// $Id$ -*-c++-*- //*************************************************************************** // File: // TargetMachine.h // // Purpose: // // History: // 7/12/01 - Vikram Adve - Created //**************************************************************************/ #ifndef LLVM_CODEGEN_TARGETMACHINE_H #define LLVM_CODEGEN_TARGETMACHINE_H //*********************** System Include Files *****************************/ #include #include #include #include #include //************************ User Include Files *****************************/ #include "llvm/CodeGen/TargetData.h" #include "llvm/Support/NonCopyable.h" #include "llvm/Support/DataTypes.h" //************************ Opaque Declarations*****************************/ class Type; class StructType; struct MachineInstrDescriptor; class TargetMachine; //************************ Exported Data Types *****************************/ //--------------------------------------------------------------------------- // Data types used to define information about a single machine instruction //--------------------------------------------------------------------------- typedef int MachineOpCode; typedef int OpCodeMask; typedef int InstrSchedClass; static const unsigned MAX_OPCODE_SIZE = 16; typedef long long cycles_t; const cycles_t HUGE_LATENCY = ~((unsigned long long) 1 << sizeof(cycles_t)-1); const cycles_t INVALID_LATENCY = -HUGE_LATENCY; class OpCodePair { public: long val; // make long by concatenating two opcodes OpCodePair(MachineOpCode op1, MachineOpCode op2) : val((op1 < 0 || op2 < 0)? -1 : (long)((((unsigned) op1) << MAX_OPCODE_SIZE) | (unsigned) op2)) {} bool operator==(const OpCodePair& op) const { return val == op.val; } private: OpCodePair(); // disable for now }; template <> struct hash { size_t operator()(const OpCodePair& pair) const { return hash()(pair.val); } }; // Global variable holding an array of descriptors for machine instructions. // The actual object needs to be created separately for each target machine. // This variable is initialized and reset by class MachineInstrInfo. // extern const MachineInstrDescriptor* TargetInstrDescriptors; //--------------------------------------------------------------------------- // struct MachineInstrDescriptor: // Predefined information about each machine instruction. // Designed to initialized statically. // // class MachineInstructionInfo // Interface to description of machine instructions // //--------------------------------------------------------------------------- const unsigned int M_NOP_FLAG = 1; const unsigned int M_BRANCH_FLAG = 1 << 1; const unsigned int M_CALL_FLAG = 1 << 2; const unsigned int M_RET_FLAG = 1 << 3; const unsigned int M_ARITH_FLAG = 1 << 4; const unsigned int M_CC_FLAG = 1 << 6; const unsigned int M_LOGICAL_FLAG = 1 << 6; const unsigned int M_INT_FLAG = 1 << 7; const unsigned int M_FLOAT_FLAG = 1 << 8; const unsigned int M_CONDL_FLAG = 1 << 9; const unsigned int M_LOAD_FLAG = 1 << 10; const unsigned int M_PREFETCH_FLAG = 1 << 11; const unsigned int M_STORE_FLAG = 1 << 12; const unsigned int M_DUMMY_PHI_FLAG = 1 << 13; struct MachineInstrDescriptor { string opCodeString; // Assembly language mnemonic for the opcode. int numOperands; // Number of args; -1 if variable #args int resultPos; // Position of the result; -1 if no result unsigned int maxImmedConst; // Largest +ve constant in IMMMED field or 0. bool immedIsSignExtended; // Is IMMED field sign-extended? If so, // smallest -ve value is -(maxImmedConst+1). unsigned int numDelaySlots; // Number of delay slots after instruction unsigned int latency; // Latency in machine cycles InstrSchedClass schedClass; // enum identifying instr sched class unsigned int iclass; // flags identifying machine instr class }; class MachineInstrInfo : public NonCopyableV { protected: const MachineInstrDescriptor* desc; // raw array to allow static init'n unsigned int descSize; // number of entries in the desc array unsigned int numRealOpCodes; // number of non-dummy op codes public: /*ctor*/ MachineInstrInfo(const MachineInstrDescriptor* _desc, unsigned int _descSize, unsigned int _numRealOpCodes); /*dtor*/ virtual ~MachineInstrInfo(); unsigned int getNumRealOpCodes() const { return numRealOpCodes; } unsigned int getNumTotalOpCodes() const { return descSize; } const