//===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by Devang Patel and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVM Pass Manager infrastructure. // //===----------------------------------------------------------------------===// #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/Support/Streams.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Overview: // The Pass Manager Infrastructure manages passes. It's responsibilities are: // // o Manage optimization pass execution order // o Make required Analysis information available before pass P is run // o Release memory occupied by dead passes // o If Analysis information is dirtied by a pass then regenerate Analysis // information before it is consumed by another pass. // // Pass Manager Infrastructure uses multipe pass managers. They are PassManager, // FunctionPassManager, ModulePassManager, BasicBlockPassManager. This class // hierarcy uses multiple inheritance but pass managers do not derive from // another pass manager. // // PassManager and FunctionPassManager are two top level pass manager that // represents the external interface of this entire pass manager infrastucture. // // Important classes : // // [o] class PMTopLevelManager; // // Two top level managers, PassManager and FunctionPassManager, derive from // PMTopLevelManager. PMTopLevelManager manages information used by top level // managers such as last user info. // // [o] class PMDataManager; // // PMDataManager manages information, e.g. list of available analysis info, // used by a pass manager to manage execution order of passes. It also provides // a place to implement common pass manager APIs. All pass managers derive from // PMDataManager. // // [o] class BasicBlockPassManager : public FunctionPass, public PMDataManager; // // BasicBlockPassManager manages BasicBlockPasses. // // [o] class FunctionPassManager; // // This is a external interface used by JIT to manage FunctionPasses. This // interface relies on FunctionPassManagerImpl to do all the tasks. // // [o] class FunctionPassManagerImpl : public ModulePass, PMDataManager, // public PMTopLevelManager; // // FunctionPassManagerImpl is a top level manager. It manages FunctionPasses // and BasicBlockPassManagers. // // [o] class ModulePassManager : public Pass, public PMDataManager; // // ModulePassManager manages ModulePasses and FunctionPassManagerImpls. // // [o] class PassManager; // // This is a external interface used by various tools to manages passes. It // relies on PassManagerImpl to do all the tasks. // // [o] class PassManagerImpl : public Pass, public PMDataManager, // public PMDTopLevelManager // // PassManagerImpl is a top level pass manager responsible for managing // ModulePassManagers. //===----------------------------------------------------------------------===// namespace llvm { //===----------------------------------------------------------------------===// // Pass debugging information. Often it is useful to find out what pass is // running when a crash occurs in a utility. When this library is compiled with // debugging on, a command line option (--debug-pass) is enabled that causes the // pass name to be printed before it executes. // static cl::opt PassDebugging_New("debug-pass", cl::Hidden, cl::desc("Print PassManager debugging information"), cl::values( clEnumVal(PDLNone , "disable debug output"), clEnumVal(PDLArguments , "print pass arguments to pass to 'opt'"), clEnumVal(PDLStructure , "print pass structure before run()"), clEnumVal(PDLExecutions, "print pass name before it is executed"), clEnumVal(PDLDetails , "print pass details when it is executed"), clEnumValEnd)); } // End of llvm namespace #ifndef USE_OLD_PASSMANAGER namespace llvm { class PMDataManager; //===----------------------------------------------------------------------===// // PMTopLevelManager // /// PMTopLevelManager manages LastUser info and collects common APIs used by /// top level pass managers. class PMTopLevelManager { public: inline std::vector::iterator passManagersBegin() { return PassManagers.begin(); } inline std::vector::iterator passManagersEnd() { return PassManagers.end(); } /// Schedule pass P for execution. Make sure that passes required by /// P are run before P is run. Update analysis info maintained by /// the manager. Remove dead passes. This is a recursive function. void schedulePass(Pass *P); /// This is implemented by top level pass manager and used by /// schedulePass() to add analysis info passes that are not available. virtual void addTopLevelPass(Pass *P) = 