 1); else assert(Amt->getType() == Type::UIntTy && "Malloc/Allocation array size != UIntTy!"); return Amt; } AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, const std::string &Name, Instruction *InsertBefore) : UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize), Name, InsertBefore) { assert(Ty != Type::VoidTy && "Cannot allocate void!"); } AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, const std::string &Name, BasicBlock *InsertAtEnd) : UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize), Name, InsertAtEnd) { assert(Ty != Type::VoidTy && "Cannot allocate void!"); } bool AllocationInst::isArrayAllocation() const { if (ConstantUInt *CUI = dyn_cast(getOperand(0))) return CUI->getValue() != 1; return true; } const Type *AllocationInst::getAllocatedType() const { return getType()->getElementType(); } AllocaInst::AllocaInst(const AllocaInst &AI) : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0), Instruction::Alloca) { } MallocInst::MallocInst(const MallocInst &MI) : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0), Instruction::Malloc) { } //===----------------------------------------------------------------------===// // FreeInst Implementation //===----------------------------------------------------------------------===// void FreeInst::AssertOK() { assert(isa(getOperand(0)->getType()) && "Can not free something of nonpointer type!"); } FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore) : UnaryInstruction(Type::VoidTy, Free, Ptr, "", InsertBefore) { AssertOK(); } FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd) : UnaryInstruction(Type::VoidTy, Free, Ptr, "", InsertAtEnd) { AssertOK(); } //===----------------------------------------------------------------------===// // LoadInst Implementation //===----------------------------------------------------------------------===// void LoadInst::AssertOK() { assert(isa(getOperand(0)->getType()) && "Ptr must have pointer type."); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, Name, InsertBef) { setVolatile(false); AssertOK(); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, Name, InsertAE) { setVolatile(false); AssertOK(); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, Instruction *InsertBef) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, Name, InsertBef) { setVolatile(isVolatile); AssertOK(); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, BasicBlock *InsertAE) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, Name, InsertAE) { setVolatile(isVolatile); AssertOK(); } //===----------------------------------------------------------------------===// // StoreInst Implementation //===----------------------------------------------------------------------===// void StoreInst::AssertOK() { assert(isa(getOperand(1)->getType()) && "Ptr must have pointer type!"); assert(getOperand(0)->getType() == cast(getOperand(1)->getType())->getElementType() && "Ptr must be a pointer to Val type!"); } StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) : Instruction(Type::VoidTy, Store, Ops, 2, "", InsertBefore) { Ops[0].init(val, this); Ops[1].init(addr, this); setVolatile(false); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) : Instruction(Type::VoidTy, Store, Ops, 2, "", InsertAtEnd) { Ops[0].init(val, this); Ops[1].init(addr, this); setVolatile(false); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Instruction *InsertBefore) : Instruction(Type::VoidTy, Store, Ops, 2, "", InsertBefore) { Ops[0].init(val, this); Ops[1].init(addr, this); setVolatile(isVolatile); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, BasicBlock *InsertAtEnd) : Instruction(Type::VoidTy, Store, Ops, 2, "", InsertAtEnd) { Ops[0].init(val, this); Ops[1].init(addr, this); setVolatile(isVolatile); AssertOK(); } //===----------------------------------------------------------------------===// // GetElementPtrInst Implementation //===----------------------------------------------------------------------===// // checkType - Simple wrapper function to give a better assertion failure // message on bad indexes for a gep instruction. // static inline const Type *checkType(const Type *Ty) { assert(Ty && "Invalid indices for type!"); return Ty; } void GetElementPtrInst::init(Value *Ptr, const std::vector &Idx) { NumOperands = 1+Idx.size(); Use *OL = OperandList = new Use[NumOperands]; OL[0].init(Ptr, this); for (unsigned i = 0, e = Idx.size(); i != e; ++i) OL[i+1].init(Idx[i], this); } void GetElementPtrInst::init(Value *Ptr, Value *Idx0, Value *Idx1) { NumOperands = 3; Use *OL = OperandList = new Use[3]; OL[0].init(Ptr, this); OL[1].init(Idx0, this); OL[2].init(Idx1, this); } void GetElementPtrInst::init(Value *Ptr, Value *Idx) { NumOperands = 2; Use *OL = OperandList = new Use[2]; OL[0].init(Ptr, this); OL[1].init(Idx, this); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector &Idx, const std::string &Name, Instruction *InBe) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(), Idx, true))), GetElementPtr, 0, 0, Name, InBe) { init(Ptr, Idx); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector &Idx, const std::string &Name, BasicBlock *IAE) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(), Idx, true))), GetElementPtr, 0, 0, Name, IAE) { init(Ptr, Idx); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx, const std::string &Name, Instruction *InBe) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))), GetElementPtr, 0, 0, Name, InBe) { init(Ptr, Idx); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx, const std::string &Name, BasicBlock *IAE) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))), GetElementPtr, 0, 0, Name, IAE) { init(Ptr, Idx); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1, const std::string &Name, Instruction *InBe) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(), Idx0, Idx1, true))), GetElementPtr, 0, 0, Name, InBe) { init(Ptr, Idx0, Idx1); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1, const std::string &Name, BasicBlock *IAE) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(), Idx0, Idx1, true))), GetElementPtr, 0, 0, Name, IAE) { init(Ptr, Idx0, Idx1); } GetElementPtrInst::~GetElementPtrInst() { delete[] OperandList; } // getIndexedType - Returns the type of the element that would be loaded with // a load instruction with the specified parameters. // // A null type is returned if the indices are invalid for the specified // pointer type. // const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, const std::vector &Idx, bool AllowCompositeLeaf) { if (!isa(Ptr)) return 0; // Type isn't a pointer type! // Handle the special case of the empty set index set... if (Idx.empty()) if (AllowCompositeLeaf || cast(Ptr)->getElementType()->isFirstClassType()) return cast(Ptr)->getElementType(); else return 0; unsigned CurIdx = 0; while (const CompositeType *CT = dyn_cast(Ptr)) { if (Idx.size() == CurIdx) { if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr; return 0; // Can't load a whole structure or array!?!? } Value *Index = Idx[CurIdx++]; if (isa(CT) && CurIdx != 1) return 0; // Can only index into pointer types at the first index! if (!CT->indexValid(Index)) return 0; Ptr = CT->getTypeAtIndex(Index); // If the new type forwards to another type, then it is in the middle // of being refined to another type (and hence, may have dropped all // references to what it was using before). So, use the new forwarded // type. if (const Type * Ty = Ptr->getForwardedType()) { Ptr = Ty; } } return CurIdx == Idx.size() ? Ptr : 0; } const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx0, Value *Idx1, bool AllowCompositeLeaf) { const PointerType *PTy = dyn_cast(Ptr); if (!PTy) return 0; // Type isn't a pointer type! // Check the pointer index. if (!PTy->indexValid(Idx0)) return 0; const CompositeType *CT = dyn_cast(PTy->getElementType()); if (!CT || !CT->indexValid(Idx1)) return 0; const Type *ElTy = CT->getTypeAtIndex(Idx1); if (AllowCompositeLeaf || ElTy->isFirstClassType()) return ElTy; return 0; } const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) { const PointerType *PTy = dyn_cast(Ptr); if (!PTy) return 0; // Type isn't a pointer type! // Check the pointer index. if (!PTy->indexValid(Idx)) return 0; return PTy->getElementType(); } //===----------------------------------------------------------------------===// // BinaryOperator Class //===----------------------------------------------------------------------===// void BinaryOperator::init(BinaryOps iType) { Value *LHS = getOperand(0), *RHS = getOperand(1); assert(LHS->getType() == RHS->getType() && "Binary operator operand types must match!"); #ifndef NDEBUG switch (iType) { case Add: case Sub: case Mul: case Div: case Rem: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert((getType()->isInteger() || getType()->isFloatingPoint() || isa(getType()) ) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case And: case Or: case Xor: assert(getType() == LHS->getType() && "Logical operation should return same type as operands!"); assert(getType()->isIntegral() && "Tried to create a logical operation on a non-integral type!"); break; case SetLT: case SetGT: case SetLE: case SetGE: case SetEQ: case SetNE: assert(getType() == Type::BoolTy && "Setcc must return bool!"); default: break; } #endif } BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2, const std::string &Name, Instruction *InsertBefore) { assert(S1->getType() == S2->getType() && "Cannot create binary operator with two operands of differing type!"); switch (Op) { // Binary comparison operators... case SetLT: case SetGT: case SetLE: case SetGE: case SetEQ: case SetNE: return new SetCondInst(Op, S1, S2, Name, InsertBefore); default: