//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86FixupKinds.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCELFObjectWriter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCMachObjectWriter.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSectionCOFF.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ELF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachO.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; // Option to allow disabling arithmetic relaxation to workaround PR9807, which // is useful when running bitwise comparison experiments on Darwin. We should be // able to remove this once PR9807 is resolved. static cl::opt MCDisableArithRelaxation("mc-x86-disable-arith-relaxation", cl::desc("Disable relaxation of arithmetic instruction for X86")); static unsigned getFixupKindLog2Size(unsigned Kind) { switch (Kind) { default: llvm_unreachable("invalid fixup kind!"); case FK_PCRel_1: case FK_SecRel_1: case FK_Data_1: return 0; case FK_PCRel_2: case FK_SecRel_2: case FK_Data_2: return 1; case FK_PCRel_4: case X86::reloc_riprel_4byte: case X86::reloc_riprel_4byte_movq_load: case X86::reloc_signed_4byte: case X86::reloc_global_offset_table: case FK_SecRel_4: case FK_Data_4: return 2; case FK_PCRel_8: case FK_SecRel_8: case FK_Data_8: return 3; } } namespace { class X86ELFObjectWriter : public MCELFObjectTargetWriter { public: X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine, bool HasRelocationAddend, bool foobar) : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {} }; class X86AsmBackend : public MCAsmBackend { StringRef CPU; bool HasNopl; public: X86AsmBackend(const Target &T, StringRef _CPU) : MCAsmBackend(), CPU(_CPU) { HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" && CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" && CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" && CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" && CPU != "c3" && CPU != "c3-2"; } unsigned getNumFixupKinds() const { return X86::NumTargetFixupKinds; } const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = { { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel}, { "reloc_signed_4byte", 0, 4 * 8, 0}, { "reloc_global_offset_table", 0, 4 * 8, 0} }; if (Kind < FirstTargetFixupKind) return MCAsmBackend::getFixupKindInfo(Kind); assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && "Invalid kind!"); return Infos[Kind - FirstTargetFixupKind]; } void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, uint64_t Value) const { unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind()); assert(Fixup.getOffset() + Size <= DataSize && "Invalid fixup offset!"); // Check that uppper bits are either all zeros or all ones. // Specifically ignore overflow/underflow as long as the leakage is // limited to the lower bits. This is to remain compatible with // other assemblers. assert(isIntN(Size * 8 + 1, Value) && "Value does not fit in the Fixup field"); for (unsigned i = 0; i != Size; ++i) Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8)); } bool mayNeedRelaxation(const MCInst &Inst) const; bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const; void relaxInstruction(const MCInst &Inst, MCInst &Res) const; bool writeNopData(uint64_t Count, MCObjectWriter *OW) const; }; } // end anonymous namespace static unsigned getRelaxedOpcodeBranch(unsigned Op) { switch (Op) { default: return Op; case X86::JAE_1: return X86::JAE_4; case X86::JA_1: return X86::JA_4; case X86::JBE_1: return X86::JBE_4; case X86::JB_1: return X86::JB_4; case X86::JE_1: return X86::JE_4; case X86::JGE_1: return X86::JGE_4; case X86::JG_1: return X86::JG_4; case X86::JLE_1: return X86::JLE_4; case X86::JL_1: return X86::JL_4; case X86::JMP_1: return X86::JMP_4; case X86::JNE_1: return X86::JNE_4; case X86::JNO_1: return X86::JNO_4; case X86::JNP_1: return X86::JNP_4; case X86::JNS_1: return X86::JNS_4; case X86::JO_1: return X86::JO_4; case X86::JP_1: return X86::JP_4; case X86::JS_1: return X86::JS_4; } } static unsigned getRelaxedOpcodeArith(unsigned Op) { switch (Op) { default: return Op; // IMUL case X86::IMUL16rri8: return X86::IMUL16rri; case X86::IMUL16rmi8: return X86::IMUL16rmi; case X86::IMUL32rri8: return X86::IMUL32rri; case X86::IMUL32rmi8: return X86::IMUL32rmi; case X86::IMUL64rri8: return X86::IMUL64rri32; case X86::IMUL64rmi8: return X86::IMUL64rmi32; // AND case X86::AND16ri8: return X86::AND16ri; case X86::AND16mi8: return X86::AND16mi; case X86::AND32ri8: return X86::AND32ri; case X86::AND32mi8: return X86::AND32mi; case X86::AND64ri8: return X86::AND64ri32; case X86::AND64mi8: