//===- Dominators.cpp - Dominator Calculation -----------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements simple dominator construction algorithms for finding // forward dominators. Postdominators are available in libanalysis, but are not // included in libvmcore, because it's not needed. Forward dominators are // needed to support the Verifier pass. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Assembly/Writer.h" #include "Support/DepthFirstIterator.h" #include "Support/SetOperations.h" using namespace llvm; //===----------------------------------------------------------------------===// // ImmediateDominators Implementation //===----------------------------------------------------------------------===// // // Immediate Dominators construction - This pass constructs immediate dominator // information for a flow-graph based on the algorithm described in this // document: // // A Fast Algorithm for Finding Dominators in a Flowgraph // T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. // // This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and // LINK, but it turns out that the theoretically slower O(n*log(n)) // implementation is actually faster than the "efficient" algorithm (even for // large CFGs) because the constant overheads are substantially smaller. The // lower-complexity version can be enabled with the following #define: // #define BALANCE_IDOM_TREE 0 // //===----------------------------------------------------------------------===// static RegisterAnalysis C("idom", "Immediate Dominators Construction", true); unsigned ImmediateDominators::DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N) { VInfo.Semi = ++N; VInfo.Label = V; Vertex.push_back(V); // Vertex[n] = V; //Info[V].Ancestor = 0; // Ancestor[n] = 0 //Child[V] = 0; // Child[v] = 0 VInfo.Size = 1; // Size[v] = 1 for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) { InfoRec &SuccVInfo = Info[*SI]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = V; N = DFSPass(*SI, SuccVInfo, N); } } return N; } void ImmediateDominators::Compress(BasicBlock *V, InfoRec &VInfo) { BasicBlock *VAncestor = VInfo.Ancestor; InfoRec &VAInfo = Info[VAncestor]; if (VAInfo.Ancestor == 0) return; Compress(VAncestor, VAInfo); BasicBlock *VAncestorLabel = VAInfo.Label; BasicBlock *VLabel = VInfo.Label; if (Info[VAncestorLabel].Semi < Info[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Ancestor = VAInfo.Ancestor; } BasicBlock *ImmediateDominators::Eval(BasicBlock *V) { InfoRec &VInfo = Info[V]; #if !BALANCE_IDOM_TREE // Higher-complexity but faster implementation if (VInfo.Ancestor == 0) return V; Compress(V, VInfo); return VInfo.Label; #else // Lower-complexity but slower implementation if (VInfo.Ancestor == 0) return VInfo.Label; Compress(V, VInfo); BasicBlock *VLabel = VInfo.Label; BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label; if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi) return VLabel; else return VAncestorLabel; #endif } void ImmediateDominators::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){ #if !BALANCE_IDOM_TREE // Higher-complexity but faster implementation WInfo.Ancestor = V; #else // Lower-complexity but slower implementation BasicBlock *WLabel = WInfo.Label; unsigned WLabelSemi = Info[WLabel].Semi; BasicBlock *S = W; InfoRec *SInfo = &Info[S]; BasicBlock *SChild = SInfo->Child; InfoRec *SChildInfo = &Info[SChild]; while (WLabelSemi < Info[SChildInfo->Label].Semi) { BasicBlock *SChildChild = SChildInfo->Child; if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) { SChildInfo->Ancestor = S; SInfo->Child = SChild = SChildChild; SChildInfo = &Info[SChild]; } else { SChildInfo->Size = SInfo->Size; S = SInfo->Ancestor = SChild; SInfo = SChildInfo; SChild = SChildChild; SChildInfo = &Info[SChild]; } } InfoRec &VInfo = Info[V]; SInfo->Label = WLabel; assert(V != W && "The optimization here will not work in this case!"); unsigned WSize = WInfo.Size; unsigned VSize = (VInfo.Size += WSize); if (VSize < 2*WSize) std::swap(S, VInfo.Child); while (S) { SInfo = &Info[S]; SInfo->Ancestor = V; S = SInfo->Child; } #endif } bool ImmediateDominators::runOnFunction(Function &F) { IDoms.clear(); // Reset from the last time we were run... BasicBlock *Root = &F.getEntryBlock(); Roots.clear(); Roots.push_back(Root); Vertex.push_back(0); // Step #1: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. unsigned N = 0; for (unsigned i = 0, e = Roots.size(); i != e; ++i) N = DFSPass(Roots[i], Info[Roots[i]], 0); for (unsigned i = N; i >= 2; --i) { BasicBlock *W = Vertex[i]; InfoRec &WInfo = Info[W]; // Step #2: Calculate the semidominators of all vertices for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI) if (Info.count(*PI)) { // Only if this predecessor is reachable! unsigned SemiU = Info[Eval(*PI)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } Info[Vertex[WInfo.Semi]].Bucket.push_back(W); BasicBlock *WParent = WInfo.Parent; Link(WParent, W, WInfo); // Step #3: Implicitly define the immediate dominator of vertices std::vector &WParentBucket = Info[WParent].Bucket; while (!WParentBucket.empty()) { BasicBlock *V = WParentBucket.back(); WParentBucket.pop_back(); BasicBlock *U = Eval(V); IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent; } } // Step #4: Explicitly define the immediate dominator of each vertex for (unsigned i = 2; i <= N; ++i) { BasicBlock *W = Vertex[i]; BasicBlock *&WIDom = IDoms[W]; if (WIDom != Vertex[Info[W].Semi]) WIDom = IDoms[WIDom]; } // Free temporary memory used to construct idom's Info.clear(); std::vector().swap(Vertex); return false; } void ImmediateDominatorsBase::print(std::ostream &o) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { o << " Immediate Dominator For Basic Block:"; if (I->first) WriteAsOperand(o, I->first, false); else o << " <>"; o << " is:"; if (I->second) WriteAsOperand(o, I->second, false); else o << " <>"; o << "\n"; } o << "\n"; } //===----------------------------------------------------------------------===// // DominatorSet Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis B("domset", "Dominator Set Construction", true); // dominates - Return true if A dominates B. This performs the special checks // necessary if A and B are in the same basic block. // bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const { BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return dominates(BBA, BBB); // Loop through the basic block until we find A or B. BasicBlock::iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/; // A dominates B if it is found first in the basic block... return &*I == A; } void DominatorSet::recalculate() { ImmediateDominators &ID = getAnalysis(); Doms.clear(); if (Roots.empty()) return; // Root nodes only dominate themselves. for (unsigned i = 0, e = Roots.size(); i != e; ++i) Doms[Roots[i]].insert(Roots[i]); Function *F = Roots.back()->getParent(); // Loop over all of the blocks in the function, calculating dominator sets for // each function. for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) if (BasicBlock *IDom = ID[I]) { // Get idom if block is reachable DomSetType &DS = Doms[I]; assert(DS.empty() && "Domset already filled in for this block?"); DS.insert(I); // Blocks always dominate themselves // Insert all dominators into the set... while (IDom) { // If we have already computed the dominator sets for our immediate // dominator, just use it instead of walking all the way up to the root. DomSetType &IDS = Doms[IDom]; if (!IDS.empty()) { DS.insert(IDS.begin(), IDS.end()); break; } else { DS.insert(IDom); IDom = ID[IDom]; } } } else { // Ensure that every basic block has at least an empty set of nodes. This // is important for the case when there is unreachable blocks. Doms[I]; } } // runOnFunction - This method calculates the forward dominator sets for the // specified function. // bool DominatorSet::runOnFunction(Function &F) { BasicBlock *Root = &F.getEntryBlock(); Roots.clear(); Roots.push_back(Root); assert(pred_begin(Root) == pred_end(Root) && "Root node has predecessors in function!"); recalculate(); return false; } namespace llvm { static std::ostream &operator<<(std::ostream &o, const std::set &BBs) { for (std::set::const_iterator I = BBs.begin(), E = BBs.end(); I != E; ++I) if (*I) WriteAsOperand(o, *I, false); else o << " <>"; return o; } } void DominatorSetBase::print(std::ostream &o) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { o << " DomSet For BB: "; if (I->first) WriteAsOperand(o, I->first, false); else o << " <>"; o << " is:\t" << I->second << "\n"; } } //===----------------------------------------------------------------------===// // DominatorTree Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis E("domtree", "Dominator Tree Construction", true); // DominatorTreeBase::reset - Free all of the tree node memory. // void DominatorTreeBase::reset() { for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) delete I->second; Nodes.clear(); RootNode = 0; } void DominatorTreeBase::Node::setIDom(Node *NewIDom) { assert(IDom && "No immediate dominator?"); if (IDom != NewIDom) { std::vector::iterator I = std::find(IDom->Children.begin(), IDom->Children.end(), this); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); // Switch to new dominator IDom = NewIDom; IDom->Children.push_back(this); } } DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) { Node *&BBNode = Nodes[BB]; if (BBNode) return BBNode; // Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. BasicBlock *IDom = getAnalysis()[BB]; Node *IDomNode = getNodeForBlock(IDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode return BBNode = IDomNode->addChild(new Node(BB, IDomNode)); } void DominatorTree::calculate(const ImmediateDominators &ID) { assert(Roots.size() == 1 && "DominatorTree should have 1 root block!"); BasicBlock *Root = Roots[0]; Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root... // Loop over all of the reachable blocks in the function... for (ImmediateDominators::const_iterator I = ID.begin(), E = ID.end(); I != E; ++I) { Node *&BBNode = Nodes[I->first]; if (!BBNode) { // Haven't calculated this node yet? // Get or calculate the node for the immediate dominator Node *IDomNode = getNodeForBlock(I->second); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode BBNode = IDomNode->addChild(new Node(I->first, IDomNode)); } } } static std::ostream &operator<<(std::ostream &o, const DominatorTreeBase::Node *Node) { if (Node->getBlock()) WriteAsOperand(o, Node->getBlock(), false); else o << " <>"; return o << "\n"; } static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o, unsigned Lev) { o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N; for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end(); I != E; ++I) PrintDomTree(*I, o, Lev+1); } void DominatorTreeBase::print(std::ostream &o) const { o << "=============================--------------------------------\n" << "Inorder Dominator Tree:\n"; PrintDomTree(getRootNode(), o, 1); } //===----------------------------------------------------------------------===// // DominanceFrontier Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis G("domfrontier", "Dominance Frontier Construction", true); const DominanceFrontier::DomSetType & DominanceFrontier::calculate(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getBlock(); DomSetType &S = Frontiers[BB]; // The new set to fill in... for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this successor? if (DT[*SI]->getIDom() != Node) S.insert(*SI); } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calculate(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->dominates(DT[*CDFI])) S.insert(*CDFI); } } return S; } void DominanceFrontierBase::print(std::ostream &o) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { o << " DomFrontier for BB"; if (I->first) WriteAsOperand(o, I->first, false); else o << " <>"; o << " is:\t" << I->second << "\n"; } }