//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the generic AliasAnalysis interface, which is used as the // common interface used by all clients of alias analysis information, and // implemented by all alias analysis implementations. Mod/Ref information is // also captured by this interface. // // Implementations of this interface must implement the various virtual methods, // which automatically provides functionality for the entire suite of client // APIs. // // This API identifies memory regions with the Location class. The pointer // component specifies the base memory address of the region. The Size specifies // the maximum size (in address units) of the memory region, or UnknownSize if // the size is not known. The TBAA tag identifies the "type" of the memory // reference; see the TypeBasedAliasAnalysis class for details. // // Some non-obvious details include: // - Pointers that point to two completely different objects in memory never // alias, regardless of the value of the Size component. // - NoAlias doesn't imply inequal pointers. The most obvious example of this // is two pointers to constant memory. Even if they are equal, constant // memory is never stored to, so there will never be any dependencies. // In this and other situations, the pointers may be both NoAlias and // MustAlias at the same time. The current API can only return one result, // though this is rarely a problem in practice. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H #define LLVM_ANALYSIS_ALIAS_ANALYSIS_H #include "llvm/ADT/DenseMap.h" #include "llvm/Support/CallSite.h" namespace llvm { class LoadInst; class StoreInst; class VAArgInst; class DataLayout; class TargetLibraryInfo; class Pass; class AnalysisUsage; class MemTransferInst; class MemIntrinsic; class DominatorTree; class AliasAnalysis { protected: const DataLayout *TD; const TargetLibraryInfo *TLI; private: AliasAnalysis *AA; // Previous Alias Analysis to chain to. protected: /// InitializeAliasAnalysis - Subclasses must call this method to initialize /// the AliasAnalysis interface before any other methods are called. This is /// typically called by the run* methods of these subclasses. This may be /// called multiple times. /// void InitializeAliasAnalysis(Pass *P); /// getAnalysisUsage - All alias analysis implementations should invoke this /// directly (using AliasAnalysis::getAnalysisUsage(AU)). virtual void getAnalysisUsage(AnalysisUsage &AU) const; public: static char ID; // Class identification, replacement for typeinfo AliasAnalysis() : TD(0), TLI(0), AA(0) {} virtual ~AliasAnalysis(); // We want to be subclassed /// UnknownSize - This is a special value which can be used with the /// size arguments in alias queries to indicate that the caller does not /// know the sizes of the potential memory references. static uint64_t const UnknownSize = ~UINT64_C(0); /// getDataLayout - Return a pointer to the current DataLayout object, or /// null if no DataLayout object is available. /// const DataLayout *getDataLayout() const { return TD; } /// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo /// object, or null if no TargetLibraryInfo object is available. /// const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; } /// getTypeStoreSize - Return the DataLayout store size for the given type, /// if known, or a conservative value otherwise. /// uint64_t getTypeStoreSize(Type *Ty); //===--------------------------------------------------------------------===// /// Alias Queries... /// /// Location - A description of a memory location. struct Location { /// Ptr - The address of the start of the location. const Value *Ptr; /// Size - The maximum size of the location, in address-units, or /// UnknownSize if the size is not known. Note that an unknown size does /// not mean the pointer aliases the entire virtual address space, because /// there are restrictions on stepping out of one object and into another. /// See http://llvm.org/docs/LangRef.html#pointeraliasing uint64_t Size; /// TBAATag - The metadata node which describes the TBAA type of /// the location, or null if there is no known unique tag. const MDNode *TBAATag; explicit Location(const Value *P = 0, uint64_t S = UnknownSize, const MDNode *N = 0) : Ptr(P), Size(S), TBAATag(N) {} Location getWithNewPtr(const Value *NewPtr) const { Location Copy(*this); Copy.Ptr = NewPtr; return Copy; } Location getWithNewSize(uint64_t NewSize) const { Location Copy(*this); Copy.Size = NewSize; return Copy; } Location getWithoutTBAATag() const { Location Copy(*this); Copy.TBAATag = 0; return Copy; } }; /// getLocation - Fill in Loc with information about the memory reference by /// the given instruction. Location getLocation(const LoadInst *LI); Location getLocation(const StoreInst *SI); Location getLocation(const VAArgInst *VI); Location getLocation(const AtomicCmpXchgInst *CXI); Location getLocation(const AtomicRMWInst *RMWI); static Location getLocationForSource(const MemTransferInst *MTI); static Location getLocationForDest(const MemIntrinsic *MI); /// Alias analysis result - Either we know for sure that it does not alias, we /// know for sure it must alias, or we don't know anything: The two pointers /// _might_ alias. This enum is designed so you can do things like: /// if (AA.alias(P1, P2)) { ... } /// to check to see if two pointers might alias. /// /// See docs/AliasAnalysis.html for more information on the specific meanings /// of these values. /// enum AliasResult { NoAlias = 0, ///< No dependencies. MayAlias, ///< Anything goes. PartialAlias, ///< Pointers