//===- FunctionResolution.cpp - Resolve declarations to implementations ---===// // // Loop over the functions that are in the module and look for functions that // have the same name. More often than not, there will be things like: // // declare void %foo(...) // void %foo(int, int) { ... } // // because of the way things are declared in C. If this is the case, patch // things up. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "llvm/DerivedTypes.h" #include "llvm/Pass.h" #include "llvm/iOther.h" #include "llvm/Constants.h" #include "llvm/Assembly/Writer.h" // FIXME: remove when varargs implemented #include "Support/Statistic.h" #include namespace { Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved"); Statistic<> NumGlobals("funcresolve", "Number of global variables resolved"); struct FunctionResolvingPass : public Pass { bool run(Module &M); }; RegisterOpt X("funcresolve", "Resolve Functions"); } Pass *createFunctionResolvingPass() { return new FunctionResolvingPass(); } // ConvertCallTo - Convert a call to a varargs function with no arg types // specified to a concrete nonvarargs function. // static void ConvertCallTo(CallInst *CI, Function *Dest) { const FunctionType::ParamTypes &ParamTys = Dest->getFunctionType()->getParamTypes(); BasicBlock *BB = CI->getParent(); // Keep an iterator to where we want to insert cast instructions if the // argument types don't agree. // unsigned NumArgsToCopy = CI->getNumOperands()-1; if (NumArgsToCopy != ParamTys.size() && !(NumArgsToCopy > ParamTys.size() && Dest->getFunctionType()->isVarArg())) { std::cerr << "WARNING: Call arguments do not match expected number of" << " parameters.\n"; std::cerr << "WARNING: In function '" << CI->getParent()->getParent()->getName() << "': call: " << *CI; std::cerr << "Function resolved to: "; WriteAsOperand(std::cerr, Dest); std::cerr << "\n"; if (NumArgsToCopy > ParamTys.size()) NumArgsToCopy = ParamTys.size(); } std::vector Params; // Convert all of the call arguments over... inserting cast instructions if // the types are not compatible. for (unsigned i = 1; i <= NumArgsToCopy; ++i) { Value *V = CI->getOperand(i); if (i-1 < ParamTys.size() && V->getType() != ParamTys[i-1]) { // Must insert a cast... V = new CastInst(V, ParamTys[i-1], "argcast", CI); } Params.push_back(V); } // Replace the old call instruction with a new call instruction that calls // the real function. // Instruction *NewCall = new CallInst(Dest, Params, "", CI); std::string Name = CI->getName(); CI->setName(""); // Transfer the name over... if (NewCall->getType() != Type::VoidTy) NewCall->setName(Name); // Replace uses of the old instruction with the appropriate values... // if (NewCall->getType() == CI->getType()) { CI->replaceAllUsesWith(NewCall); NewCall->setName(Name); } else if (NewCall->getType() == Type::VoidTy) { // Resolved function does not return a value but the prototype does. This // often occurs because undefined functions default to returning integers. // Just replace uses of the call (which are broken anyway) with dummy // values. CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); } else if (CI->getType() == Type::VoidTy) { // If we are gaining a new return value, we don't have to do anything // special here, because it will automatically be ignored. } else { // Insert a cast instruction to convert the return value of the function // into it's new type. Of course we only need to do this if the return // value of the function is actually USED. // if (!CI->use_empty()) { // Insert the new cast instruction... CastInst *NewCast = new CastInst(NewCall, CI->getType(), Name, CI); CI->replaceAllUsesWith(NewCast); } } // The old instruction is no longer needed, destroy it! BB->getInstList().erase(CI); } static bool ResolveFunctions(Module &M, std::vector &Globals, Function *Concrete) { bool Changed = false; for (unsigned i = 0; i != Globals.size(); ++i) if (Globals[i] != Concrete) { Function *Old = cast(Globals[i]); const FunctionType *OldMT = Old->getFunctionType(); const FunctionType *ConcreteMT = Concrete->getFunctionType(); if (OldMT->getParamTypes().size() > ConcreteMT->getParamTypes().size() && !ConcreteMT->isVarArg()) if (!Old->use_empty()) { std::cerr << "WARNING: Linking function '" << Old->getName() << "' is causing arguments to be dropped.