// llvm/Target/TargetTransformImpl.cpp - Target Loop Trans Info ---*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetTransformImpl.h" #include "llvm/Target/TargetLowering.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // // Calls used by scalar transformations. // //===----------------------------------------------------------------------===// bool ScalarTargetTransformImpl::isLegalAddImmediate(int64_t imm) const { return TLI->isLegalAddImmediate(imm); } bool ScalarTargetTransformImpl::isLegalICmpImmediate(int64_t imm) const { return TLI->isLegalICmpImmediate(imm); } bool ScalarTargetTransformImpl::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale) const { AddrMode AM; AM.BaseGV = BaseGV; AM.BaseOffs = BaseOffset; AM.HasBaseReg = HasBaseReg; AM.Scale = Scale; return TLI->isLegalAddressingMode(AM, Ty); } bool ScalarTargetTransformImpl::isTruncateFree(Type *Ty1, Type *Ty2) const { return TLI->isTruncateFree(Ty1, Ty2); } bool ScalarTargetTransformImpl::isTypeLegal(Type *Ty) const { EVT T = TLI->getValueType(Ty); return TLI->isTypeLegal(T); } unsigned ScalarTargetTransformImpl::getJumpBufAlignment() const { return TLI->getJumpBufAlignment(); } unsigned ScalarTargetTransformImpl::getJumpBufSize() const { return TLI->getJumpBufSize(); } bool ScalarTargetTransformImpl::shouldBuildLookupTables() const { return TLI->supportJumpTables() && (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); } //===----------------------------------------------------------------------===// // // Calls used by the vectorizers. // //===----------------------------------------------------------------------===// int VectorTargetTransformImpl::InstructionOpcodeToISD(unsigned Opcode) const { enum InstructionOpcodes { #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM #include "llvm/IR/Instruction.def" }; switch (static_cast(Opcode)) { case Ret: return 0; case Br: return 0; case Switch: return 0; case IndirectBr: return 0; case Invoke: return 0; case Resume: return 0; case Unreachable: return 0; case Add: return ISD::ADD; case FAdd: return ISD::FADD; case Sub: return ISD::SUB; case FSub: return ISD::FSUB; case Mul: return ISD::MUL; case FMul: return ISD::FMUL; case UDiv: return ISD::UDIV; case SDiv: return ISD::UDIV; case FDiv: return ISD::FDIV; case URem: return ISD::UREM; case SRem: return ISD::SREM; case FRem: return ISD::FREM; case Shl: return ISD::SHL; case LShr: return ISD::SRL; case AShr: return ISD::SRA; case And: return ISD::AND; case Or: return ISD::OR; case Xor: return ISD::XOR; case Alloca: return 0; case Load: return ISD::LOAD; case Store: return ISD::STORE; case GetElementPtr: return 0; case Fence: return 0; case AtomicCmpXchg: return 0; case AtomicRMW: return 0; case Trunc: return ISD::TRUNCATE; case ZExt: return ISD::ZERO_EXTEND; case SExt: return ISD::SIGN_EXTEND; case FPToUI: return ISD::FP_TO_UINT; case FPToSI: return ISD::FP_TO_SINT; case UIToFP: return ISD::UINT_TO_FP; case SIToFP: return ISD::SINT_TO_FP; case FPTrunc: return ISD::FP_ROUND; case FPExt: return ISD::FP_EXTEND; case PtrToInt: return ISD::BITCAST; case IntToPtr: return ISD::BITCAST; case BitCast: return ISD::BITCAST; case ICmp: return ISD::SETCC; case FCmp: return ISD::SETCC; case PHI: return 0; case Call: return 0; case Select: return ISD::SELECT; case UserOp1: return 0; case UserOp2: return 0; case VAArg: return 0; case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; case InsertElement: return ISD::INSERT_VECTOR_ELT; case ShuffleVector: return ISD::VECTOR_SHUFFLE; case ExtractValue: return ISD::MERGE_VALUES; case InsertValue: return ISD::MERGE_VALUES; case LandingPad: return 0; } llvm_unreachable("Unknown instruction type encountered!"); } std::pair VectorTargetTransformImpl::getTypeLegalizationCost(Type *Ty) const { LLVMContext &C = Ty->getContext(); EVT MTy = TLI->getValueType(Ty); unsigned Cost = 1; // We keep legalizing the type until we find a legal kind. We assume that // the only operation that costs anything is the split. After splitting // we need to handle two types. while (true) { TargetLowering::LegalizeKind LK = TLI->getTypeConversion(C, MTy); if (LK.first == TargetLowering::TypeLegal) return std::make_pair(Cost, MTy.getSimpleVT()); if (LK.first == TargetLowering::TypeSplitVector || LK.first == TargetLowering::TypeExpandInteger) Cost *= 2; // Keep legalizing the type. MTy = LK.second; } } unsigned VectorTargetTransformImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { assert (Ty->isVectorTy() && "Can only scalarize vectors"); unsigned Cost = 0; for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { if (Insert) Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i); if (Extract) Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i); } return Cost; } unsigned VectorTargetTransformImpl::getNumberOfRegisters(bool Vector) const { return 1; } unsigned VectorTargetTransformImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const { // Check if any of the operands are vector operands. int ISD = InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); std::pair LT = getTypeLegalizationCost(Ty); if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { // The operation is legal. Assume it costs 1. // If the type is split to multiple registers, assume that thre is some // overhead to this. // TODO: Once we have extract/insert subvector cost we need to use them. if (LT.first > 1) return