differ, but pointees overlap. MustAlias ///< Pointers are equal. }; /// alias - The main low level interface to the alias analysis implementation. /// Returns an AliasResult indicating whether the two pointers are aliased to /// each other. This is the interface that must be implemented by specific /// alias analysis implementations. virtual AliasResult alias(const Location &LocA, const Location &LocB); /// alias - A convenience wrapper. AliasResult alias(const Value *V1, uint64_t V1Size, const Value *V2, uint64_t V2Size) { return alias(Location(V1, V1Size), Location(V2, V2Size)); } /// alias - A convenience wrapper. AliasResult alias(const Value *V1, const Value *V2) { return alias(V1, UnknownSize, V2, UnknownSize); } /// isNoAlias - A trivial helper function to check to see if the specified /// pointers are no-alias. bool isNoAlias(const Location &LocA, const Location &LocB) { return alias(LocA, LocB) == NoAlias; } /// isNoAlias - A convenience wrapper. bool isNoAlias(const Value *V1, uint64_t V1Size, const Value *V2, uint64_t V2Size) { return isNoAlias(Location(V1, V1Size), Location(V2, V2Size)); } /// isNoAlias - A convenience wrapper. bool isNoAlias(const Value *V1, const Value *V2) { return isNoAlias(Location(V1), Location(V2)); } /// isMustAlias - A convenience wrapper. bool isMustAlias(const Location &LocA, const Location &LocB) { return alias(LocA, LocB) == MustAlias; } /// isMustAlias - A convenience wrapper. bool isMustAlias(const Value *V1, const Value *V2) { return alias(V1, 1, V2, 1) == MustAlias; } /// pointsToConstantMemory - If the specified memory location is /// known to be constant, return true. If OrLocal is true and the /// specified memory location is known to be "local" (derived from /// an alloca), return true. Otherwise return false. virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal = false); /// pointsToConstantMemory - A convenient wrapper. bool pointsToConstantMemory(const Value *P, bool OrLocal = false) { return pointsToConstantMemory(Location(P), OrLocal); } //===--------------------------------------------------------------------===// /// Simple mod/ref information... /// /// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are /// bits which may be or'd together. /// enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 }; /// These values define additional bits used to define the /// ModRefBehavior values. enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees }; /// ModRefBehavior - Summary of how a function affects memory in the program. /// Loads from constant globals are not considered memory accesses for this /// interface. Also, functions may freely modify stack space local to their /// invocation without having to report it through these interfaces. enum ModRefBehavior { /// DoesNotAccessMemory - This function does not perform any non-local loads /// or stores to memory. /// /// This property corresponds to the GCC 'const' attribute. /// This property corresponds to the LLVM IR 'readnone' attribute. /// This property corresponds to the IntrNoMem LLVM intrinsic flag. DoesNotAccessMemory = Nowhere | NoModRef, /// OnlyReadsArgumentPointees - The only memory references in this function /// (if it has any) are non-volatile loads from objects pointed to by its /// pointer-typed arguments, with arbitrary offsets. /// /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag. OnlyReadsArgumentPointees = ArgumentPointees | Ref, /// OnlyAccessesArgumentPointees - The only memory references in this /// function (if it has any) are non-volatile loads and stores from objects /// pointed to by its pointer-typed arguments, with arbitrary offsets. /// /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag. OnlyAccessesArgumentPointees = ArgumentPointees | ModRef, /// OnlyReadsMemory - This function does not perform any non-local stores or /// volatile loads, but may read from any memory location. /// /// This property corresponds to the GCC 'pure' attribute. /// This property corresponds to the LLVM IR 'readonly' attribute. /// This property corresponds to the IntrReadMem LLVM intrinsic flag. OnlyReadsMemory = Anywhere | Ref, /// UnknownModRefBehavior - This indicates that the function could not be /// classified into one of the behaviors above. UnknownModRefBehavior = Anywhere | ModRef }; /// getModRefBehavior - Return the behavior when calling the given call site. virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); /// getModRefBehavior - Return the behavior when calling the given function. /// For use when the call site is not known. virtual ModRefBehavior getModRefBehavior(const Function *F); /// doesNotAccessMemory - If the specified call is known to never read or /// write memory, return true. If the call only reads from known-constant /// memory, it is also legal to return true. Calls that unwind the stack /// are legal for this predicate. /// /// Many optimizations (such as CSE and LICM) can be performed on such calls /// without worrying about aliasing properties, and many calls have this /// property (e.g. calls to 'sin' and 'cos'). /// /// This property corresponds to the GCC 'const' attribute. /// bool doesNotAccessMemory(ImmutableCallSite CS) { return getModRefBehavior(CS) == DoesNotAccessMemory; } /// doesNotAccessMemory - If the specified function is known to never read or /// write memory, return true. For use when the call site is not known. /// bool doesNotAccessMemory(const Function *F) { return getModRefBehavior(F) == DoesNotAccessMemory; } /// onlyReadsMemory - If the specified call is known to only read