//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=// // // This file provides a simple class to calculate the dominator set of a // function. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Dominators.h" #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Support/CFG.h" #include "llvm/Assembly/Writer.h" #include "Support/DepthFirstIterator.h" #include "Support/STLExtras.h" #include "Support/SetOperations.h" #include using std::set; //===----------------------------------------------------------------------===// // DominatorSet Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis A("domset", "Dominator Set Construction", true); static RegisterAnalysis B("postdomset", "Post-Dominator Set Construction", true); AnalysisID DominatorSet::ID = A; AnalysisID PostDominatorSet::ID = B; // dominates - Return true if A dominates B. This performs the special checks // neccesary if A and B are in the same basic block. // bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const { BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return dominates(BBA, BBB); // Loop through the basic block until we find A or B. BasicBlock::iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/; // A dominates B if it is found first in the basic block... return &*I == A; } // runOnFunction - This method calculates the forward dominator sets for the // specified function. // bool DominatorSet::runOnFunction(Function &F) { Doms.clear(); // Reset from the last time we were run... Root = &F.getEntryNode(); assert(pred_begin(Root) == pred_end(Root) && "Root node has predecessors in function!"); bool Changed; do { Changed = false; DomSetType WorkingSet; df_iterator It = df_begin(&F), End = df_end(&F); for ( ; It != End; ++It) { BasicBlock *BB = *It; pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a predecessor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are // traversing the graph in DFO and have handled start nodes specially. // while (Doms[*PI].size() == 0) ++PI; WorkingSet = Doms[*PI]; for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets DomSetType &PredSet = Doms[*PI]; if (PredSet.size()) set_intersect(WorkingSet, PredSet); } } WorkingSet.insert(BB); // A block always dominates itself DomSetType &BBSet = Doms[BB]; if (BBSet != WorkingSet) { BBSet.swap(WorkingSet); // Constant time operation! Changed = true; // The sets changed. } WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); return false; } // Postdominator set construction. This converts the specified function to only // have a single exit node (return stmt), then calculates the post dominance // sets for the function. // bool PostDominatorSet::runOnFunction(Function &F) { Doms.clear(); // Reset from the last time we were run... // Since we require that the unify all exit nodes pass has been run, we know // that there can be at most one return instruction in the function left. // Get it. // Root = getAnalysis().getExitNode(); if (Root == 0) { // No exit node for the function? Postdomsets are all empty for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) Doms[FI] = DomSetType(); return false; } bool Changed; do { Changed = false; set Visited; DomSetType WorkingSet; idf_iterator It = idf_begin(Root), End = idf_end(Root); for ( ; It != End; ++It) { BasicBlock *BB = *It; succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a successor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are // traversing the graph in DFO and have handled start nodes specially. // while (Doms[*PI].size() == 0) ++PI; WorkingSet = Doms[*PI]; for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets DomSetType &PredSet = Doms[*PI]; if (PredSet.size()) set_intersect(WorkingSet, PredSet); } } WorkingSet.insert(BB); // A block always dominates itself DomSetType &BBSet = Doms[BB]; if (BBSet != WorkingSet) { BBSet.swap(WorkingSet); // Constant time operation! Changed = true; // The sets changed. } WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); return false; } // getAnalysisUsage - This obviously provides a post-dominator set, but it also // requires the UnifyFunctionExitNodes pass. // void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(UnifyFunctionExitNodes::ID); } static std::ostream &operator<<(std::ostream &o, const set &BBs) { for (set::const_iterator I = BBs.begin(), E = BBs.end(); I != E; ++I) { o << " "; WriteAsOperand(o, *I, false); o << "\n"; } return o; } void DominatorSetBase::print(std::ostream &o) const { for (const_iterator I = begin(), E = end(); I != E; ++I) o << "=============================--------------------------------\n" << "\nDominator Set For Basic Block\n" << I->first << "-------------------------------\n" << I->second << "\n"; } //===----------------------------------------------------------------------===// // ImmediateDominators Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis C("idom", "Immediate Dominators Construction", true); static RegisterAnalysis D("postidom", "Immediate Post-Dominators Construction", true); AnalysisID ImmediateDominators::ID = C; AnalysisID ImmediatePostDominators::ID = D; // calcIDoms - Calculate the immediate dominator mapping, given a set of // dominators for every basic block. void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) { // Loop over all of the nodes that have dominators... figuring out the IDOM // for each node... // for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); DI != DEnd; ++DI) { BasicBlock *BB = DI->first; const DominatorSet::DomSetType &Dominators = DI->second; unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping over // nodes in the dominator chain, looking for a node whose dominator set is // equal to the current nodes, except that the current node does not exist // in it. This means that it is one level higher in the dom chain than the // current