0; /// Set pass P as the last user of the given analysis passes. void setLastUser(std::vector &AnalysisPasses, Pass *P); /// Collect passes whose last user is P void collectLastUses(std::vector &LastUses, Pass *P); /// Find the pass that implements Analysis AID. Search immutable /// passes and all pass managers. If desired pass is not found /// then return NULL. Pass *findAnalysisPass(AnalysisID AID); inline void clearManagers() { PassManagers.clear(); } virtual ~PMTopLevelManager() { for (std::vector::iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) delete *I; for (std::vector::iterator I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I) delete *I; PassManagers.clear(); } /// Add immutable pass and initialize it. inline void addImmutablePass(ImmutablePass *P) { P->initializePass(); ImmutablePasses.push_back(P); } inline std::vector& getImmutablePasses() { return ImmutablePasses; } void addPassManager(Pass *Manager) { PassManagers.push_back(Manager); } // Add Manager into the list of managers that are not directly // maintained by this top level pass manager inline void addIndirectPassManager(PMDataManager *Manager) { IndirectPassManagers.push_back(Manager); } // Print passes managed by this top level manager. void dumpPasses(); private: /// Collection of pass managers std::vector PassManagers; /// Collection of pass managers that are not directly maintained /// by this pass manager std::vector IndirectPassManagers; // Map to keep track of last user of the analysis pass. // LastUser->second is the last user of Lastuser->first. std::map LastUser; /// Immutable passes are managed by top level manager. std::vector ImmutablePasses; }; //===----------------------------------------------------------------------===// // PMDataManager /// PMDataManager provides the common place to manage the analysis data /// used by pass managers. class PMDataManager { public: PMDataManager(int D) : TPM(NULL), Depth(D) { initializeAnalysisInfo(); } virtual ~PMDataManager() { for (std::vector::iterator I = PassVector.begin(), E = PassVector.end(); I != E; ++I) delete *I; PassVector.clear(); } /// Return true IFF pass P's required analysis set does not required new /// manager. bool manageablePass(Pass *P); /// Augment AvailableAnalysis by adding analysis made available by pass P. void recordAvailableAnalysis(Pass *P); /// Remove Analysis that is not preserved by the pass void removeNotPreservedAnalysis(Pass *P); /// Remove dead passes void removeDeadPasses(Pass *P); /// Add pass P into the PassVector. Update /// AvailableAnalysis appropriately if ProcessAnalysis is true. void addPassToManager (Pass *P, bool ProcessAnalysis = true); /// Initialize available analysis information. void initializeAnalysisInfo() { ForcedLastUses.clear(); AvailableAnalysis.clear(); } /// Populate RequiredPasses with the analysis pass that are required by /// pass P. void collectRequiredAnalysisPasses(std::vector &RequiredPasses, Pass *P); /// All Required analyses should be available to the pass as it runs! Here /// we fill in the AnalysisImpls member of the pass so that it can /// successfully use the getAnalysis() method to retrieve the /// implementations it needs. void initializeAnalysisImpl(Pass *P); /// Find the pass that implements Analysis AID. If desired pass is not found /// then return NULL. Pass *findAnalysisPass(AnalysisID AID, bool Direction); inline std::vector::iterator passVectorBegin() { return PassVector.begin(); } inline std::vector::iterator passVectorEnd() { return PassVector.end(); } // Access toplevel manager PMTopLevelManager *getTopLevelManager() { return TPM; } void setTopLevelManager(PMTopLevelManager *T) { TPM = T; } unsigned getDepth() { return Depth; } // Print list of passes that are last used by P. void dumpLastUses(Pass *P, unsigned Offset) { std::vector LUses; assert (TPM && "Top Level Manager is missing"); TPM->collectLastUses(LUses, P); for (std::vector::iterator I = LUses.begin(), E = LUses.end(); I != E; ++I) { llvm::cerr << "--" << std::string(Offset*2, ' '); (*I)->dumpPassStructure(0); } } protected: // Collection of pass whose last user asked this manager to claim // last use. If a FunctionPass F is the last user of ModulePass info M // then the F's manager, not F, records itself as a last user of M. std::vector ForcedLastUses; // Top level manager. PMTopLevelManager *TPM; private: // Set of available Analysis. This information is used while scheduling // pass. If a pass requires an analysis which is not not available then // equired analysis pass is scheduled to run before