from /// non-volatile memory (or not access memory at all), return true. Calls /// that unwind the stack are legal for this predicate. /// /// This property allows many common optimizations to be performed in the /// absence of interfering store instructions, such as CSE of strlen calls. /// /// This property corresponds to the GCC 'pure' attribute. /// bool onlyReadsMemory(ImmutableCallSite CS) { return onlyReadsMemory(getModRefBehavior(CS)); } /// onlyReadsMemory - If the specified function is known to only read from /// non-volatile memory (or not access memory at all), return true. For use /// when the call site is not known. /// bool onlyReadsMemory(const Function *F) { return onlyReadsMemory(getModRefBehavior(F)); } /// onlyReadsMemory - Return true if functions with the specified behavior are /// known to only read from non-volatile memory (or not access memory at all). /// static bool onlyReadsMemory(ModRefBehavior MRB) { return !(MRB & Mod); } /// onlyAccessesArgPointees - Return true if functions with the specified /// behavior are known to read and write at most from objects pointed to by /// their pointer-typed arguments (with arbitrary offsets). /// static bool onlyAccessesArgPointees(ModRefBehavior MRB) { return !(MRB & Anywhere & ~ArgumentPointees); } /// doesAccessArgPointees - Return true if functions with the specified /// behavior are known to potentially read or write from objects pointed /// to be their pointer-typed arguments (with arbitrary offsets). /// static bool doesAccessArgPointees(ModRefBehavior MRB) { return (MRB & ModRef) && (MRB & ArgumentPointees); } /// getModRefInfo - Return information about whether or not an instruction may /// read or write the specified memory location. An instruction /// that doesn't read or write memory may be trivially LICM'd for example. ModRefResult getModRefInfo(const Instruction *I, const Location &Loc) { switch (I->getOpcode()) { case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc); case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc); case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc); case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc); case Instruction::AtomicCmpXchg: return getModRefInfo((const AtomicCmpXchgInst*)I, Loc); case Instruction::AtomicRMW: return getModRefInfo((const AtomicRMWInst*)I, Loc); case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc); case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc); default: return NoModRef; } } /// getModRefInfo - A convenience wrapper. ModRefResult getModRefInfo(const Instruction *I, const Value *P, uint64_t Size) { return getModRefInfo(I, Location(P, Size)); } /// getModRefInfo (for call sites) - Return information about whether /// a particular call site modifies or reads the specified memory location. virtual ModRefResult getModRefInfo(ImmutableCallSite CS, const Location &Loc); /// getModRefInfo (for call sites) - A convenience wrapper. ModRefResult getModRefInfo(ImmutableCallSite CS, const Value *P, uint64_t Size) { return getModRefInfo(CS, Location(P, Size)); } /// getModRefInfo (for calls) - Return information about whether /// a particular call modifies or reads the specified memory location. ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) { return getModRefInfo(ImmutableCallSite(C), Loc); } /// getModRefInfo (for calls) - A convenience wrapper. ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) { return getModRefInfo(C, Location(P, Size)); } /// getModRefInfo (for invokes) - Return information about whether /// a particular invoke modifies or reads the specified memory location. ModRefResult getModRefInfo(const InvokeInst *I, const Location &Loc) { return getModRefInfo(ImmutableCallSite(I), Loc); } /// getModRefInfo (for invokes) - A convenience wrapper. ModRefResult getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) { return getModRefInfo(I, Location(P, Size)); } /// getModRefInfo (for loads) - Return information about whether /// a particular load modifies or reads the specified memory location. ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc); /// getModRefInfo (for loads) - A convenience wrapper. ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) { return getModRefInfo(L, Location(P, Size)); } /// getModRefInfo (for stores) - Return information about whether /// a particular store modifies or reads the specified memory location. ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc); /// getModRefInfo (for stores) - A convenience wrapper. ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){ return getModRefInfo(S, Location(P, Size)); } /// getModRefInfo (for fences) - Return information about whether /// a particular store modifies or reads the specified memory location. ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) { // Conservatively correct. (We could possibly be a bit smarter if // Loc is a alloca that doesn't escape.) return ModRef; } /// getModRefInfo (for fences) - A convenience wrapper. ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){ return getModRefInfo(S, Location(P, Size)); } /// getModRefInfo (for cmpxchges) - Return information about whether /// a particular cmpxchg modifies or reads the specified memory location. ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc); /// getModRefInfo (for cmpxchges) - A convenience wrapper. ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P, unsigned Size) { return getModRefInfo(CX, Location(P, Size)); } /// getModRefInfo (for atomicrmws) - Return information about whether /// a particular atomicrmw modifies or reads the specified memory location. ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc); /// getModRefInfo (for atomicrmws) - A convenience wrapper. ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Value *P, unsigned Size) { return getModRefInfo(RMW, Location(P, Size)); } /// getModRefInfo (for va_args) - Return information about whether /// a particular va_arg modifies or reads the specified memory location. ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc); /// getModRefInfo (for va_args) - A convenience wrapper. ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){ return getModRefInfo(I, Location(P, Size)); } /// getModRefInfo - Return information about whether two call sites may refer /// to the same set of memory locations. See /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo /// for details. virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2); /// callCapturesBefore - Return information about whether a particular call /// site modifies or reads the specified memory location. ModRefResult callCapturesBefore(const Instruction *I, const AliasAnalysis::Location &MemLoc, DominatorTree *DT); /// callCapturesBefore - A convenience wrapper. ModRefResult callCapturesBefore(const Instruction *I, const Value *P, uint64_t Size, DominatorTree *DT) { return callCapturesBefore(I, Location(P, Size), DT); } //===--------------------------------------------------------------------===// /// Higher level methods for querying mod/ref information. /// /// canBasicBlockModify - Return true if it is possible for execution of the /// specified basic block to modify the value pointed to by Ptr. bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc); /// canBasicBlockModify - A convenience wrapper. bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){ return canBasicBlockModify(BB, Location(P, Size)); } /// canInstructionRangeModify - Return true if it is possible for the /// execution of the specified instructions to modify the value pointed to by /// Ptr. The instructions to consider are all of the instructions in the /// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block. bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2, const Location &Loc); /// canInstructionRangeModify - A convenience wrapper. bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2, const Value *Ptr, uint64_t Size) { return canInstructionRangeModify(I1, I2, Location(Ptr, Size)); } //===--------------------------------------------------------------------===// /// Methods that clients should call when they transform the program to allow /// alias analyses to update their internal data structures. Note that these /// methods may be called on any instruction, regardless of whether or not /// they have pointer-analysis implications. /// /// deleteValue - This method should be called whenever an LLVM Value is /// deleted from the program, for example when an instruction is found to be /// redundant and is eliminated. /// virtual void deleteValue(Value *V); /// copyValue - This method should be used whenever a preexisting value in the /// program is copied or cloned, introducing a new value. Note that analysis /// implementations should tolerate clients that use this method to introduce /// the same value multiple times: if the analysis already knows about a /// value, it should ignore the request. /// virtual void copyValue(Value *From, Value *To); /// addEscapingUse - This method should be used whenever an escaping use is /// added to a pointer value. Analysis implementations may either return /// conservative responses for that value in the future, or may recompute /// some or all internal state to continue providing precise responses. /// /// Escaping uses are considered by anything _except_ the following: /// - GEPs or bitcasts of the pointer /// - Loads through the pointer /// - Stores through (but not of) the pointer virtual void addEscapingUse(Use &U); /// replaceWithNewValue - This method is the obvious combination of the two /// above, and it provided as a helper to simplify client code. /// void replaceWithNewValue(Value *Old, Value *New) { copyValue(Old, New); deleteValue(Old); } }; // Specialize DenseMapInfo for Location. template<> struct DenseMapInfo { static inline AliasAnalysis::Location getEmptyKey() { return AliasAnalysis::Location(DenseMapInfo::getEmptyKey(), 0, 0); } static inline AliasAnalysis::Location getTombstoneKey() { return AliasAnalysis::Location(DenseMapInfo::getTombstoneKey(), 0, 0); } static unsigned getHashValue(const AliasAnalysis::Location &Val) { return DenseMapInfo::getHashValue(Val.Ptr) ^ DenseMapInfo::getHashValue(Val.Size) ^ DenseMapInfo::getHashValue(Val.TBAATag); } static bool isEqual(const AliasAnalysis::Location &LHS, const AliasAnalysis::Location &RHS) { return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size && LHS.TBAATag == RHS.TBAATag; } }; /// isNoAliasCall - Return true if this pointer is returned by a noalias /// function. bool isNoAliasCall(const Value *V); /// isIdentifiedObject - Return true if this pointer refers to a distinct and /// identifiable object. This returns true for: /// Global Variables and Functions (but not Global Aliases) /// Allocas /// ByVal and NoAlias Arguments /// NoAlias returns (e.g. calls to malloc) /// bool isIdentifiedObject(const Value *V); /// isKnownNonNull - Return true if this pointer couldn't possibly be null by /// its definition. This returns true for allocas, non-extern-weak globals and /// byval arguments. bool isKnownNonNull(const Value *V); } // End llvm namespace #endif