//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based // register allocator for LLVM. This allocator works by constructing a PBQP // problem representing the register allocation problem under consideration, // solving this using a PBQP solver, and mapping the solution back to a // register assignment. If any variables are selected for spilling then spill // code is inserted and the process repeated. // // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned // for register allocation. For more information on PBQP for register // allocation, see the following papers: // // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with // PBQP. In Proceedings of the 7th Joint Modular Languages Conference // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. // // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular // architectures. In Proceedings of the Joint Conference on Languages, // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, // NY, USA, 139-148. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/RegAllocPBQP.h" #include "RegisterCoalescer.h" #include "Spiller.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetSubtargetInfo.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "regalloc" static RegisterRegAlloc RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", createDefaultPBQPRegisterAllocator); static cl::opt PBQPCoalescing("pbqp-coalescing", cl::desc("Attempt coalescing during PBQP register allocation."), cl::init(false), cl::Hidden); #ifndef NDEBUG static cl::opt PBQPDumpGraphs("pbqp-dump-graphs", cl::desc("Dump graphs for each function/round in the compilation unit."), cl::init(false), cl::Hidden); #endif namespace { /// /// PBQP based allocators solve the register allocation problem by mapping /// register allocation problems to Partitioned Boolean Quadratic /// Programming problems. class RegAllocPBQP : public MachineFunctionPass { public: static char ID; /// Construct a PBQP register allocator. RegAllocPBQP(char *cPassID = nullptr) : MachineFunctionPass(ID), customPassID(cPassID) { initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); } /// Return the pass name. const char* getPassName() const override { return "PBQP Register Allocator"; } /// PBQP analysis usage. void getAnalysisUsage(AnalysisUsage &au) const override; /// Perform register allocation bool runOnMachineFunction(MachineFunction &MF) override; private: typedef std::map LI2NodeMap; typedef std::vector Node2LIMap; typedef std::vector AllowedSet; typedef std::vector AllowedSetMap; typedef std::pair RegPair; typedef std::map CoalesceMap; typedef std::set RegSet; char *customPassID; RegSet VRegsToAlloc, EmptyIntervalVRegs; /// \brief Finds the initial set of vreg intervals to allocate. void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); /// \brief Constructs an initial graph. void initializeGraph(PBQPRAGraph &G); /// \brief Given a solved PBQP problem maps this solution back to a register /// assignment. bool mapPBQPToRegAlloc(const PBQPRAGraph &G, const PBQP::Solution &Solution, VirtRegMap &VRM, Spiller &VRegSpiller); /// \brief Postprocessing before final spilling. Sets basic block "live in" /// variables. void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM) const; }; char RegAllocPBQP::ID = 0; /// @brief Set spill costs for each node in the PBQP reg-alloc graph. class SpillCosts : public PBQPRAConstraint { public: void apply(PBQPRAGraph &G) override { LiveIntervals &LIS = G.getMetadata().LIS; for (auto NId : G.nodeIds()) { PBQP::PBQPNum SpillCost = LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; if (SpillCost == 0.0) SpillCost = std::numeric_limits::min(); PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; G.setNodeCosts(NId, std::move(NodeCosts)); } } }; /// @brief Add interference edges between overlapping vregs. class Interference : public PBQPRAConstraint { public: void apply(PBQPRAGraph &G) override { LiveIntervals &LIS = G.getMetadata().LIS; const TargetRegisterInfo &TRI = *G.getMetadata().MF.getTarget().getSubtargetImpl()->getRegisterInfo(); for (auto NItr = G.nodeIds().begin(), NEnd = G.nodeIds().end(); NItr != NEnd; ++NItr) { auto NId = *NItr; unsigned NVReg = G.getNodeMetadata(NId).getVReg(); LiveInterval &NLI = LIS.getInterval(NVReg); for (auto MItr = std::next(NItr); MItr != NEnd; ++MItr) { auto MId = *MItr; unsigned MVReg = G.getNodeMetadata(MId).getVReg(); LiveInterval &MLI = LIS.getInterval(MVReg); if (NLI.overlaps(MLI)) { const auto &NOpts = G.getNodeMetadata(NId).getOptionRegs(); const auto &MOpts = G.getNodeMetadata(MId).getOptionRegs(); G.addEdge(NId, MId, createInterferenceMatrix(TRI, NOpts, MOpts)); } } } } private: PBQPRAGraph::RawMatrix createInterferenceMatrix( const TargetRegisterInfo &TRI, const PBQPRAGraph::NodeMetadata::OptionToRegMap &NOpts, const PBQPRAGraph::NodeMetadata::OptionToRegMap &MOpts) { PBQPRAGraph::RawMatrix M(NOpts.size() + 1, MOpts.size() + 1, 0); for (unsigned I = 0; I != NOpts.size(); ++I) { unsigned PRegN = NOpts[I]; for (unsigned J = 0; J != MOpts.size(); ++J) { unsigned PRegM = MOpts[J]; if (TRI.regsOverlap(PRegN, PRegM)) M[I + 1][J + 1] = std::numeric_limits::infinity(); } } return M; } }; class Coalescing : public PBQPRAConstraint { public: void apply(PBQPRAGraph &G) override { MachineFunction &MF = G.getMetadata().MF; MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; CoalescerPair CP(*MF.getTarget().getSubtargetImpl()->getRegisterInfo()); // Scan the machine function and add a coalescing cost whenever CoalescerPair // gives the Ok. for (const auto &MBB : MF) { for (const auto &MI : MBB) { // Skip not-coalescable or already coalesced copies. if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) continue; unsigned DstReg = CP.getDstReg(); unsigned SrcReg = CP.getSrcReg(); const float CopyFactor = 0.5; // Cost of copy relative to load. Current // value plucked randomly out of the air. PBQP::PBQPNum CBenefit = CopyFactor * LiveIntervals::getSpillWeight(false, true, &MBFI, &MI); if (CP.isPhys()) { if (!MF.getRegInfo().isAllocatable(DstReg)) continue; PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); const PBQPRAGraph::NodeMetadata::OptionToRegMap &Allowed = G.getNodeMetadata(NId).getOptionRegs(); unsigned PRegOpt = 0; while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) ++PRegOpt; if (PRegOpt < Allowed.size()) { PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); NewCosts[PRegOpt + 1] += CBenefit; G.setNodeCosts(NId, std::move(NewCosts)); } } else { PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); const PBQPRAGraph::NodeMetadata::OptionToRegMap *Allowed1 = &G.getNodeMetadata(N1Id).getOptionRegs(); const PBQPRAGraph::NodeMetadata::OptionToRegMap *Allowed2 = &G.getNodeMetadata(N2Id).getOptionRegs(); PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); if (EId == G.invalidEdgeId()) { PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, Allowed2->size() + 1, 0); addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); G.addEdge(N1Id, N2Id, std::move(Costs)); } else { if (G.getEdgeNode1Id(EId) == N2Id) { std::swap(N1Id, N2Id); std::swap(Allowed1, Allowed2); } PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); G.setEdgeCosts(EId, std::move(Costs)); } } } } } private: void addVirtRegCoalesce( PBQPRAGraph::RawMatrix &CostMat, const PBQPRAGraph::NodeMetadata::OptionToRegMap &Allowed1, const PBQPRAGraph::NodeMetadata::OptionToRegMap &Allowed2, PBQP::PBQPNum Benefit) { assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); for (unsigned I = 0; I != Allowed1.size(); ++I) { unsigned PReg1 = Allowed1[I]; for (unsigned J = 0; J != Allowed2.size(); ++J) { unsigned PReg2 = Allowed2[J]; if (PReg1 == PReg2) CostMat[I + 1][J + 1] += -Benefit; } } } }; } // End anonymous namespace. // Out-of-line destructor/anchor for PBQPRAConstraint. PBQPRAConstraint::~PBQPRAConstraint() {} void PBQPRAConstraint::anchor() {} void PBQPRAConstraintList::anchor() {} void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { au.setPreservesCFG(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); //au.addRequiredID(SplitCriticalEdgesID); if (customPassID) au.addRequiredID(*customPassID); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); au.addRequired(); au.addPreserved(); MachineFunctionPass::getAnalysisUsage(au); } void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS) { const MachineRegisterInfo &MRI = MF.getRegInfo(); // Iterate over all live ranges. for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { unsigned Reg = TargetRegisterInfo::index2VirtReg(I); if (MRI.reg_nodbg_empty(Reg)) continue; LiveInterval &LI = LIS.getInterval(Reg); // If this live interval is non-empty we will use pbqp to allocate it. // Empty intervals we allocate in a simple post-processing stage in // finalizeAlloc. if (!LI.empty()) { VRegsToAlloc.insert(LI.reg); } else { EmptyIntervalVRegs.insert(LI.reg); } } } void RegAllocPBQP::initializeGraph(PBQPRAGraph &G) { MachineFunction &MF = G.getMetadata().MF; LiveIntervals &LIS = G.getMetadata().LIS; const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); const TargetRegisterInfo &TRI = *G.getMetadata().MF.getTarget().getSubtargetImpl()->getRegisterInfo(); for (auto VReg : VRegsToAlloc) { const TargetRegisterClass *TRC = MRI.getRegClass(VReg); LiveInterval &VRegLI = LIS.getInterval(VReg); // Record any overlaps with regmask operands. BitVector RegMaskOverlaps; LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); // Compute an initial allowed set for the current vreg. std::vector VRegAllowed; ArrayRef RawPRegOrder = TRC->getRawAllocationOrder(MF); for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { unsigned PReg = RawPRegOrder[I]; if (MRI.isReserved(PReg)) continue; // vregLI crosses a regmask operand that clobbers preg. if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) continue; // vregLI overlaps fixed regunit interference. bool Interference = false; for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { Interference = true; break; } } if (Interference) continue; // preg is usable for this virtual register. VRegAllowed.push_back(PReg); } PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); G.getNodeMetadata(NId).setVReg(VReg); G.getNodeMetadata(NId).setOptionRegs(std::move(VRegAllowed)); G.getMetadata().setNodeIdForVReg(VReg, NId); } } bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, const PBQP::Solution &Solution, VirtRegMap &VRM, Spiller &VRegSpiller) { MachineFunction &MF = G.getMetadata().MF; LiveIntervals &LIS = G.getMetadata().LIS; const TargetRegisterInfo &TRI = *MF.getTarget().getSubtargetImpl()->getRegisterInfo(); (void)TRI; // Set to true if we have any spills bool AnotherRoundNeeded = false; // Clear the existing allocation. VRM.clearAllVirt(); // Iterate over the nodes mapping the PBQP solution to a register // assignment. for (auto NId : G.nodeIds()) { unsigned VReg = G.getNodeMetadata(NId).getVReg(); unsigned AllocOption = Solution.getSelection(NId); if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { unsigned PReg = G.getNodeMetadata(NId).getOptionRegs()[AllocOption - 1]; DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " << TRI.getName(PReg) << "\n"); assert(PReg != 0 && "Invalid preg selected."); VRM.assignVirt2Phys(VReg, PReg); } else { VRegsToAlloc.erase(VReg); SmallVector NewSpills; LiveRangeEdit LRE(&LIS.getInterval(VReg), NewSpills, MF, LIS, &VRM); VRegSpiller.spill(LRE); DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " << LRE.getParent().weight << ", New vregs: "); // Copy any newly inserted live intervals into the list of regs to // allocate. for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); I != E; ++I) { LiveInterval &LI = LIS.getInterval(*I); assert(!LI.empty() && "Empty spill range."); DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); VRegsToAlloc.insert(LI.reg); } DEBUG(dbgs() << ")\n"); // We need another round if spill intervals were added. AnotherRoundNeeded |= !LRE.empty(); } } return !AnotherRoundNeeded; } void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM) const { MachineRegisterInfo &MRI = MF.getRegInfo(); // First allocate registers for the empty intervals. for (RegSet::const_iterator I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); I != E; ++I) { LiveInterval &LI = LIS.getInterval(*I); unsigned PReg = MRI.getSimpleHint(LI.reg); if (PReg == 0) { const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); PReg = RC.getRawAllocationOrder(MF).front(); } VRM.assignVirt2Phys(LI.reg, PReg); } } bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { LiveIntervals &LIS = getAnalysis(); MachineBlockFrequencyInfo &MBFI = getAnalysis(); calculateSpillWeightsAndHints(LIS, MF, getAnalysis(), MBFI); VirtRegMap &VRM = getAnalysis(); std::unique_ptr VRegSpiller(createInlineSpiller(*this, MF, VRM)); MF.getRegInfo().freezeReservedRegs(MF); DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); // Allocator main loop: // // * Map current regalloc problem to a PBQP problem // * Solve the PBQP problem // * Map the solution back to a register allocation // * Spill if necessary // // This process is continued till no more spills are generated. // Find the vreg intervals in need of allocation. findVRegIntervalsToAlloc(MF, LIS); #ifndef NDEBUG const Function &F = *MF.getFunction(); std::string FullyQualifiedName = F.getParent()->getModuleIdentifier() + "." + F.getName().str(); #endif // If there are non-empty intervals allocate them using pbqp. if (!VRegsToAlloc.empty()) { const TargetSubtargetInfo &Subtarget = *MF.getTarget().getSubtargetImpl(); std::unique_ptr ConstraintsRoot = llvm::make_unique(); ConstraintsRoot->addConstraint(llvm::make_unique()); ConstraintsRoot->addConstraint(llvm::make_unique()); if (PBQPCoalescing) ConstraintsRoot->addConstraint(llvm::make_unique()); ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); bool PBQPAllocComplete = false; unsigned Round = 0; while (!PBQPAllocComplete) { DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); initializeGraph(G); ConstraintsRoot->apply(G); #ifndef NDEBUG if (PBQPDumpGraphs) { std::ostringstream RS; RS << Round; std::string GraphFileName = FullyQualifiedName + "." + RS.str() + ".pbqpgraph"; std::error_code EC; raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" << GraphFileName << "\"\n"); G.dumpToStream(OS); } #endif PBQP::Solution Solution = PBQP::RegAlloc::solve(G); PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); ++Round; } } // Finalise allocation, allocate empty ranges. finalizeAlloc(MF, LIS, VRM); VRegsToAlloc.clear(); EmptyIntervalVRegs.clear(); DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); return true; } FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { return new RegAllocPBQP(customPassID); } FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { return createPBQPRegisterAllocator(); } #undef DEBUG_TYPE