the pass itself is // scheduled to run. std::map AvailableAnalysis; // Collection of pass that are managed by this manager std::vector PassVector; unsigned Depth; }; //===----------------------------------------------------------------------===// // BasicBlockPassManager // /// BasicBlockPassManager manages BasicBlockPass. It batches all the /// pass together and sequence them to process one basic block before /// processing next basic block. class BasicBlockPassManager : public PMDataManager, public FunctionPass { public: BasicBlockPassManager(int D) : PMDataManager(D) { } /// Add a pass into a passmanager queue. bool addPass(Pass *p); /// Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the function, and if so, return true. bool runOnFunction(Function &F); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } bool doInitialization(Module &M); bool doInitialization(Function &F); bool doFinalization(Module &M); bool doFinalization(Function &F); // Print passes managed by this manager void dumpPassStructure(unsigned Offset) { llvm::cerr << std::string(Offset*2, ' ') << "BasicBLockPass Manager\n"; for (std::vector::iterator I = passVectorBegin(), E = passVectorEnd(); I != E; ++I) { (*I)->dumpPassStructure(Offset + 1); dumpLastUses(*I, Offset+1); } } }; //===----------------------------------------------------------------------===// // FunctionPassManagerImpl_New // /// FunctionPassManagerImpl_New manages FunctionPasses and BasicBlockPassManagers. /// It batches all function passes and basic block pass managers together and /// sequence them to process one function at a time before processing next /// function. class FunctionPassManagerImpl_New : public ModulePass, public PMDataManager, public PMTopLevelManager { public: FunctionPassManagerImpl_New(int D) : PMDataManager(D) { activeBBPassManager = NULL; } ~FunctionPassManagerImpl_New() { /* TODO */ }; inline void addTopLevelPass(Pass *P) { if (ImmutablePass *IP = dynamic_cast (P)) { // P is a immutable pass then it will be managed by this // top level manager. Set up analysis resolver to connect them. AnalysisResolver_New *AR = new AnalysisResolver_New(*this); P->setResolver(AR); initializeAnalysisImpl(P); addImmutablePass(IP); recordAvailableAnalysis(IP); } else addPass(P); } /// add - Add a pass to the queue of passes to run. This passes /// ownership of the Pass to the PassManager. When the /// PassManager_X is destroyed, the pass will be destroyed as well, so /// there is no need to delete the pass. (TODO delete passes.) /// This implies that all passes MUST be allocated with 'new'. void add(Pass *P) { schedulePass(P); } /// Add pass into the pass manager queue. bool addPass(Pass *P); /// Execute all of the passes scheduled for execution. Keep /// track of whether any of the passes modifies the function, and if /// so, return true. bool runOnModule(Module &M); bool runOnFunction(Function &F); bool run(Function &F); /// doInitialization - Run all of the initializers for the function passes. /// bool doInitialization(Module &M); /// doFinalization - Run all of the initializers for the function passes. /// bool doFinalization(Module &M); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } // Print passes managed by this manager void dumpPassStructure(unsigned Offset) { llvm::cerr << std::string(Offset*2, ' ') << "FunctionPass Manager\n"; for (std::vector::iterator I = passVectorBegin(), E = passVectorEnd(); I != E; ++I) { (*I)->dumpPassStructure(Offset + 1); dumpLastUses(*I, Offset+1); } } private: // Active Pass Managers BasicBlockPassManager *activeBBPassManager; }; //===----------------------------------------------------------------------===// // ModulePassManager // /// ModulePassManager manages ModulePasses and function pass managers. /// It batches all Module passes passes and function pass managers together and /// sequence them to process one module. class ModulePassManager : public Pass, public PMDataManager { public: ModulePassManager(int D) : PMDataManager(D) { activeFunctionPassManager = NULL; } /// Add a pass into a passmanager queue. bool addPass(Pass *p); /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool runOnModule(Module &M); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } // Print passes managed by this manager void dumpPassStructure(unsigned Offset) { llvm::cerr << std::string(Offset*2, ' ') << "ModulePass Manager\n"; for (std::vector::iterator I = passVectorBegin(), E = passVectorEnd(); I != E; ++I) { (*I)->dumpPassStructure(Offset + 1); dumpLastUses(*I, Offset+1); } } private: // Active