LT.first * 2; return LT.first * 1; } if (!TLI->isOperationExpand(ISD, LT.second)) { // If the operation is custom lowered then assume // thare the code is twice as expensive. return LT.first * 2; } // Else, assume that we need to scalarize this op. if (Ty->isVectorTy()) { unsigned Num = Ty->getVectorNumElements(); unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType()); // return the cost of multiple scalar invocation plus the cost of inserting // and extracting the values. return getScalarizationOverhead(Ty, true, true) + Num * Cost; } // We don't know anything about this scalar instruction. return 1; } unsigned VectorTargetTransformImpl::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) const { return 1; } unsigned VectorTargetTransformImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { int ISD = InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); std::pair SrcLT = getTypeLegalizationCost(Src); std::pair DstLT = getTypeLegalizationCost(Dst); // Handle scalar conversions. if (!Src->isVectorTy() && !Dst->isVectorTy()) { // Scalar bitcasts are usually free. if (Opcode == Instruction::BitCast) return 0; if (Opcode == Instruction::Trunc && TLI->isTruncateFree(SrcLT.second, DstLT.second)) return 0; if (Opcode == Instruction::ZExt && TLI->isZExtFree(SrcLT.second, DstLT.second)) return 0; // Just check the op cost. If the operation is legal then assume it costs 1. if (!TLI->isOperationExpand(ISD, DstLT.second)) return 1; // Assume that illegal scalar instruction are expensive. return 4; } // Check vector-to-vector casts. if (Dst->isVectorTy() && Src->isVectorTy()) { // If the cast is between same-sized registers, then the check is simple. if (SrcLT.first == DstLT.first && SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { // Bitcast between types that are legalized to the same type are free. if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) return 0; // Assume that Zext is done using AND. if (Opcode == Instruction::ZExt) return 1; // Assume that sext is done using SHL and SRA. if (Opcode == Instruction::SExt) return 2; // Just check the op cost. If the operation is legal then assume it costs // 1 and multiply by the type-legalization overhead. if (!TLI->isOperationExpand(ISD, DstLT.second)) return SrcLT.first * 1; } // If we are converting vectors and the operation is illegal, or // if the vectors are legalized to different types, estimate the // scalarization costs. unsigned Num = Dst->getVectorNumElements(); unsigned Cost = getCastInstrCost(Opcode, Dst->getScalarType(), Src->getScalarType()); // Return the cost of multiple scalar invocation plus the cost of // inserting and extracting the values. return getScalarizationOverhead(Dst, true, true) + Num * Cost; } // We already handled vector-to-vector and scalar-to-scalar conversions. This // is where we handle bitcast between vectors and scalars. We need to assume // that the conversion is scalarized in one way or another. if (Opcode == Instruction::BitCast) // Illegal bitcasts are done by storing and loading from a stack slot. return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) + (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0); llvm_unreachable("Unhandled cast"); } unsigned VectorTargetTransformImpl::getCFInstrCost(unsigned Opcode) const { // Branches are assumed to be predicted. return 0; } unsigned VectorTargetTransformImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const { int ISD = InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // Selects on vectors are actually vector selects. if (ISD == ISD::SELECT) { assert(CondTy && "CondTy must exist"); if (CondTy->isVectorTy()) ISD = ISD::VSELECT; } std::pair LT = getTypeLegalizationCost(ValTy); if (!TLI->isOperationExpand(ISD, LT.second)) { // The operation is legal. Assume it costs 1. Multiply // by the type-legalization overhead. return LT.first * 1; } // Otherwise, assume that the cast is scalarized. if (ValTy->isVectorTy()) { unsigned Num = ValTy->getVectorNumElements(); if (CondTy) CondTy = CondTy->getScalarType(); unsigned Cost = getCmpSelInstrCost(Opcode, ValTy->getScalarType(), CondTy); // Return the cost of multiple scalar invocation plus the cost of inserting // and extracting the values. return getScalarizationOverhead(ValTy, true, false) + Num * Cost; } // Unknown scalar opcode. return 1; } unsigned VectorTargetTransformImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const { return 1; } unsigned VectorTargetTransformImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const { assert(!Src->isVoidTy() && "Invalid type"); std::pair LT = getTypeLegalizationCost(Src); // Assume that all loads of legal types cost 1. return LT.first; } unsigned VectorTargetTransformImpl::getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy, ArrayRef Tys) const { // assume that we need to scalarize this intrinsic. unsigned ScalarizationCost = 0; unsigned ScalarCalls = 1; if (RetTy->isVectorTy()) { ScalarizationCost = getScalarizationOverhead(RetTy, true, false); ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); } for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { if (Tys[i]->isVectorTy()) { ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); } } return ScalarCalls + ScalarizationCost; } unsigned VectorTargetTransformImpl::getNumberOfParts(Type *Tp) const { std::pair LT = getTypeLegalizationCost(Tp); return LT.first; }