//===- Reassociate.cpp - Reassociate binary expressions -------------------===// // // This pass reassociates commutative expressions in an order that is designed // to promote better constant propogation, GCSE, LICM, PRE... // // For example: 4 + (x + 5) -> x + (4 + 5) // // Note that this pass works best if left shifts have been promoted to explicit // multiplies before this pass executes. // // In the implementation of this algorithm, constants are assigned rank = 0, // function arguments are rank = 1, and other values are assigned ranks // corresponding to the reverse post order traversal of current function // (starting at 2), which effectively gives values in deep loops higher rank // than values not in loops. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "llvm/iOperators.h" #include "llvm/Type.h" #include "llvm/Pass.h" #include "llvm/Constant.h" #include "llvm/Support/CFG.h" #include "Support/PostOrderIterator.h" #include "Support/StatisticReporter.h" static Statistic<> NumLinear ("reassociate\t- Number of insts linearized"); static Statistic<> NumChanged("reassociate\t- Number of insts reassociated"); static Statistic<> NumSwapped("reassociate\t- Number of insts with operands swapped"); namespace { class Reassociate : public FunctionPass { std::map RankMap; public: bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); } private: void BuildRankMap(Function &F); unsigned getRank(Value *V); bool ReassociateExpr(BinaryOperator *I); bool ReassociateBB(BasicBlock *BB); }; RegisterOpt X("reassociate", "Reassociate expressions"); } Pass *createReassociatePass() { return new Reassociate(); } void Reassociate::BuildRankMap(Function &F) { unsigned i = 1; ReversePostOrderTraversal RPOT(&F); for (ReversePostOrderTraversal::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) RankMap[*I] = ++i; } unsigned Reassociate::getRank(Value *V) { if (isa(V)) return 1; // Function argument... if (Instruction *I = dyn_cast(V)) { // If this is an expression, return the MAX(rank(LHS), rank(RHS)) so that we // can reassociate expressions for code motion! Since we do not recurse for // PHI nodes, we cannot have infinite recursion here, because there cannot // be loops in the value graph (except for PHI nodes). // if (I->getOpcode() == Instruction::PHINode || I->getOpcode() == Instruction::Alloca || I->getOpcode() == Instruction::Malloc || isa(I) || I->hasSideEffects()) return RankMap[I->getParent()]; unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) Rank = std::max(Rank, getRank(I->getOperand(i))); return Rank; } // Otherwise it's a global or constant, rank 0. return 0; } // isCommutativeOperator - Return true if the specified instruction is // commutative and associative. If the instruction is not commutative and // associative, we can not reorder its operands! // static inline BinaryOperator *isCommutativeOperator(Instruction *I) { // Floating point operations do not commute! if (I->getType()->isFloatingPoint()) return 0; if (I->getOpcode() == Instruction::Add || I->getOpcode() == Instruction::Mul || I->getOpcode() == Instruction::And || I->getOpcode() == Instruction::Or || I->getOpcode() == Instruction::Xor) return cast(I); return 0; } bool Reassociate::ReassociateExpr(BinaryOperator *I) { Value *LHS = I->getOperand(0); Value *RHS = I->getOperand(1); unsigned LHSRank = getRank(LHS); unsigned RHSRank = getRank(RHS); bool Changed = false; // Make sure the LHS of the operand always has the greater rank... if (LHSRank < RHSRank) { I->swapOperands(); std::swap(LHS, RHS); std::swap(LHSRank, RHSRank); Changed = true; ++NumSwapped; DEBUG(std::cerr << "Transposed: " << I << " Result BB: " << I->getParent()); } // If the LHS is the same operator as the current one is, and if we are the // only expression using it... // if (BinaryOperator *LHSI = dyn_cast(LHS)) if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) { // If the rank of our current RHS is less than the rank of the LHS's LHS, // then we reassociate the two instructions... if (RHSRank < getRank(LHSI->getOperand(0))) { unsigned TakeOp = 0; if (BinaryOperator *IOp = dyn_cast(LHSI->getOperand(0))) if (IOp->getOpcode() == LHSI->getOpcode()) TakeOp = 1; // Hoist out non-tree portion // Convert ((a + 12) + 10) into (a + (12 + 10)) I->setOperand(0, LHSI->getOperand(TakeOp)); LHSI->setOperand(TakeOp, RHS); I->setOperand(1, LHSI); ++NumChanged; DEBUG(std::cerr << "Reassociated: " << I << " Result BB: " << I->getParent()); // Since we modified the RHS instruction, make sure that we recheck it. ReassociateExpr(LHSI); return true; } } return Changed; } // NegateValue - Insert instructions before the instruction pointed to by BI, // that computes the negative version of the value specified. The negative // version of the value is returned, and BI is left pointing at the instruction // that should be processed next by the reassociation pass. // static Value *NegateValue(Value *V, BasicBlock *BB, BasicBlock::iterator &BI) { // We are trying to expose opportunity for reassociation. One of the things // that we want to do to achieve this is to push a negation as deep into an // expression chain as possible, to expose the add instructions. In practice, // this means that we turn this: // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate // the constants. We assume that instcombine will clean up the mess later if // we introduce tons of unneccesary negation instructions... // if (Instruction *I = dyn_cast(V)) if (I->getOpcode() == Instruction::Add && I->use_size() == 1) { Value *RHS = NegateValue(I->getOperand(1), BB, BI); Value *LHS = NegateValue(I->getOperand(0), BB, BI); // We must actually insert a new add instruction here, because the neg // instructions do not dominate the old add instruction in general. By // adding it now, we are assured that the neg instructions we just // inserted dominate the instruction we are about to insert after them. // return BinaryOperator::create(Instruction::Add, LHS, RHS, I->getName()+".neg", cast(RHS)->getNext()); } // Insert a 'neg' instruction that subtracts the value from zero to get the // negation. // Instruction *Neg = BinaryOperator::create(Instruction::Sub, Constant::getNullValue(V->getType()), V, V->getName()+".neg", BI); --BI; return Neg; } bool Reassociate::ReassociateBB(BasicBlock *BB) { bool Changed = false; for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) { // If this instruction is a commutative binary operator, and the ranks of // the two operands are sorted incorrectly, fix it now. // if (BinaryOperator *I = isCommutativeOperator(BI)) { if (!I->use_empty()) { // Make sure that we don't have a tree-shaped computation. If we do, // linearize it. Convert (A+B)+(C+D) into ((A+B)+C)+D // Instruction *LHSI = dyn_cast(I->getOperand(0)); Instruction *RHSI = dyn_cast(I->getOperand(1)); if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() && RHSI && (int)RHSI->getOpcode() == I->getOpcode() && RHSI->use_size() == 1) { // Insert a new temporary instruction... (A+B)+C BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI, RHSI->getOperand(0), RHSI->getName()+".ra", BI); BI = Tmp; I->setOperand(0, Tmp); I->setOperand(1, RHSI->getOperand(1)); // Process the temporary instruction for reassociation now. I = Tmp; ++NumLinear; Changed = true; DEBUG(std::cerr << "Linearized: " << I << " Result BB: " << BB); } // Make sure that this expression is correctly reassociated with respect // to it's used values... // Changed |= ReassociateExpr(I); } } else if (BI->getOpcode() == Instruction::Sub && BI->getOperand(0) != Constant::getNullValue(BI->getType())) { // Convert a subtract into an add and a neg instruction... so that sub // instructions can be commuted with other add instructions... // Instruction *New = BinaryOperator::create(Instruction::Add, BI->getOperand(0), BI->getOperand(1), BI->getName()); Value *NegatedValue = BI->getOperand(1); // Everyone now refers to the add instruction... BI->replaceAllUsesWith(New); // Put the new add in the place of the subtract... deleting the subtract BI = BB->getInstList().erase(BI); BI = ++BB->getInstList().insert(BI, New); // Calculate the negative value of Operand 1 of the sub instruction... // and set it as the RHS of the add instruction we just made... New->setOperand(1, NegateValue(NegatedValue, BB, BI)); --BI; Changed = true; DEBUG(std::cerr << "Negated: " << New << " Result BB: " << BB); } } return Changed; } bool Reassociate::runOnFunction(Function &F) { // Recalculate the rank map for F BuildRankMap(F); bool Changed = false; for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) Changed |= ReassociateBB(FI); // We are done with the rank map... RankMap.clear(); return Changed; }