Pass Manager FunctionPassManagerImpl_New *activeFunctionPassManager; }; //===----------------------------------------------------------------------===// // PassManagerImpl_New // /// PassManagerImpl_New manages ModulePassManagers class PassManagerImpl_New : public Pass, public PMDataManager, public PMTopLevelManager { public: PassManagerImpl_New(int D) : PMDataManager(D) { activeManager = NULL; } /// add - Add a pass to the queue of passes to run. This passes ownership of /// the Pass to the PassManager. When the PassManager is destroyed, the pass /// will be destroyed as well, so there is no need to delete the pass. This /// implies that all passes MUST be allocated with 'new'. void add(Pass *P) { schedulePass(P); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool run(Module &M); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } inline void addTopLevelPass(Pass *P) { if (ImmutablePass *IP = dynamic_cast (P)) { // P is a immutable pass and it will be managed by this // top level manager. Set up analysis resolver to connect them. AnalysisResolver_New *AR = new AnalysisResolver_New(*this); P->setResolver(AR); initializeAnalysisImpl(P); addImmutablePass(IP); recordAvailableAnalysis(IP); } else addPass(P); } private: /// Add a pass into a passmanager queue. bool addPass(Pass *p); // Active Pass Manager ModulePassManager *activeManager; }; } // End of llvm namespace //===----------------------------------------------------------------------===// // PMTopLevelManager implementation /// Set pass P as the last user of the given analysis passes. void PMTopLevelManager::setLastUser(std::vector &AnalysisPasses, Pass *P) { for (std::vector::iterator I = AnalysisPasses.begin(), E = AnalysisPasses.end(); I != E; ++I) { Pass *AP = *I; LastUser[AP] = P; // If AP is the last user of other passes then make P last user of // such passes. for (std::map::iterator LUI = LastUser.begin(), LUE = LastUser.end(); LUI != LUE; ++LUI) { if (LUI->second == AP) LastUser[LUI->first] = P; } } } /// Collect passes whose last user is P void PMTopLevelManager::collectLastUses(std::vector &LastUses, Pass *P) { for (std::map::iterator LUI = LastUser.begin(), LUE = LastUser.end(); LUI != LUE; ++LUI) if (LUI->second == P) LastUses.push_back(LUI->first); } /// Schedule pass P for execution. Make sure that passes required by /// P are run before P is run. Update analysis info maintained by /// the manager. Remove dead passes. This is a recursive function. void PMTopLevelManager::schedulePass(Pass *P) { // TODO : Allocate function manager for this pass, other wise required set // may be inserted into previous function manager AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); const std::vector &RequiredSet = AnUsage.getRequiredSet(); for (std::vector::const_iterator I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) { Pass *AnalysisPass = findAnalysisPass(*I); if (!AnalysisPass) { // Schedule this analysis run first. AnalysisPass = (*I)->createPass(); schedulePass(AnalysisPass); } } // Now all required passes are available. addTopLevelPass(P); } /// Find the pass that implements Analysis AID. Search immutable /// passes and all pass managers. If desired pass is not found /// then return NULL. Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) { Pass *P = NULL; // Check pass managers for (std::vector::iterator I = PassManagers.begin(), E = PassManagers.end(); P == NULL && I != E; ++I) { PMDataManager *PMD = dynamic_cast(*I); assert(PMD && "This is not a PassManager"); P = PMD->findAnalysisPass(AID, false); } // Check other pass managers for (std::vector::iterator I = IndirectPassManagers.begin(), E = IndirectPassManagers.end(); P == NULL && I != E; ++I) P = (*I)->findAnalysisPass(AID, false); for (std::vector::iterator I = ImmutablePasses.begin(), E = ImmutablePasses.end(); P == NULL && I != E; ++I) { const PassInfo *PI = (*I)->getPassInfo(); if (PI == AID) P = *I; // If Pass not found then check the interfaces implemented by Immutable Pass if (!P) { const std::vector &ImmPI = PI->getInterfacesImplemented(); for (unsigned Index = 0, End = ImmPI.size(); P == NULL && Index != End; ++Index) if (ImmPI[Index] == AID) P = *I; } } return P; } // Print passes managed by this top level manager. void PMTopLevelManager::dumpPasses() { // Print out the immutable passes for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) { ImmutablePasses[i]->dumpPassStructure(0); } for (std::vector::iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) (*I)->dumpPassStructure(1); } //===----------------------------------------------------------------------===// // PMDataManager