return X86::AND64mi32; // OR case X86::OR16ri8: return X86::OR16ri; case X86::OR16mi8: return X86::OR16mi; case X86::OR32ri8: return X86::OR32ri; case X86::OR32mi8: return X86::OR32mi; case X86::OR64ri8: return X86::OR64ri32; case X86::OR64mi8: return X86::OR64mi32; // XOR case X86::XOR16ri8: return X86::XOR16ri; case X86::XOR16mi8: return X86::XOR16mi; case X86::XOR32ri8: return X86::XOR32ri; case X86::XOR32mi8: return X86::XOR32mi; case X86::XOR64ri8: return X86::XOR64ri32; case X86::XOR64mi8: return X86::XOR64mi32; // ADD case X86::ADD16ri8: return X86::ADD16ri; case X86::ADD16mi8: return X86::ADD16mi; case X86::ADD32ri8: return X86::ADD32ri; case X86::ADD32mi8: return X86::ADD32mi; case X86::ADD64ri8: return X86::ADD64ri32; case X86::ADD64mi8: return X86::ADD64mi32; // SUB case X86::SUB16ri8: return X86::SUB16ri; case X86::SUB16mi8: return X86::SUB16mi; case X86::SUB32ri8: return X86::SUB32ri; case X86::SUB32mi8: return X86::SUB32mi; case X86::SUB64ri8: return X86::SUB64ri32; case X86::SUB64mi8: return X86::SUB64mi32; // CMP case X86::CMP16ri8: return X86::CMP16ri; case X86::CMP16mi8: return X86::CMP16mi; case X86::CMP32ri8: return X86::CMP32ri; case X86::CMP32mi8: return X86::CMP32mi; case X86::CMP64ri8: return X86::CMP64ri32; case X86::CMP64mi8: return X86::CMP64mi32; // PUSH case X86::PUSH32i8: return X86::PUSHi32; case X86::PUSH16i8: return X86::PUSHi16; case X86::PUSH64i8: return X86::PUSH64i32; case X86::PUSH64i16: return X86::PUSH64i32; } } static unsigned getRelaxedOpcode(unsigned Op) { unsigned R = getRelaxedOpcodeArith(Op); if (R != Op) return R; return getRelaxedOpcodeBranch(Op); } bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const { // Branches can always be relaxed. if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode()) return true; if (MCDisableArithRelaxation) return false; // Check if this instruction is ever relaxable. if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode()) return false; // Check if it has an expression and is not RIP relative. bool hasExp = false; bool hasRIP = false; for (unsigned i = 0; i < Inst.getNumOperands(); ++i) { const MCOperand &Op = Inst.getOperand(i); if (Op.isExpr()) hasExp = true; if (Op.isReg() && Op.getReg() == X86::RIP) hasRIP = true; } // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on // how we do relaxations? return hasExp && !hasRIP; } bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const { // Relax if the value is too big for a (signed) i8. return int64_t(Value) != int64_t(int8_t(Value)); } // FIXME: Can tblgen help at all here to verify there aren't other instructions // we can relax? void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const { // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel. unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); if (RelaxedOp == Inst.getOpcode()) { SmallString<256> Tmp; raw_svector_ostream OS(Tmp); Inst.dump_pretty(OS); OS << "\n"; report_fatal_error("unexpected instruction to relax: " + OS.str()); } Res = Inst; Res.setOpcode(RelaxedOp); } /// \brief Write a sequence of optimal nops to the output, covering \p Count /// bytes. /// \return - true on success, false on failure bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const { static const uint8_t Nops[10][10] = { // nop {0x90}, // xchg %ax,%ax {0x66, 0x90}, // nopl (%[re]ax) {0x0f, 0x1f, 0x00}, // nopl 0(%[re]ax) {0x0f, 0x1f, 0x40, 0x00}, // nopl 0(%[re]ax,%[re]ax,1) {0x0f, 0x1f, 0x44, 0x00, 0x00}, // nopw 0(%[re]ax,%[re]ax,1) {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, // nopl 0L(%[re]ax) {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, // nopl 0L(%[re]ax,%[re]ax,1) {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, // nopw 0L(%[re]ax,%[re]ax,1) {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, // nopw %cs:0L(%[re]ax,%[re]ax,1) {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, }; // This CPU doesn't support long nops. If needed add more. // FIXME: Can we get this from the subtarget somehow? // FIXME: We could generated something better than plain 0x90. if (!HasNopl) { for (uint64_t i = 0; i < Count; ++i) OW->Write8(0x90); return true; } // 15 is the longest single nop instruction. Emit as many 15-byte nops as // needed, then emit a nop of the remaining length. do { const uint8_t ThisNopLength = (uint8_t) std::min(Count, (uint64_t) 15); const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10; for (uint8_t i = 0; i < Prefixes; i++) OW->Write8(0x66); const uint8_t Rest = ThisNopLength - Prefixes; for (uint8_t i = 0; i < Rest; i++) OW->Write8(Nops[Rest - 1][i]); Count -= ThisNopLength; } while (Count != 0); return true; } /* *** */ namespace { class ELFX86AsmBackend : public X86AsmBackend { public: uint8_t OSABI; ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU) : X86AsmBackend(T, CPU), OSABI(_OSABI) {} }; class ELFX86_32AsmBackend : public ELFX86AsmBackend { public: ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU) : ELFX86AsmBackend(T, OSABI, CPU) {} MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386); } }; class ELFX86_64AsmBackend : public ELFX86AsmBackend { public: ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU) : ELFX86AsmBackend(T, OSABI, CPU) {} MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64); } }; class WindowsX86AsmBackend : public X86AsmBackend { bool Is64Bit; public: WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU) : X86AsmBackend(T, CPU) , Is64Bit(is64Bit) { } MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createX86WinCOFFObjectWriter(OS, Is64Bit); } }; namespace CU { /// Compact unwind encoding values. enum CompactUnwindEncodings { /// [RE]BP based frame where [RE]BP is pused on the stack immediately after /// the return address, then [RE]SP is moved to [RE]BP. UNWIND_MODE_BP_FRAME = 0x01000000, /// A frameless function with a small constant stack size. UNWIND_MODE_STACK_IMMD = 0x02000000, /// A frameless function with a large constant stack size. UNWIND_MODE_STACK_IND = 0x03000000, /// No compact unwind encoding is available. UNWIND_MODE_DWARF = 0x04000000, /// Mask for encoding the frame registers. UNWIND_BP_FRAME_REGISTERS = 0x00007FFF, /// Mask for encoding the frameless registers. UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF }; } // end CU namespace class DarwinX86AsmBackend : public X86AsmBackend { const MCRegisterInfo &MRI; /// \brief Number of registers that can be saved in a compact unwind encoding. enum { CU_NUM_SAVED_REGS = 6 }; mutable unsigned SavedRegs[CU_NUM_SAVED_REGS]; bool Is64Bit; unsigned OffsetSize; ///< Offset of a "push" instruction. unsigned PushInstrSize; ///< Size of a "push" instruction. unsigned MoveInstrSize; ///< Size of a "move" instruction. unsigned StackDivide; ///< Amount to adjust stack stize by. protected: /// \brief Implementation of algorithm to generate the compact unwind encoding /// for the CFI instructions. uint32_t generateCompactUnwindEncodingImpl(ArrayRef Instrs) const { if (Instrs.empty()) return 0; // Reset the saved registers. unsigned SavedRegIdx = 0; memset(SavedRegs, 0, sizeof(SavedRegs)); bool HasFP = false; // Encode that we are using EBP/RBP as the frame pointer. uint32_t CompactUnwindEncoding = 0; unsigned SubtractInstrIdx = Is64Bit ? 3 : 2; unsigned InstrOffset = 0; unsigned StackAdjust = 0; unsigned StackSize = 0; unsigned PrevStackSize = 0; unsigned NumDefCFAOffsets = 0; for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { const MCCFIInstruction &Inst = Instrs[i]; switch (Inst.getOperation()) { default: // Any other CFI directives indicate a frame that we aren't prepared // to represent via compact unwind, so just bail out. return 0; case MCCFIInstruction::OpDefCfaRegister: { // Defines a frame pointer. E.g. // // movq %rsp, %rbp // L0: // .cfi_def_cfa_register %rbp // HasFP = true; assert(MRI.getLLVMRegNum(Inst.getRegister(), true) == (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!"); // Reset the counts. memset(SavedRegs, 0, sizeof(SavedRegs)); StackAdjust = 0; SavedRegIdx = 0; InstrOffset += MoveInstrSize; break; } case MCCFIInstruction::OpDefCfaOffset: { // Defines a new offset for the CFA. E.g. // // With frame: // // pushq %rbp // L0: // .cfi_def_cfa_offset 16 // // Without frame: // // subq $72, %rsp // L0: // .cfi_def_cfa_offset 80 // PrevStackSize = StackSize; StackSize = std::abs(Inst.getOffset()) / StackDivide; ++NumDefCFAOffsets; break; } case MCCFIInstruction::OpOffset: { // Defines a "push" of a callee-saved register. E.g. // // pushq %r15 // pushq %r14 // pushq %rbx // L0: // subq $120, %rsp // L1: // .cfi_offset %rbx, -40 // .cfi_offset %r14, -32 // .cfi_offset %r15, -24 // if (SavedRegIdx == CU_NUM_SAVED_REGS) // If there are too many saved registers, we cannot use a compact // unwind encoding. return CU::UNWIND_MODE_DWARF; unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true); SavedRegs[SavedRegIdx++] = Reg; StackAdjust += OffsetSize; InstrOffset += PushInstrSize; break; } } } StackAdjust /= StackDivide; if (HasFP) { if ((StackAdjust & 0xFF) != StackAdjust) // Offset was too big for a compact unwind encoding. return CU::UNWIND_MODE_DWARF; // Get the encoding of the saved registers when we have a frame