\n"; std::cerr << "WARNING: Prototype: "; WriteAsOperand(std::cerr, Old); std::cerr << " resolved to "; WriteAsOperand(std::cerr, Concrete); std::cerr << "\n"; } // Check to make sure that if there are specified types, that they // match... // unsigned NumArguments = std::min(OldMT->getParamTypes().size(), ConcreteMT->getParamTypes().size()); if (!Old->use_empty() && !Concrete->use_empty()) for (unsigned i = 0; i < NumArguments; ++i) if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) { std::cerr << "WARNING: Function [" << Old->getName() << "]: Parameter types conflict for: '" << OldMT << "' and '" << ConcreteMT << "'\n"; return Changed; } // Attempt to convert all of the uses of the old function to the concrete // form of the function. If there is a use of the fn that we don't // understand here we punt to avoid making a bad transformation. // // At this point, we know that the return values are the same for our two // functions and that the Old function has no varargs fns specified. In // otherwords it's just (...) // for (unsigned i = 0; i < Old->use_size(); ) { User *U = *(Old->use_begin()+i); if (CastInst *CI = dyn_cast(U)) { // Convert casts directly assert(CI->getOperand(0) == Old); CI->setOperand(0, Concrete); Changed = true; ++NumResolved; } else if (CallInst *CI = dyn_cast(U)) { // Can only fix up calls TO the argument, not args passed in. if (CI->getCalledValue() == Old) { ConvertCallTo(CI, Concrete); Changed = true; ++NumResolved; } else { std::cerr << "Couldn't cleanup this function call, must be an" << " argument or something!" << CI; ++i; } } else if (ConstantPointerRef *CPR = dyn_cast(U)) { if (CPR->use_size() == 1 && isa(CPR->use_back()) && cast(CPR->use_back())->getOpcode() == Instruction::Cast) { ConstantExpr *CE = cast(CPR->use_back()); Constant *NewCPR = ConstantPointerRef::get(Concrete); CE->replaceAllUsesWith(ConstantExpr::getCast(NewCPR,CE->getType())); CPR->destroyConstant(); } else { std::cerr << "Cannot convert use of function: " << CPR << "\n"; ++i; } } else { std::cerr << "Cannot convert use of function: " << U << "\n"; ++i; } } } return Changed; } static bool ResolveGlobalVariables(Module &M, std::vector &Globals, GlobalVariable *Concrete) { bool Changed = false; assert(isa(Concrete->getType()->getElementType()) && "Concrete version should be an array type!"); // Get the type of the things that may be resolved to us... const ArrayType *CATy =cast(Concrete->getType()->getElementType()); const Type *AETy = CATy->getElementType(); Constant *CCPR = ConstantPointerRef::get(Concrete); for (unsigned i = 0; i != Globals.size(); ++i) if (Globals[i] != Concrete) { GlobalVariable *Old = cast(Globals[i]); const ArrayType *OATy = cast(Old->getType()->getElementType()); if (OATy->getElementType() != AETy || OATy->getNumElements() != 0) { std::cerr << "WARNING: Two global variables exist with the same name " << "that cannot be resolved!\n"; return false; } Old->replaceAllUsesWith(ConstantExpr::getCast(CCPR, Old->getType())); // Since there are no uses of Old anymore, remove it from the module. M.getGlobalList().erase(Old); ++NumGlobals; Changed = true; } return Changed; } static bool ProcessGlobalsWithSameName(Module &M, std::vector &Globals) { assert(!Globals.empty() && "Globals list shouldn't be empty here!"); bool isFunction = isa(Globals[0]); // Is this group all functions? GlobalValue *Concrete = 0; // The most concrete implementation to resolve to assert((isFunction ^ isa(Globals[0])) && "Should either be function or gvar!"); for (unsigned i = 0; i != Globals.size(); ) { if (isa(Globals[i]) != isFunction) { std::cerr << "WARNING: Found function and global variable with the " << "same name: '" << Globals[i]->getName() << "'.