implementation /// Return true IFF pass P's required analysis set does not required new /// manager. bool PMDataManager::manageablePass(Pass *P) { // TODO // If this pass is not preserving information that is required by a // pass maintained by higher level pass manager then do not insert // this pass into current manager. Use new manager. For example, // For example, If FunctionPass F is not preserving ModulePass Info M1 // that is used by another ModulePass M2 then do not insert F in // current function pass manager. return true; } /// Augement AvailableAnalysis by adding analysis made available by pass P. void PMDataManager::recordAvailableAnalysis(Pass *P) { if (const PassInfo *PI = P->getPassInfo()) { AvailableAnalysis[PI] = P; //This pass is the current implementation of all of the interfaces it //implements as well. const std::vector &II = PI->getInterfacesImplemented(); for (unsigned i = 0, e = II.size(); i != e; ++i) AvailableAnalysis[II[i]] = P; } } /// Remove Analyss not preserved by Pass P void PMDataManager::removeNotPreservedAnalysis(Pass *P) { AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); if (AnUsage.getPreservesAll()) return; const std::vector &PreservedSet = AnUsage.getPreservedSet(); for (std::map::iterator I = AvailableAnalysis.begin(), E = AvailableAnalysis.end(); I != E; ) { if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) == PreservedSet.end()) { // Remove this analysis if (!dynamic_cast(I->second)) { std::map::iterator J = I++; AvailableAnalysis.erase(J); } else ++I; } else ++I; } } /// Remove analysis passes that are not used any longer void PMDataManager::removeDeadPasses(Pass *P) { std::vector DeadPasses; TPM->collectLastUses(DeadPasses, P); for (std::vector::iterator I = DeadPasses.begin(), E = DeadPasses.end(); I != E; ++I) { (*I)->releaseMemory(); std::map::iterator Pos = AvailableAnalysis.find((*I)->getPassInfo()); // It is possible that pass is already removed from the AvailableAnalysis if (Pos != AvailableAnalysis.end()) AvailableAnalysis.erase(Pos); } } /// Add pass P into the PassVector. Update /// AvailableAnalysis appropriately if ProcessAnalysis is true. void PMDataManager::addPassToManager(Pass *P, bool ProcessAnalysis) { // This manager is going to manage pass P. Set up analysis resolver // to connect them. AnalysisResolver_New *AR = new AnalysisResolver_New(*this); P->setResolver(AR); if (ProcessAnalysis) { // At the moment, this pass is the last user of all required passes. std::vector LastUses; std::vector RequiredPasses; unsigned PDepth = this->getDepth(); collectRequiredAnalysisPasses(RequiredPasses, P); for (std::vector::iterator I = RequiredPasses.begin(), E = RequiredPasses.end(); I != E; ++I) { Pass *PRequired = *I; unsigned RDepth = 0; PMDataManager &DM = PRequired->getResolver()->getPMDataManager(); RDepth = DM.getDepth(); if (PDepth == RDepth) LastUses.push_back(PRequired); else if (PDepth > RDepth) { // Let the parent claim responsibility of last use ForcedLastUses.push_back(PRequired); } else { // Note : This feature is not yet implemented assert (0 && "Unable to handle Pass that requires lower level Analysis pass"); } } if (!LastUses.empty()) TPM->setLastUser(LastUses, P); // Take a note of analysis required and made available by this pass. // Remove the analysis not preserved by this pass removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); } // Add pass PassVector.push_back(P); } /// Populate RequiredPasses with the analysis pass that are required by /// pass P. void PMDataManager::collectRequiredAnalysisPasses(std::vector &RP, Pass *P) { AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); const std::vector &RequiredSet = AnUsage.getRequiredSet(); for (std::vector::const_iterator I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) { Pass *AnalysisPass = findAnalysisPass(*I, true); assert (AnalysisPass && "Analysis pass is not available"); RP.push_back(AnalysisPass); } const std::vector &IDs = AnUsage.getRequiredTransitiveSet(); for (std::vector::const_iterator I = IDs.begin(), E = IDs.end(); I != E; ++I) { Pass *AnalysisPass = findAnalysisPass(*I, true); assert (AnalysisPass && "Analysis pass is not available"); RP.push_back(AnalysisPass); } } // All Required analyses should be available to the pass as it runs! Here // we fill in the AnalysisImpls member of the pass so that it can // successfully use the getAnalysis() method to retrieve the // implementations it needs. // void PMDataManager::initializeAnalysisImpl(Pass *P) { AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); for (std::vector::const_iterator I = AnUsage.getRequiredSet().begin(), E = AnUsage.getRequiredSet().end(); I != E; ++I) { Pass *Impl = findAnalysisPass(*I, true); if (Impl == 0) assert(0 && "Analysis used but not available!"); AnalysisResolver_New *AR = P->getResolver(); AR->addAnalysisImplsPair(*I, Impl); } } /// Find the pass that implements Analysis AID. If desired pass is not found /// then return NULL. Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) { // Check if AvailableAnalysis map has one entry. std::map::const_iterator I = AvailableAnalysis.find(AID); if (I != AvailableAnalysis.end()) return I->second; // Search Parents through TopLevelManager if (SearchParent) return TPM->findAnalysisPass(AID); return NULL; } //===----------------------------------------------------------------------===// // NOTE: Is this the right place to define this method ? // getAnalysisToUpdate - Return an analysis result or null if it doesn't exist Pass *AnalysisResolver_New::getAnalysisToUpdate(AnalysisID ID, bool dir) const { return PM.findAnalysisPass(ID, dir); } //===----------------------------------------------------------------------===// // BasicBlockPassManager implementation /// Add pass P into PassVector and return true. If this pass is not /// manageable by this manager then return false. bool BasicBlockPassManager::addPass(Pass *P) { BasicBlockPass *BP = dynamic_cast(P); if (!BP) return false; // If this pass does not preserve anlysis that is used by other passes // managed by this manager than it is not a suiable pass for this manager. if (!manageablePass(P)) return false; addPassToManager (BP); return true; } /// Execute all of the passes scheduled for execution by invoking /// runOnBasicBlock method. Keep track of whether any of the passes modifies /// the function, and if so, return true. bool BasicBlockPassManager::runOnFunction(Function &F) { if (F.isExternal()) return false; bool Changed = doInitialization(F); initializeAnalysisInfo(); for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) for (std::vector::iterator itr = passVectorBegin(), e = passVectorEnd(); itr != e; ++itr) { Pass *P = *itr; initializeAnalysisImpl(P); BasicBlockPass *BP = dynamic_cast(P); Changed |= BP->runOnBasicBlock(*I); removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); removeDeadPasses(P); } return Changed | doFinalization(F); } // Implement doInitialization and doFinalization inline bool BasicBlockPassManager::doInitialization(Module &M) { bool Changed = false; for (std::vector::iterator itr = passVectorBegin(), e = passVectorEnd(); itr != e; ++itr) { Pass *P = *itr; BasicBlockPass *BP = dynamic_cast(P); Changed |= BP->doInitialization(M); } return Changed; } inline bool BasicBlockPassManager::doFinalization(Module &M) { bool Changed = false; for (std::vector::iterator itr = passVectorBegin(), e = passVectorEnd(); itr != e; ++itr) { Pass *P = *itr; BasicBlockPass *BP = dynamic_cast(P); Changed |= BP->doFinalization(M); } return Changed; } inline bool BasicBlockPassManager::doInitialization(Function &F) { bool Changed = false; for (std::vector::iterator itr = passVectorBegin(), e = passVectorEnd(); itr != e; ++itr) { Pass *P = *itr; BasicBlockPass *BP = dynamic_cast(P); Changed |= BP->doInitialization(F); } return Changed; } inline bool BasicBlockPassManager::doFinalization(Function &F) { bool Changed = false; for (std::vector::iterator itr = passVectorBegin(), e = passVectorEnd(); itr != e; ++itr) { Pass *P = *itr; BasicBlockPass *BP = dynamic_cast(P); Changed |= BP->doFinalization(F); } return Changed; } //===----------------------------------------------------------------------===// // FunctionPassManager implementation /// Create new Function pass manager FunctionPassManager::FunctionPassManager(ModuleProvider *P) { FPM = new FunctionPassManagerImpl_New(0); // FPM is the top level manager. FPM->setTopLevelManager(FPM); PMDataManager *PMD = dynamic_cast(FPM); AnalysisResolver_New *AR = new AnalysisResolver_New(*PMD); FPM->setResolver(AR); FPM->addPassManager(FPM); MP = P; } FunctionPassManager::~FunctionPassManager() { // Note : FPM maintains one entry in PassManagers vector. // This one entry is FPM itself. This is not ideal. One // alternative is have one additional layer between // FunctionPassManager and FunctionPassManagerImpl. // Meanwhile, to avoid going into infinte loop, first // remove FPM from its PassMangers vector. FPM->clearManagers(); delete FPM; } /// add - Add a pass to the queue of passes to run. This passes /// ownership of the Pass to the PassManager. When the /// PassManager_X is destroyed, the pass will be destroyed as well, so /// there is no need to delete the pass. (TODO delete passes.) /// This implies that all passes MUST be allocated with 'new'. void FunctionPassManager::add(Pass *P) { FPM->add(P); } /// run - Execute all of the passes scheduled for execution. Keep /// track of whether any of the passes modifies the function, and if /// so, return true. /// bool FunctionPassManager::run(Function &F) { std::string errstr; if (MP->materializeFunction(&F, &errstr)) { cerr << "Error reading bytecode file: " << errstr << "\n"; abort(); } return FPM->run(F); } /// doInitialization - Run all of the initializers for the function passes. /// bool FunctionPassManager::doInitialization() { return FPM->doInitialization(*MP->getModule()); } /// doFinalization - Run all of the initializers for the function passes. /// bool FunctionPassManager::doFinalization() { return FPM->doFinalization(*MP->getModule()); } //===----------------------------------------------------------------------===// // FunctionPassManagerImpl_New implementation /// Add pass P into the pass manager queue. If P is a BasicBlockPass then /// either use it into active basic block pass manager or create new basic /// block pass manager to handle pass P. bool FunctionPassManagerImpl_New::addPass(Pass *P) { // If P is a BasicBlockPass then use BasicBlockPassManager. if (BasicBlockPass *BP = dynamic_cast(P)) { if (!activeBBPassManager || !activeBBPassManager->addPass(BP)) { // If active manager exists then clear its analysis info. if (activeBBPassManager) activeBBPassManager->initializeAnalysisInfo(); // Create and add new manager activeBBPassManager = new BasicBlockPassManager(getDepth() + 1); // Inherit top level manager activeBBPassManager->setTopLevelManager(this->getTopLevelManager()); // Add new manager into current manager's list. addPassToManager(activeBBPassManager, false); // Add new manager into top level manager's indirect passes list PMDataManager *PMD = dynamic_cast(activeBBPassManager); assert (PMD && "Manager is not Pass Manager"); TPM->addIndirectPassManager(PMD); // Add pass into new manager. This time it must succeed. if (!activeBBPassManager->addPass(BP)) assert(0 && "Unable to add Pass"); } if (!ForcedLastUses.empty()) TPM->setLastUser(ForcedLastUses, this); return true; } FunctionPass *FP = dynamic_cast(P); if (!FP) return false; // If this pass does not preserve anlysis that is used by other passes // managed by this manager than it is not a suiable pass for this manager. if (!manageablePass(P)) return false; addPassToManager (FP); // If active manager exists then clear its analysis info. if (activeBBPassManager) { activeBBPassManager->initializeAnalysisInfo(); activeBBPassManager = NULL; } return true; } /// Execute all of the passes scheduled for execution by invoking /// runOnFunction method. Keep track of whether any of the passes modifies /// the function, and if so, return true. bool FunctionPassManagerImpl_New::runOnModule(Module &M) { bool Changed = doInitialization(M); initializeAnalysisInfo(); for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) this->runOnFunction(*I); return Changed | doFinalization(M); } /// Execute all of the passes scheduled for execution by invoking /// runOnFunction method. Keep track of whether any of the passes modifies /// the function, and if so, return true. bool FunctionPassManagerImpl_New::runOnFunction(Function &F) { bool Changed = false; if (F.isExternal()) return false; initializeAnalysisInfo(); for (std::vector::iterator itr = passVectorBegin(), e = passVectorEnd(); itr != e; ++itr) { Pass *P = *itr; initializeAnalysisImpl(P); FunctionPass *FP = dynamic_cast(P); Changed |= FP->runOnFunction(F); removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); removeDeadPasses(P); } return Changed; } inline bool FunctionPassManagerImpl_New::doInitialization(Module &M) { bool Changed = false; for (std::vector::iterator itr = passVectorBegin(), e = passVectorEnd(); itr != e; ++itr) { Pass *P = *itr; FunctionPass *FP = dynamic_cast(P); Changed |= FP->doInitialization(M); } return Changed; } inline bool FunctionPassManagerImpl_New::doFinalization(Module &M) { bool Changed = false; for (std::vector::iterator itr = passVectorBegin(), e = passVectorEnd(); itr != e; ++itr) { Pass *P = *itr; FunctionPass *FP = dynamic_cast(P); Changed |= FP->doFinalization(M); } return Changed; } // Execute all the passes managed by this top level manager. // Return true if any