pointer. uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(); if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME; CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16; CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS; } else { // If the amount of the stack allocation is the size of a register, then // we "push" the RAX/EAX register onto the stack instead of adjusting the // stack pointer with a SUB instruction. We don't support the push of the // RAX/EAX register with compact unwind. So we check for that situation // here. if ((NumDefCFAOffsets == SavedRegIdx + 1 && StackSize - PrevStackSize == 1) || (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2)) return CU::UNWIND_MODE_DWARF; SubtractInstrIdx += InstrOffset; ++StackAdjust; if ((StackSize & 0xFF) == StackSize) { // Frameless stack with a small stack size. CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD; // Encode the stack size. CompactUnwindEncoding |= (StackSize & 0xFF) << 16; } else { if ((StackAdjust & 0x7) != StackAdjust) // The extra stack adjustments are too big for us to handle. return CU::UNWIND_MODE_DWARF; // Frameless stack with an offset too large for us to encode compactly. CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND; // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP' // instruction. CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16; // Encode any extra stack stack adjustments (done via push // instructions). CompactUnwindEncoding |= (StackAdjust & 0x7) << 13; } // Encode the number of registers saved. (Reverse the list first.) std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]); CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10; // Get the encoding of the saved registers when we don't have a frame // pointer. uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx); if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; // Encode the register encoding. CompactUnwindEncoding |= RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION; } return CompactUnwindEncoding; } private: /// \brief Get the compact unwind number for a given register. The number /// corresponds to the enum lists in compact_unwind_encoding.h. int getCompactUnwindRegNum(unsigned Reg) const { static const uint16_t CU32BitRegs[7] = { X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0 }; static const uint16_t CU64BitRegs[] = { X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 }; const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs; for (int Idx = 1; *CURegs; ++CURegs, ++Idx) if (*CURegs == Reg) return Idx; return -1; } /// \brief Return the registers encoded for a compact encoding with a frame /// pointer. uint32_t encodeCompactUnwindRegistersWithFrame() const { // Encode the registers in the order they were saved --- 3-bits per // register. The list of saved registers is assumed to be in reverse // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS. uint32_t RegEnc = 0; for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) { unsigned Reg = SavedRegs[i]; if (Reg == 0) break; int CURegNum = getCompactUnwindRegNum(Reg); if (CURegNum == -1) return ~0U; // Encode the 3-bit register number in order, skipping over 3-bits for // each register. RegEnc |= (CURegNum & 0x7) << (Idx++ * 3); } assert((RegEnc & 0x3FFFF) == RegEnc && "Invalid compact register encoding!"); return RegEnc; } /// \brief Create the permutation encoding used with frameless stacks. It is /// passed the number of registers to be saved and an array of the registers /// saved. uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const { // The saved registers are numbered from 1 to 6. In order to encode the // order in which they were saved, we re-number them according to their // place in the register order. The re-numbering is relative to the last // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in // that order: // // Orig Re-Num // ---- ------ // 6 6 // 2 2 // 4 3 // 5 3 // for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) { int CUReg = getCompactUnwindRegNum(SavedRegs[i]); if (CUReg == -1) return ~0U; SavedRegs[i] = CUReg; } // Reverse the list. std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]); uint32_t RenumRegs[CU_NUM_SAVED_REGS]; for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){ unsigned Countless = 0; for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j) if (SavedRegs[j] < SavedRegs[i]) ++Countless; RenumRegs[i] = SavedRegs[i] - Countless - 1; } // Take the renumbered values and encode them into a 10-bit number. uint32_t permutationEncoding = 0; switch (RegCount) { case 6: permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1] + 6 * RenumRegs[2] + 2 * RenumRegs[3] + RenumRegs[4]; break; case 5: permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2] + 6 * RenumRegs[3] + 2 * RenumRegs[4] + RenumRegs[5]; break; case 4: permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3] + 3 * RenumRegs[4] + RenumRegs[5]; break; case 3: permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4] + RenumRegs[5]; break; case 2: permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5]; break; case 1: permutationEncoding |= RenumRegs[5]; break; } assert((permutationEncoding & 0x3FF) == permutationEncoding && "Invalid compact register encoding!"); return permutationEncoding; } public: DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU, bool Is64Bit) : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) { memset(SavedRegs, 0, sizeof(SavedRegs)); OffsetSize = Is64Bit ? 8 : 4; MoveInstrSize = Is64Bit ? 3 : 2; StackDivide = Is64Bit ? 8 : 4; PushInstrSize = 1; } }; class DarwinX86_32AsmBackend : public DarwinX86AsmBackend { bool SupportsCU; public: DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU, bool SupportsCU) : DarwinX86AsmBackend(T, MRI, CPU, false), SupportsCU(SupportsCU) {} MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createX86MachObjectWriter(OS, /*Is64Bit=*/false, MachO::CPU_TYPE_I386, MachO::CPU_SUBTYPE_I386_ALL); } /// \brief Generate the compact unwind encoding for the CFI instructions. virtual uint32_t generateCompactUnwindEncoding(ArrayRef Instrs) const { return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0; } }; class DarwinX86_64AsmBackend : public DarwinX86AsmBackend { bool SupportsCU; const MachO::CPUSubTypeX86 Subtype; public: DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU, bool SupportsCU, MachO::CPUSubTypeX86 st) : DarwinX86AsmBackend(T, MRI, CPU, true), SupportsCU(SupportsCU), Subtype(st) { HasReliableSymbolDifference = true; } MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createX86MachObjectWriter(OS, /*Is64Bit=*/true, MachO::CPU_TYPE_X86_64, Subtype); } virtual bool doesSectionRequireSymbols(const MCSection &Section) const { // Temporary labels in the string literals sections require symbols. The // issue is that the x86_64 relocation format does not allow symbol + // offset, and so the linker does not have enough information to resolve the // access to the appropriate atom unless an external relocation is used. For // non-cstring sections, we expect the compiler to use a non-temporary label // for anything that could have an addend pointing outside the symbol. // // See . const MCSectionMachO &SMO = static_cast(Section); return SMO.getType() == MachO::S_CSTRING_LITERALS; } virtual bool isSectionAtomizable(const MCSection &Section) const { const MCSectionMachO &SMO = static_cast(Section); // Fixed sized data sections are uniqued, they cannot be diced into atoms. switch (SMO.getType()) { default: return true; case MachO::S_4BYTE_LITERALS: case MachO::S_8BYTE_LITERALS: case MachO::S_16BYTE_LITERALS: case MachO::S_LITERAL_POINTERS: case MachO::S_NON_LAZY_SYMBOL_POINTERS: case MachO::S_LAZY_SYMBOL_POINTERS: case MachO::S_MOD_INIT_FUNC_POINTERS: case MachO::S_MOD_TERM_FUNC_POINTERS: case MachO::S_INTERPOSING: return false; } } /// \brief Generate the compact unwind encoding for the CFI instructions. virtual uint32_t generateCompactUnwindEncoding(ArrayRef Instrs) const { return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0; } }; } // end anonymous namespace MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef TT, StringRef CPU) { Triple TheTriple(TT); if (TheTriple.isOSBinFormatMachO()) return new DarwinX86_32AsmBackend(T, MRI, CPU, TheTriple.isMacOSX() && !TheTriple.isMacOSXVersionLT(10, 7)); if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF()) return new WindowsX86AsmBackend(T, false, CPU); uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); return new ELFX86_32AsmBackend(T, OSABI, CPU); } MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef TT, StringRef CPU) { Triple TheTriple(TT); if (TheTriple.isOSBinFormatMachO()) { MachO::CPUSubTypeX86 CS = StringSwitch(TheTriple.getArchName()) .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H) .Default(MachO::CPU_SUBTYPE_X86_64_ALL); return new DarwinX86_64AsmBackend(T, MRI, CPU, TheTriple.isMacOSX() && !TheTriple.isMacOSXVersionLT(10, 7), CS); } if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF()) return new WindowsX86AsmBackend(T, true, CPU); uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); return new ELFX86_64AsmBackend(T, OSABI, CPU); }