MachineInstrDescriptor& getDescriptor(MachineOpCode opCode) const { assert(opCode >= 0 && opCode < (int) descSize); return desc[opCode]; } int getNumOperands (MachineOpCode opCode) const { return getDescriptor(opCode).numOperands; } int getResultPos (MachineOpCode opCode) const { return getDescriptor(opCode).resultPos; } unsigned int getNumDelaySlots(MachineOpCode opCode) const { return getDescriptor(opCode).numDelaySlots; } InstrSchedClass getSchedClass (MachineOpCode opCode) const { return getDescriptor(opCode).schedClass; } // // Query instruction class flags according to the machine-independent // flags listed above. // unsigned int getIClass (MachineOpCode opCode) const { return getDescriptor(opCode).iclass; } bool isNop (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_NOP_FLAG; } bool isBranch (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_BRANCH_FLAG; } bool isCall (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_CALL_FLAG; } bool isReturn (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_RET_FLAG; } bool isControlFlow (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_BRANCH_FLAG || getDescriptor(opCode).iclass & M_CALL_FLAG || getDescriptor(opCode).iclass & M_RET_FLAG; } bool isArith (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_RET_FLAG; } bool isCCInstr (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_CC_FLAG; } bool isLogical (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_LOGICAL_FLAG; } bool isIntInstr (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_INT_FLAG; } bool isFloatInstr (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_FLOAT_FLAG; } bool isConditional (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_CONDL_FLAG; } bool isLoad (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_LOAD_FLAG; } bool isPrefetch (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_PREFETCH_FLAG; } bool isLoadOrPrefetch (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_LOAD_FLAG || getDescriptor(opCode).iclass & M_PREFETCH_FLAG; } bool isStore (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_STORE_FLAG; } bool isMemoryAccess (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_LOAD_FLAG || getDescriptor(opCode).iclass & M_PREFETCH_FLAG || getDescriptor(opCode).iclass & M_STORE_FLAG; } bool isDummyPhiInstr (MachineOpCode opCode) const { return getDescriptor(opCode).iclass & M_DUMMY_PHI_FLAG; } // // Check if an instruction can be issued before its operands are ready, // or if a subsequent instruction that uses its result can be issued // before the results are ready. // Default to true since most instructions on many architectures allow this. // virtual bool hasOperandInterlock(MachineOpCode opCode) const { return true; } virtual bool hasResultInterlock(MachineOpCode opCode) const { return true; } // // Latencies for individual instructions and instruction pairs // virtual int minLatency (MachineOpCode opCode) const { return getDescriptor(opCode).latency; } virtual int maxLatency (MachineOpCode opCode) const { return getDescriptor(opCode).latency; } // Check if the specified constant fits in the immediate field // of this machine instruction // virtual bool constantFitsInImmedField(MachineOpCode opCode, int64_t intValue) const; // Return the largest +ve constant that can be held in the IMMMED field // of this machine instruction. // isSignExtended is set to true if the value is sign-extended before use // (this is true for all immediate fields in SPARC instructions). // Return 0 if the instruction has no IMMED field. // virtual uint64_t maxImmedConstant(MachineOpCode opCode, bool& isSignExtended) const { isSignExtended = getDescriptor(opCode).immedIsSignExtended; return getDescriptor(opCode).maxImmedConst; } }; //--------------------------------------------------------------------------- // class MachineResource // class CPUResource // // Purpose: // Representation of a single machine resource used in specifying // resource usages of machine instructions for scheduling. //--------------------------------------------------------------------------- typedef unsigned int resourceId_t; class MachineResource { public: const string rname; resourceId_t rid; /*ctor*/ MachineResource(const string& resourceName) : rname(resourceName), rid(nextId++) {} private: static resourceId_t