\n"; return false; // Don't know how to handle this, bail out! } if (isFunction) { // For functions, we look to merge functions definitions of "int (...)" // to 'int (int)' or 'int ()' or whatever else is not completely generic. // Function *F = cast(Globals[i]); if (!F->isExternal()) { if (Concrete && !Concrete->isExternal()) return false; // Found two different functions types. Can't choose! Concrete = Globals[i]; } else if (Concrete) { if (Concrete->isExternal()) // If we have multiple external symbols...x if (F->getFunctionType()->getNumParams() > cast(Concrete)->getFunctionType()->getNumParams()) Concrete = F; // We are more concrete than "Concrete"! } else { Concrete = F; } } else { // For global variables, we have to merge C definitions int A[][4] with // int[6][4]. A[][4] is represented as A[0][4] by the CFE. GlobalVariable *GV = cast(Globals[i]); if (!isa(GV->getType()->getElementType())) { Concrete = 0; break; // Non array's cannot be compatible with other types. } else if (Concrete == 0) { Concrete = GV; } else { // Must have different types... allow merging A[0][4] w/ A[6][4] if // A[0][4] is external. const ArrayType *NAT = cast(GV->getType()->getElementType()); const ArrayType *CAT = cast(Concrete->getType()->getElementType()); if (NAT->getElementType() != CAT->getElementType()) { Concrete = 0; // Non-compatible types break; } else if (NAT->getNumElements() == 0 && GV->isExternal()) { // Concrete remains the same } else if (CAT->getNumElements() == 0 && Concrete->isExternal()) { Concrete = GV; // Concrete becomes GV } else { Concrete = 0; // Cannot merge these types... break; } } } ++i; } if (Globals.size() > 1) { // Found a multiply defined global... // We should find exactly one concrete function definition, which is // probably the implementation. Change all of the function definitions and // uses to use it instead. // if (!Concrete) { std::cerr << "WARNING: Found global types that are not compatible:\n"; for (unsigned i = 0; i < Globals.size(); ++i) { std::cerr << "\t" << Globals[i]->getType()->getDescription() << " %" << Globals[i]->getName() << "\n"; } std::cerr << " No linkage of globals named '" << Globals[0]->getName() << "' performed!\n"; return false; } if (isFunction) return ResolveFunctions(M, Globals, cast(Concrete)); else return ResolveGlobalVariables(M, Globals, cast(Concrete)); } return false; } bool FunctionResolvingPass::run(Module &M) { SymbolTable &ST = M.getSymbolTable(); std::map > Globals; // Loop over the entries in the symbol table. If an entry is a func pointer, // then add it to the Functions map. We do a two pass algorithm here to avoid // problems with iterators getting invalidated if we did a one pass scheme. // for (SymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I) if (const PointerType *PT = dyn_cast(I->first)) { SymbolTable::VarMap &Plane = I->second; for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end(); PI != PE; ++PI) { GlobalValue *GV = cast(PI->second); assert(PI->first == GV->getName() && "Global name and symbol table do not agree!"); if (!GV->hasInternalLinkage()) // Only resolve decls to external fns Globals[PI->first].push_back(GV); } } bool Changed = false; // Now we have a list of all functions with a particular name. If there is // more than one entry in a list, merge the functions together. // for (std::map >::iterator I = Globals.begin(), E = Globals.end(); I != E; ++I) Changed |= ProcessGlobalsWithSameName(M, I->second); // Now loop over all of the globals, checking to see if any are trivially // dead. If so, remove them now. for (Module::iterator I = M.begin(), E = M.end(); I != E; ) if (I->isExternal() && I->use_empty()) { Function *F = I; ++I; M.getFunctionList().erase(F); ++NumResolved; Changed = true; } else { ++I; } for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ) if (I->isExternal() && I->use_empty()) { GlobalVariable *GV = I; ++I; M.getGlobalList().erase(GV); ++NumGlobals; Changed = true; } else { ++I; } return Changed; }