return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); } } BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2, const std::string &Name, BasicBlock *InsertAtEnd) { BinaryOperator *Res = create(Op, S1, S2, Name); InsertAtEnd->getInstList().push_back(Res); return Res; } BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name, Instruction *InsertBefore) { if (!Op->getType()->isFloatingPoint()) return new BinaryOperator(Instruction::Sub, Constant::getNullValue(Op->getType()), Op, Op->getType(), Name, InsertBefore); else return new BinaryOperator(Instruction::Sub, ConstantFP::get(Op->getType(), -0.0), Op, Op->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name, BasicBlock *InsertAtEnd) { if (!Op->getType()->isFloatingPoint()) return new BinaryOperator(Instruction::Sub, Constant::getNullValue(Op->getType()), Op, Op->getType(), Name, InsertAtEnd); else return new BinaryOperator(Instruction::Sub, ConstantFP::get(Op->getType(), -0.0), Op, Op->getType(), Name, InsertAtEnd); } BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name, Instruction *InsertBefore) { return new BinaryOperator(Instruction::Xor, Op, ConstantIntegral::getAllOnesValue(Op->getType()), Op->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name, BasicBlock *InsertAtEnd) { return new BinaryOperator(Instruction::Xor, Op, ConstantIntegral::getAllOnesValue(Op->getType()), Op->getType(), Name, InsertAtEnd); } // isConstantAllOnes - Helper function for several functions below static inline bool isConstantAllOnes(const Value *V) { return isa(V) &&cast(V)->isAllOnesValue(); } bool BinaryOperator::isNeg(const Value *V) { if (const BinaryOperator *Bop = dyn_cast(V)) if (Bop->getOpcode() == Instruction::Sub) if (!V->getType()->isFloatingPoint()) return Bop->getOperand(0) == Constant::getNullValue(Bop->getType()); else return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0); return false; } bool BinaryOperator::isNot(const Value *V) { if (const BinaryOperator *Bop = dyn_cast(V)) return (Bop->getOpcode() == Instruction::Xor && (isConstantAllOnes(Bop->getOperand(1)) || isConstantAllOnes(Bop->getOperand(0)))); return false; } Value *BinaryOperator::getNegArgument(Value *BinOp) { assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!"); return cast(BinOp)->getOperand(1); } const Value *BinaryOperator::getNegArgument(const Value *BinOp) { return getNegArgument(const_cast(BinOp)); } Value *BinaryOperator::getNotArgument(Value *BinOp) { assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); BinaryOperator *BO = cast(BinOp); Value *Op0 = BO->getOperand(0); Value *Op1 = BO->getOperand(1); if (isConstantAllOnes(Op0)) return Op1; assert(isConstantAllOnes(Op1)); return Op0; } const Value *BinaryOperator::getNotArgument(const Value *BinOp) { return getNotArgument(const_cast(BinOp)); } // swapOperands - Exchange the two operands to this instruction. This // instruction is safe to use on any binary instruction and does not // modify the semantics of the instruction. If the instruction is // order dependent (SetLT f.e.) the opcode is changed. // bool BinaryOperator::swapOperands() { if (isCommutative()) ; // If the instruction is commutative, it is safe to swap the operands else if (SetCondInst *SCI = dyn_cast(this)) /// FIXME: SetCC instructions shouldn't all have different opcodes. setOpcode(SCI->getSwappedCondition()); else return true; // Can't commute operands std::swap(Ops[0], Ops[1]); return false; } //===----------------------------------------------------------------------===// // SetCondInst Class //===----------------------------------------------------------------------===// SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2, const std::string &Name, Instruction *InsertBefore) : BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertBefore) { // Make sure it's a valid type... getInverseCondition will assert out if not. assert(getInverseCondition(Opcode)); } SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2, const std::string &Name, BasicBlock *InsertAtEnd) : BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertAtEnd) { // Make sure it's a valid type... getInverseCondition will assert out if not. assert(getInverseCondition(Opcode)); } // getInverseCondition - Return the inverse of the current condition opcode. // For example seteq -> setne, setgt -> setle, setlt -> setge, etc... // Instruction::BinaryOps SetCondInst::getInverseCondition(BinaryOps Opcode) { switch (Opcode) { default: assert(0 && "Unknown setcc opcode!"); case SetEQ: return SetNE; case SetNE: return SetEQ; case SetGT: return SetLE; case SetLT: return SetGE; case SetGE: return SetLT; case SetLE: return SetGT; } } // getSwappedCondition - Return the condition opcode that would be the result // of exchanging the two operands of the setcc instruction without changing // the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc. // Instruction::BinaryOps