nextId; MachineResource(); // disable }; class CPUResource : public MachineResource { public: int maxNumUsers; // MAXINT if no restriction /*ctor*/ CPUResource(const string& rname, int maxUsers) : MachineResource(rname), maxNumUsers(maxUsers) {} }; //--------------------------------------------------------------------------- // struct InstrClassRUsage // struct InstrRUsageDelta // struct InstrIssueDelta // struct InstrRUsage // // Purpose: // The first three are structures used to specify machine resource // usages for each instruction in a machine description file: // InstrClassRUsage : resource usages common to all instrs. in a class // InstrRUsageDelta : add/delete resource usage for individual instrs. // InstrIssueDelta : add/delete instr. issue info for individual instrs // // The last one (InstrRUsage) is the internal representation of // instruction resource usage constructed from the above three. //--------------------------------------------------------------------------- const int MAX_NUM_SLOTS = 32; const int MAX_NUM_CYCLES = 32; struct InstrClassRUsage { InstrSchedClass schedClass; int totCycles; // Issue restrictions common to instructions in this class unsigned int maxNumIssue; bool isSingleIssue; bool breaksGroup; cycles_t numBubbles; // Feasible slots to use for instructions in this class. // The size of vector S[] is `numSlots'. unsigned int numSlots; unsigned int feasibleSlots[MAX_NUM_SLOTS]; // Resource usages common to instructions in this class. // The size of vector V[] is `numRUEntries'. unsigned int numRUEntries; struct { resourceId_t resourceId; unsigned int startCycle; int numCycles; } V[MAX_NUM_CYCLES]; }; struct InstrRUsageDelta { MachineOpCode opCode; resourceId_t resourceId; unsigned int startCycle; int numCycles; }; // Specify instruction issue restrictions for individual instructions // that differ from the common rules for the class. // struct InstrIssueDelta { MachineOpCode opCode; bool isSingleIssue; bool breaksGroup; cycles_t numBubbles; }; struct InstrRUsage { /*ctor*/ InstrRUsage () {} /*ctor*/ InstrRUsage (const InstrRUsage& instrRU); InstrRUsage& operator= (const InstrRUsage& instrRU); bool sameAsClass; // Issue restrictions for this instruction bool isSingleIssue; bool breaksGroup; cycles_t numBubbles; // Feasible slots to use for this instruction. vector feasibleSlots; // Resource usages for this instruction, with one resource vector per cycle. cycles_t numCycles; vector > resourcesByCycle; private: // Conveniences for initializing this structure InstrRUsage& operator= (const InstrClassRUsage& classRU); void addIssueDelta (const InstrIssueDelta& delta); void addUsageDelta (const InstrRUsageDelta& delta); void setMaxSlots (int maxNumSlots); friend class MachineSchedInfo; // give access to these functions }; inline void InstrRUsage::setMaxSlots(int maxNumSlots) { feasibleSlots.resize(maxNumSlots); } inline InstrRUsage& InstrRUsage::operator=(const InstrRUsage& instrRU) { sameAsClass = instrRU.sameAsClass; isSingleIssue = instrRU.isSingleIssue; breaksGroup = instrRU.breaksGroup; numBubbles = instrRU.numBubbles; feasibleSlots = instrRU.feasibleSlots; numCycles = instrRU.numCycles; resourcesByCycle = instrRU.resourcesByCycle; return *this; } inline /*ctor*/ InstrRUsage::InstrRUsage(const InstrRUsage& instrRU) { *this = instrRU; } inline InstrRUsage& InstrRUsage::operator=(const InstrClassRUsage& classRU) { sameAsClass = true; isSingleIssue = classRU.isSingleIssue; breaksGroup = classRU.breaksGroup; numBubbles = classRU.numBubbles; for (unsigned i=0; i < classRU.numSlots; i++) { unsigned slot = classRU.feasibleSlots[i]; assert(slot < feasibleSlots.size() && "Invalid slot specified!"); this->feasibleSlots[slot] = true; } this->numCycles = classRU.totCycles; this->resourcesByCycle.resize(this->numCycles); for (unsigned i=0; i < classRU.numRUEntries; i++) for (unsigned c=classRU.V[i].startCycle, NC = c + classRU.V[i].numCycles; c < NC; c++) this->resourcesByCycle[c].push_back(classRU.V[i].resourceId); // Sort each resource usage vector by resourceId_t to speed up conflict checking for (unsigned i=0; i < this->resourcesByCycle.size(); i++) sort(resourcesByCycle[i].begin(), resourcesByCycle[i].end()); return *this; } inline void InstrRUsage::addIssueDelta(const InstrIssueDelta& delta) { sameAsClass = false; isSingleIssue = delta.isSingleIssue; breaksGroup = delta.breaksGroup; numBubbles = delta.numBubbles; } // Add the extra resource usage requirements specified in the delta. // Note that a negative value of `numCycles' means one entry for that // resource should be deleted for each cycle. // inline void InstrRUsage::addUsageDelta(const InstrRUsageDelta& delta) { int NC = delta.numCycles; this->sameAsClass = false; // resize the resources vector if more cycles are specified unsigned maxCycles = this->numCycles; maxCycles = max(maxCycles, delta.startCycle + abs(NC) - 1); if (maxCycles > this->numCycles) { this->resourcesByCycle.resize(maxCycles); this->numCycles = maxCycles; } if (NC >= 0) for (unsigned c=delta.startCycle, last=c+NC-1; c <= last; c++) this->resourcesByCycle[c].push_back(delta.resourceId); else // Remove the resource from all NC cycles. for (unsigned c=delta.startCycle, last=(c-NC)-1; c <= last; c++) { // Look for the resource backwards so we remove the last entry // for that resource in each cycle. vector& rvec = this->resourcesByCycle[c]; int r; for (r = (int) rvec.size(); r >= 0; r--) if (rvec[r] == delta.resourceId) {// found last entry for the resource rvec.erase(rvec.begin() + r); break; } assert(r >= 0 && "Resource to remove was unused in cycle c!"); } } //--------------------------------------------------------------------------- // class MachineSchedInfo // // Purpose: // Common interface to machine information for instruction scheduling //--------------------------------------------------------------------------- class MachineSchedInfo : public NonCopyableV { public: unsigned int maxNumIssueTotal; int longestIssueConflict; int branchMispredictPenalty; // 4 for SPARC IIi int branchTargetUnknownPenalty; // 2 for SPARC IIi int l1DCacheMissPenalty; // 7 or 9 for SPARC IIi int l1ICacheMissPenalty; // ? for SPARC IIi bool inOrderLoads ; // true for SPARC IIi bool inOrderIssue; // true for SPARC IIi bool inOrderExec; // false for most architectures bool inOrderRetire; // true for most architectures protected: inline const InstrRUsage& getInstrRUsage(MachineOpCode opCode) const { assert(opCode >= 0 && opCode < (int) instrRUsages.size()); return instrRUsages[opCode]; } inline const InstrClassRUsage& getClassRUsage(const InstrSchedClass& sc) const { assert(sc >= 0 && sc < numSchedClasses); return classRUsages[sc]; } public: /*ctor*/ MachineSchedInfo (int _numSchedClasses, const MachineInstrInfo* _mii, const InstrClassRUsage* _classRUsages, const InstrRUsageDelta* _usageDeltas, const InstrIssueDelta* _issueDeltas, unsigned int _numUsageDeltas, unsigned int _numIssueDeltas); /*dtor*/ virtual ~MachineSchedInfo () {} inline const MachineInstrInfo& getInstrInfo() const { return *mii; } inline int getNumSchedClasses() const { return numSchedClasses; } inline unsigned int getMaxNumIssueTotal() const { return maxNumIssueTotal; } inline unsigned int getMaxIssueForClass(const InstrSchedClass& sc) const { assert(sc >= 0 && sc < numSchedClasses); return classRUsages[sc].maxNumIssue; } inline InstrSchedClass getSchedClass (MachineOpCode opCode) const { return getInstrInfo().getSchedClass(opCode); } inline bool instrCanUseSlot (MachineOpCode opCode, unsigned s) const { assert(s < getInstrRUsage(opCode).feasibleSlots.size() && "Invalid slot!"); return getInstrRUsage(opCode).feasibleSlots[s]; } inline int getLongestIssueConflict () const { return longestIssueConflict; } inline int getMinIssueGap (MachineOpCode fromOp, MachineOpCode toOp) const { hash_map::const_iterator I = issueGaps.find(OpCodePair(fromOp, toOp)); return (I == issueGaps.end())? 0 : (*I).second; } inline const vector* getConflictList(MachineOpCode opCode) const { hash_map >::const_iterator I = conflictLists.find(opCode); return (I == conflictLists.end())? NULL : & (*I).second; } inline bool isSingleIssue (MachineOpCode opCode) const { return getInstrRUsage(opCode).isSingleIssue; } inline bool breaksIssueGroup (MachineOpCode opCode) const { return getInstrRUsage(opCode).breaksGroup; } inline unsigned int numBubblesAfter (MachineOpCode opCode) const { return getInstrRUsage(opCode).numBubbles; } protected: virtual void initializeResources (); private: void computeInstrResources(const vector& instrRUForClasses); void computeIssueGaps(const vector& instrRUForClasses); protected: int numSchedClasses; const MachineInstrInfo* mii; const InstrClassRUsage* classRUsages; // raw array by sclass const InstrRUsageDelta* usageDeltas; // raw array [1:numUsageDeltas] const InstrIssueDelta* issueDeltas; // raw array [1:numIssueDeltas] unsigned int numUsageDeltas; unsigned int numIssueDeltas; vector instrRUsages; // indexed by opcode hash_map issueGaps; // indexed by opcode pair hash_map > conflictLists; // indexed by opcode }; //----------------------------------------------------------------------------- // class MachineRegClassInfo // // Purpose: // Interface to description of machine register class (e.g., int reg class // float reg class etc) // //-------------------------------------------------------------------------- class IGNode; class MachineRegClassInfo { protected: const unsigned RegClassID; // integer ID of a reg class const unsigned NumOfAvailRegs; // # of avail for coloring -without SP etc. const unsigned NumOfAllRegs; // # of all registers -including SP,g0 etc. public: inline unsigned getRegClassID() const { return RegClassID; } inline unsigned getNumOfAvailRegs() const { return NumOfAvailRegs; } inline unsigned getNumOfAllRegs() const { return NumOfAllRegs; } // This method should find a color which is not used by neighbors // (i.e., a false position in IsColorUsedArr) and virtual void colorIGNode(IGNode * Node, bool IsColorUsedArr[] ) const = 0; MachineRegClassInfo(const unsigned ID, const unsigned NVR, const unsigned NAR): RegClassID(ID), NumOfAvailRegs(NVR), NumOfAllRegs(NAR) { } // empty constructor }; //--------------------------------------------------------------------------- // class MachineRegInfo // // Purpose: // Interface to register info of target machine // //-------------------------------------------------------------------------- class Value; class LiveRangeInfo; class Method; class Instruction; // A vector of all machine register classes typedef vector MachineRegClassArrayType; class MachineRegInfo : public NonCopyableV { protected: MachineRegClassArrayType MachineRegClassArr; public: inline unsigned int getNumOfRegClasses() const { return MachineRegClassArr.size(); } const MachineRegClassInfo *const getMachineRegClass(unsigned i) const { return MachineRegClassArr[i]; } virtual unsigned getRegClassIDOfValue (const Value *const Val) const = 0; virtual void colorArgs(const Method *const Meth, LiveRangeInfo & LRI) const = 0; virtual void colorCallArgs(vector & CallInstrList, LiveRangeInfo& LRI ) const = 0 ; MachineRegInfo() { } }; //--------------------------------------------------------------------------- // class TargetMachine // // Purpose: // Primary interface to machine description for the target machine. // //--------------------------------------------------------------------------- class TargetMachine : public NonCopyableV { public: const string TargetName; const TargetData DataLayout; // Calculates type size & alignment int optSizeForSubWordData; int minMemOpWordSize; int maxAtomicMemOpWordSize; // Register information. This needs to be reorganized into a single class. int zeroRegNum; // register that gives 0 if any (-1 if none) public: /*ctor*/ TargetMachine(const string &targetname, unsigned char PtrSize = 8, unsigned char PtrAl = 8, unsigned char DoubleAl = 8, unsigned char FloatAl = 4, unsigned char LongAl = 8, unsigned char IntAl = 4, unsigned char ShortAl = 2, unsigned char ByteAl = 1) : TargetName(targetname), DataLayout(targetname, PtrSize, PtrAl, DoubleAl, FloatAl, LongAl, IntAl, ShortAl, ByteAl) { } /*dtor*/ virtual ~TargetMachine() {} const MachineInstrInfo& getInstrInfo () const { return *machineInstrInfo; } const MachineSchedInfo& getSchedInfo() const { return *machineSchedInfo; } virtual unsigned int findOptimalStorageSize (const Type* ty) const; // This really should be in the register info class virtual bool regsMayBeAliased (unsigned int regNum1, unsigned int regNum2) const { return (regNum1 == regNum2); } const MachineRegInfo& getRegInfo() const { return *machineRegInfo; } protected: // Description of machine instructions // Protect so that subclass can control alloc/dealloc MachineInstrInfo* machineInstrInfo; MachineSchedInfo* machineSchedInfo; const MachineRegInfo* machineRegInfo; }; //**************************************************************************/ #endif