node, and it is our idom! // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number of elements // in the dominator set indicates what level the node is at in the chain. // We want the node immediately above us, so it will have an identical // dominator set, except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { IDoms[BB] = *I; break; } } } } void ImmediateDominatorsBase::print(std::ostream &o) const { for (const_iterator I = begin(), E = end(); I != E; ++I) o << "=============================--------------------------------\n" << "\nImmediate Dominator For Basic Block\n" << *I->first << "is: \n" << *I->second << "\n"; } //===----------------------------------------------------------------------===// // DominatorTree Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis E("domtree", "Dominator Tree Construction", true); static RegisterAnalysis F("postdomtree", "Post-Dominator Tree Construction", true); AnalysisID DominatorTree::ID = E; AnalysisID PostDominatorTree::ID = F; // DominatorTreeBase::reset - Free all of the tree node memory. // void DominatorTreeBase::reset() { for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) delete I->second; Nodes.clear(); } void DominatorTree::calculate(const DominatorSet &DS) { Nodes[Root] = new Node(Root, 0); // Add a node for the root... // Iterate over all nodes in depth first order... for (df_iterator I = df_begin(Root), E = df_end(Root); I != E; ++I) { BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping over // nodes in the dominator chain, looking for a node whose dominator set is // equal to the current nodes, except that the current node does not exist // in it. This means that it is one level higher in the dom chain than the // current node, and it is our idom! We know that we have already added // a DominatorTree node for our idom, because the idom must be a // predecessor in the depth first order that we are iterating through the // function. // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number of // elements in the dominator set indicates what level the node is at in // the chain. We want the node immediately above us, so it will have // an identical dominator set, except that BB will not dominate it... // therefore it's dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // Node *IDomNode = Nodes[*I]; assert(IDomNode && "No node for IDOM?"); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); break; } } } } void PostDominatorTree::calculate(const PostDominatorSet &DS) { Nodes[Root] = new Node(Root, 0); // Add a node for the root... if (Root) { // Iterate over all nodes in depth first order... for (idf_iterator I = idf_begin(Root), E = idf_end(Root); I != E; ++I) { BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping // over nodes in the dominator chain, looking for a node whose dominator // set is equal to the current nodes, except that the current node does // not exist in it. This means that it is one level higher in the dom // chain than the current node, and it is our idom! We know that we have // already added a DominatorTree node for our idom, because the idom must // be a predecessor in the depth first order that we are iterating through // the function. // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number // of elements in the dominator set indicates what level the // node is at in the chain. We want the node immediately // above us, so it will have an identical dominator set, // except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // Node *IDomNode = Nodes[*I]; assert(IDomNode && "No node for IDOM?"); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); break; } } } } } static std::ostream &operator<<(std::ostream &o, const DominatorTreeBase::Node *Node) { return o << Node->getNode() << "\n------------------------------------------\n"; } static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o, unsigned Lev) { o << "Level #" << Lev << ": " << N; for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end(); I != E; ++I) { PrintDomTree(*I, o, Lev+1); } } void DominatorTreeBase::print(std::ostream &o) const { o << "=============================--------------------------------\n" << "Inorder Dominator Tree:\n"; PrintDomTree(Nodes.find(getRoot())->second, o, 1); } //===----------------------------------------------------------------------===// // DominanceFrontier Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis G("domfrontier", "Dominance Frontier Construction", true); static RegisterAnalysis H("postdomfrontier", "Post-Dominance Frontier Construction", true); AnalysisID DominanceFrontier::ID = G; AnalysisID PostDominanceFrontier::ID = H; const DominanceFrontier::DomSetType & DominanceFrontier::calculate(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this successor? if (DT[*SI]->getIDom() != Node) S.insert(*SI); } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calculate(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->dominates(DT[*CDFI])) S.insert(*CDFI); } } return S; } const DominanceFrontier::DomSetType & PostDominanceFrontier::calculate(const PostDominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... if (!Root) return S; for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this predeccessor? if (DT[*SI]->getIDom() != Node) S.insert(*SI); } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (PostDominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calculate(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->dominates(DT[*CDFI])) S.insert(*CDFI); } } return S; } void DominanceFrontierBase::print(std::ostream &o) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { o << "=============================--------------------------------\n" << "\nDominance Frontier For Basic Block\n"; WriteAsOperand(o, I->first, false); o << " is: \n" << I->second << "\n"; } }