SetCondInst::getSwappedCondition(BinaryOps Opcode) { switch (Opcode) { default: assert(0 && "Unknown setcc instruction!"); case SetEQ: case SetNE: return Opcode; case SetGT: return SetLT; case SetLT: return SetGT; case SetGE: return SetLE; case SetLE: return SetGE; } } //===----------------------------------------------------------------------===// // SwitchInst Implementation //===----------------------------------------------------------------------===// void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) { assert(Value && Default); ReservedSpace = 2+NumCases*2; NumOperands = 2; OperandList = new Use[ReservedSpace]; OperandList[0].init(Value, this); OperandList[1].init(Default, this); } SwitchInst::SwitchInst(const SwitchInst &SI) : TerminatorInst(Instruction::Switch, new Use[SI.getNumOperands()], SI.getNumOperands()) { Use *OL = OperandList, *InOL = SI.OperandList; for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) { OL[i].init(InOL[i], this); OL[i+1].init(InOL[i+1], this); } } SwitchInst::~SwitchInst() { delete [] OperandList; } /// addCase - Add an entry to the switch instruction... /// void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { unsigned OpNo = NumOperands; if (OpNo+2 > ReservedSpace) resizeOperands(0); // Get more space! // Initialize some new operands. assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); NumOperands = OpNo+2; OperandList[OpNo].init(OnVal, this); OperandList[OpNo+1].init(Dest, this); } /// removeCase - This method removes the specified successor from the switch /// instruction. Note that this cannot be used to remove the default /// destination (successor #0). /// void SwitchInst::removeCase(unsigned idx) { assert(idx != 0 && "Cannot remove the default case!"); assert(idx*2 < getNumOperands() && "Successor index out of range!!!"); unsigned NumOps = getNumOperands(); Use *OL = OperandList; // Move everything after this operand down. // // FIXME: we could just swap with the end of the list, then erase. However, // client might not expect this to happen. The code as it is thrashes the // use/def lists, which is kinda lame. for (unsigned i = (idx+1)*2; i != NumOps; i += 2) { OL[i-2] = OL[i]; OL[i-2+1] = OL[i+1]; } // Nuke the last value. OL[NumOps-2].set(0); OL[NumOps-2+1].set(0); NumOperands = NumOps-2; } /// resizeOperands - resize operands - This adjusts the length of the operands /// list according to the following behavior: /// 1. If NumOps == 0, grow the operand list in response to a push_back style /// of operation. This grows the number of ops by 1.5 times. /// 2. If NumOps > NumOperands, reserve space for NumOps operands. /// 3. If NumOps == NumOperands, trim the reserved space. /// void SwitchInst::resizeOperands(unsigned NumOps) { if (NumOps == 0) { NumOps = getNumOperands()/2*6; } else if (NumOps*2 > NumOperands) { // No resize needed. if (ReservedSpace >= NumOps) return; } else if (NumOps == NumOperands) { if (ReservedSpace == NumOps) return; } else { return; } ReservedSpace = NumOps; Use *NewOps = new Use[NumOps]; Use *OldOps = OperandList; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { NewOps[i].init(OldOps[i], this); OldOps[i].set(0); } delete [] OldOps; OperandList = NewOps; } BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { return getSuccessor(idx); } unsigned SwitchInst::getNumSuccessorsV() const { return getNumSuccessors(); } void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { setSuccessor(idx, B); } // Define these methods here so vtables don't get emitted into every translation // unit that uses these classes. GetElementPtrInst *GetElementPtrInst::clone() const { return new GetElementPtrInst(*this); } BinaryOperator *BinaryOperator::clone() const { return create(getOpcode(), Ops[0], Ops[1]); } MallocInst *MallocInst::clone() const { return new MallocInst(*this); } AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); } FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); } LoadInst *LoadInst::clone() const { return new LoadInst(*this); } StoreInst *StoreInst::clone() const { return new StoreInst(*this); } CastInst *CastInst::clone() const { return new CastInst(*this); } CallInst *CallInst::clone() const { return new CallInst(*this); } ShiftInst *ShiftInst::clone() const { return new ShiftInst(*this); } SelectInst *SelectInst::clone() const { return new SelectInst(*this); } VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); } PHINode *PHINode::clone() const { return new PHINode(*this); } ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); } BranchInst *BranchInst::clone() const { return new BranchInst(*this); } SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); } InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); } UnwindInst *UnwindInst::clone() const { return new UnwindInst(); } UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}