function is modified by a pass. bool FunctionPassManagerImpl_New::run(Function &F) { bool Changed = false; for (std::vector::iterator I = passManagersBegin(), E = passManagersEnd(); I != E; ++I) { FunctionPassManagerImpl_New *FP = dynamic_cast(*I); Changed |= FP->runOnFunction(F); } return Changed; } //===----------------------------------------------------------------------===// // ModulePassManager implementation /// Add P into pass vector if it is manageble. If P is a FunctionPass /// then use FunctionPassManagerImpl_New to manage it. Return false if P /// is not manageable by this manager. bool ModulePassManager::addPass(Pass *P) { // If P is FunctionPass then use function pass maanager. if (FunctionPass *FP = dynamic_cast(P)) { if (!activeFunctionPassManager || !activeFunctionPassManager->addPass(P)) { // If active manager exists then clear its analysis info. if (activeFunctionPassManager) activeFunctionPassManager->initializeAnalysisInfo(); // Create and add new manager activeFunctionPassManager = new FunctionPassManagerImpl_New(getDepth() + 1); // Add new manager into current manager's list addPassToManager(activeFunctionPassManager, false); // Inherit top level manager activeFunctionPassManager->setTopLevelManager(this->getTopLevelManager()); // Add new manager into top level manager's indirect passes list PMDataManager *PMD = dynamic_cast(activeFunctionPassManager); assert (PMD && "Manager is not Pass Manager"); TPM->addIndirectPassManager(PMD); // Add pass into new manager. This time it must succeed. if (!activeFunctionPassManager->addPass(FP)) assert(0 && "Unable to add pass"); } if (!ForcedLastUses.empty()) TPM->setLastUser(ForcedLastUses, this); return true; } ModulePass *MP = dynamic_cast(P); if (!MP) return false; // If this pass does not preserve anlysis that is used by other passes // managed by this manager than it is not a suiable pass for this manager. if (!manageablePass(P)) return false; addPassToManager(MP); // If active manager exists then clear its analysis info. if (activeFunctionPassManager) { activeFunctionPassManager->initializeAnalysisInfo(); activeFunctionPassManager = NULL; } return true; } /// Execute all of the passes scheduled for execution by invoking /// runOnModule method. Keep track of whether any of the passes modifies /// the module, and if so, return true. bool ModulePassManager::runOnModule(Module &M) { bool Changed = false; initializeAnalysisInfo(); for (std::vector::iterator itr = passVectorBegin(), e = passVectorEnd(); itr != e; ++itr) { Pass *P = *itr; initializeAnalysisImpl(P); ModulePass *MP = dynamic_cast(P); Changed |= MP->runOnModule(M); removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); removeDeadPasses(P); } return Changed; } //===----------------------------------------------------------------------===// // PassManagerImpl implementation // /// Add P into active pass manager or use new module pass manager to /// manage it. bool PassManagerImpl_New::addPass(Pass *P) { if (!activeManager || !activeManager->addPass(P)) { activeManager = new ModulePassManager(getDepth() + 1); // Inherit top level manager activeManager->setTopLevelManager(this->getTopLevelManager()); // This top level manager is going to manage activeManager. // Set up analysis resolver to connect them. AnalysisResolver_New *AR = new AnalysisResolver_New(*this); activeManager->setResolver(AR); addPassManager(activeManager); return activeManager->addPass(P); } return true; } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool PassManagerImpl_New::run(Module &M) { bool Changed = false; if (PassDebugging_New >= PDLStructure) dumpPasses(); for (std::vector::iterator I = passManagersBegin(), E = passManagersEnd(); I != E; ++I) { ModulePassManager *MP = dynamic_cast(*I); Changed |= MP->runOnModule(M); } return Changed; } //===----------------------------------------------------------------------===// // PassManager implementation /// Create new pass manager PassManager::PassManager() { PM = new PassManagerImpl_New(0); // PM is the top level manager PM->setTopLevelManager(PM); } PassManager::~PassManager() { delete PM; } /// add - Add a pass to the queue of passes to run. This passes ownership of /// the Pass to the PassManager. When the PassManager is destroyed, the pass /// will be destroyed as well, so there is no need to delete the pass. This /// implies that all passes MUST be allocated with 'new'. void PassManager::add(Pass *P) { PM->add(P); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool PassManager::run(Module &M) { return PM->run(M); } #endif