//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// // // This file defines a simple peephole instruction selector for the x86 platform // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstructionInfo.h" #include "llvm/Function.h" #include "llvm/iTerminators.h" #include "llvm/Type.h" #include "llvm/Constants.h" #include "llvm/CodeGen/MFunction.h" #include "llvm/CodeGen/MInstBuilder.h" #include "llvm/Support/InstVisitor.h" #include namespace { struct ISel : public InstVisitor { // eventually will be a FunctionPass MFunction *F; // The function we are compiling into MBasicBlock *BB; // The current basic block we are compiling unsigned CurReg; std::map RegMap; // Mapping between Val's and SSA Regs ISel(MFunction *f) : F(f), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {} /// runOnFunction - Top level implementation of instruction selection for /// the entire function. /// bool runOnFunction(Function &F) { visit(F); RegMap.clear(); return false; // We never modify the LLVM itself. } /// visitBasicBlock - This method is called when we are visiting a new basic /// block. This simply creates a new MBasicBlock to emit code into and adds /// it to the current MFunction. Subsequent visit* for instructions will be /// invoked for all instructions in the basic block. /// void visitBasicBlock(BasicBlock &LLVM_BB) { BB = new MBasicBlock(); // FIXME: Use the auto-insert form when it's available F->getBasicBlockList().push_back(BB); } // Visitation methods for various instructions. These methods simply emit // fixed X86 code for each instruction. // void visitReturnInst(ReturnInst &RI); void visitAdd(BinaryOperator &B); void visitInstruction(Instruction &I) { std::cerr << "Cannot instruction select: " << I; abort(); } /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void copyConstantToRegister(Constant *C, unsigned Reg); /// getReg - This method turns an LLVM value into a register number. This /// is guaranteed to produce the same register number for a particular value /// every time it is queried. /// unsigned getReg(Value &V) { return getReg(&V); } // Allow references unsigned getReg(Value *V) { unsigned &Reg = RegMap[V]; if (Reg == 0) Reg = CurReg++; if (Constant *C = dyn_cast(V)) copyConstantToRegister(C, Reg); // FIXME: Constants should be thrown into registers here and appended to // the end of the current basic block! return Reg; } }; } /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void ISel::copyConstantToRegister(Constant *C, unsigned R) { assert (!isa(C) && "Constant expressions not yet handled!\n"); switch (C->getType()->getPrimitiveID()) { case Type::SByteTyID: BuildMInst(BB, X86::MOVir8, R).addSImm(cast(C)->getValue()); break; case Type::UByteTyID: BuildMInst(BB, X86::MOVir8, R).addZImm(cast(C)->getValue()); break; case Type::ShortTyID: BuildMInst(BB, X86::MOVir16, R).addSImm(cast(C)->getValue()); break; case Type::UShortTyID: BuildMInst(BB, X86::MOVir16, R).addZImm(cast(C)->getValue()); break; case Type::IntTyID: BuildMInst(BB, X86::MOVir32, R).addSImm(cast(C)->getValue()); break; case Type::UIntTyID: BuildMInst(BB, X86::MOVir32, R).addZImm(cast(C)->getValue()); break; default: assert(0 && "Type not handled yet!"); } } /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, /// we have the following possibilities: /// /// ret void: No return value, simply emit a 'ret' instruction /// ret sbyte, ubyte : Extend value into EAX and return /// ret short, ushort: Extend value into EAX and return /// ret int, uint : Move value into EAX and return /// ret pointer : Move value into EAX and return /// ret long, ulong : Move value into EAX/EDX (?) and return /// ret float/double : ? Top of FP stack? XMM0? /// void ISel::visitReturnInst(ReturnInst &I) { if (I.getNumOperands() != 0) { // Not 'ret void'? // Move result into a hard register... then emit a ret visitInstruction(I); // abort } // Emit a simple 'ret' instruction... appending it to the end of the basic // block new MInstruction(BB, X86::RET); } /// 'add' instruction - Simply turn this into an x86 reg,reg add instruction. void ISel::visitAdd(BinaryOperator &B) { unsigned Op0r = getReg(B.getOperand(0)), Op1r = getReg(B.getOperand(1)); unsigned DestReg = getReg(B); switch (B.getType()->getPrimitiveSize()) { case 1: // UByte, SByte BuildMInst(BB, X86::ADDrr8, DestReg).addReg(Op0r).addReg(Op1r); break; case 2: // UShort, Short BuildMInst(BB, X86::ADDrr16, DestReg).addReg(Op0r).addReg(Op1r); break; case 4: // UInt, Int BuildMInst(BB, X86::ADDrr32, DestReg).addReg(Op0r).addReg(Op1r); break; case 8: // ULong, Long default: visitInstruction(B); // abort } } /// X86SimpleInstructionSelection - This function converts an LLVM function into /// a machine code representation is a very simple peep-hole fashion. The /// generated code sucks but the implementation is nice and simple. /// MFunction *X86SimpleInstructionSelection(Function &F) { MFunction *Result = new MFunction(); ISel(Result).runOnFunction(F); return Result; }