//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the VirtRegMap class. // // It also contains implementations of the the Spiller interface, which, given a // virtual register map and a machine function, eliminates all virtual // references by replacing them with physical register references - adding spill // code as necessary. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "spiller" #include "VirtRegMap.h" #include "llvm/Function.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; namespace { Statistic<> NumSpills("spiller", "Number of register spills"); Statistic<> NumStores("spiller", "Number of stores added"); Statistic<> NumLoads ("spiller", "Number of loads added"); Statistic<> NumReused("spiller", "Number of values reused"); Statistic<> NumDSE ("spiller", "Number of dead stores elided"); Statistic<> NumDCE ("spiller", "Number of copies elided"); enum SpillerName { simple, local }; cl::opt SpillerOpt("spiller", cl::desc("Spiller to use: (default: local)"), cl::Prefix, cl::values(clEnumVal(simple, " simple spiller"), clEnumVal(local, " local spiller"), clEnumValEnd), cl::init(local)); // TEMPORARY option to test a fix. cl::opt SpillerCheckLiveOut("spiller-check-liveout", cl::Hidden); } //===----------------------------------------------------------------------===// // VirtRegMap implementation //===----------------------------------------------------------------------===// void VirtRegMap::grow() { Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg()); Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg()); } int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { assert(MRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg); int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(), RC->getAlignment()); Virt2StackSlotMap[virtReg] = frameIndex; ++NumSpills; return frameIndex; } void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) { assert(MRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); Virt2StackSlotMap[virtReg] = frameIndex; } void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI, unsigned OpNo, MachineInstr *NewMI, bool LiveOut) { // Move previous memory references folded to new instruction. MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI); for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI), E = MI2VirtMap.end(); I != E && I->first == OldMI; ) { MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second)); MI2VirtMap.erase(I++); } ModRef MRInfo; if (!OldMI->getOperand(OpNo).isDef()) { assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?"); MRInfo = isRef; } else { MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod; if (LiveOut) MRInfo = (ModRef)(MRInfo | isLiveOut); } // add new memory reference MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo))); } void VirtRegMap::print(std::ostream &OS) const { const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo(); OS << "********** REGISTER MAP **********\n"; for (unsigned i = MRegisterInfo::FirstVirtualRegister, e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) { if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG) OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n"; } for (unsigned i = MRegisterInfo::FirstVirtualRegister, e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT) OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n"; OS << '\n'; } void VirtRegMap::dump() const { print(std::cerr); } //===----------------------------------------------------------------------===// // Simple Spiller Implementation //===----------------------------------------------------------------------===// Spiller::~Spiller() {} namespace { struct SimpleSpiller : public Spiller { bool runOnMachineFunction(MachineFunction& mf, const VirtRegMap &VRM); }; } bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM) { DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n"); DEBUG(std::cerr << "********** Function: " << MF.getFunction()->getName() << '\n'); const TargetMachine &TM = MF.getTarget(); const MRegisterInfo &MRI = *TM.getRegisterInfo(); bool *PhysRegsUsed = MF.getUsedPhysregs(); // LoadedRegs - Keep track of which vregs are loaded, so that we only load // each vreg once (in the case where a spilled vreg is used by multiple // operands). This is always smaller than the number of operands to the // current machine instr, so it should be small. std::vector LoadedRegs; for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); MBBI != E; ++MBBI) { DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n"); MachineBasicBlock &MBB = *MBBI; for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); MII != E; ++MII) { MachineInstr &MI = *MII; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (MO.isRegister() && MO.getReg()) if (MRegisterInfo::isVirtualRegister(MO.getReg())) { unsigned VirtReg = MO.getReg(); unsigned PhysReg = VRM.getPhys(VirtReg); if (VRM.hasStackSlot(VirtReg)) { int StackSlot = VRM.getStackSlot(VirtReg); const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(VirtReg); if (MO.isUse() && std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg) == LoadedRegs.end()) { MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC); LoadedRegs.push_back(VirtReg); ++NumLoads; DEBUG(std::cerr << '\t' << *prior(MII)); } if (MO.isDef()) { MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC); ++NumStores; } } PhysRegsUsed[PhysReg] = true; MI.SetMachineOperandReg(i, PhysReg); } else { PhysRegsUsed[MO.getReg()] = true; } } DEBUG(std::cerr << '\t' << MI); LoadedRegs.clear(); } } return true; } //===----------------------------------------------------------------------===// // Local Spiller Implementation //===----------------------------------------------------------------------===// namespace { /// LocalSpiller - This spiller does a simple pass over the machine basic /// block to attempt to keep spills in registers as much as possible for /// blocks that have low register pressure (the vreg may be spilled due to /// register pressure in other blocks). class LocalSpiller : public Spiller { const MRegisterInfo *MRI; const TargetInstrInfo *TII; public: bool runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM) { MRI = MF.getTarget().getRegisterInfo(); TII = MF.getTarget().getInstrInfo(); DEBUG(std::cerr << "\n**** Local spiller rewriting function '" << MF.getFunction()->getName() << "':\n"); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) RewriteMBB(*MBB, VRM); return true; } private: void RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM); void ClobberPhysReg(unsigned PR, std::map &SpillSlots, std::multimap &PhysRegs); void ClobberPhysRegOnly(unsigned PR, std::map &SpillSlots, std::multimap &PhysRegs); void ModifyStackSlot(int Slot, std::map &SpillSlots, std::multimap &PhysRegs); }; } /// AvailableSpills - As the local spiller is scanning and rewriting an MBB from /// top down, keep track of which spills slots are available in each register. /// /// Note that not all physregs are created equal here. In particular, some /// physregs are reloads that we are allowed to clobber or ignore at any time. /// Other physregs are values that the register allocated program is using that /// we cannot CHANGE, but we can read if we like. We keep track of this on a /// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable /// entries. The predicate 'canClobberPhysReg()' checks this bit and /// addAvailable sets it if. class AvailableSpills { const MRegisterInfo *MRI; const TargetInstrInfo *TII; // SpillSlotsAvailable - This map keeps track of all of the spilled virtual // register values that are still available, due to being loaded or stored to, // but not invalidated yet. std::map SpillSlotsAvailable; // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating // which stack slot values are currently held by a physreg. This is used to // invalidate entries in SpillSlotsAvailable when a physreg is modified. std::multimap PhysRegsAvailable; void ClobberPhysRegOnly(unsigned PhysReg); public: AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii) : MRI(mri), TII(tii) { } /// getSpillSlotPhysReg - If the specified stack slot is available in a /// physical register, return that PhysReg, otherwise return 0. unsigned getSpillSlotPhysReg(int Slot) const { std::map::const_iterator I = SpillSlotsAvailable.find(Slot); if (I != SpillSlotsAvailable.end()) return I->second >> 1; // Remove the CanClobber bit. return 0; } const MRegisterInfo *getRegInfo() const { return MRI; } /// addAvailable - Mark that the specified stack slot is available in the /// specified physreg. If CanClobber is true, the physreg can be modified at /// any time without changing the semantics of the program. void addAvailable(int Slot, unsigned Reg, bool CanClobber = true) { // If this stack slot is thought to be available in some other physreg, // remove its record. ModifyStackSlot(Slot); PhysRegsAvailable.insert(std::make_pair(Reg, Slot)); SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber; DEBUG(std::cerr << "Remembering SS#" << Slot << " in physreg " << MRI->getName(Reg) << "\n"); } /// canClobberPhysReg - Return true if the spiller is allowed to change the /// value of the specified stackslot register if it desires. The specified /// stack slot must be available in a physreg for this query to make sense. bool canClobberPhysReg(int Slot) const { assert(SpillSlotsAvailable.count(Slot) && "Slot not available!"); return SpillSlotsAvailable.find(Slot)->second & 1; } /// ClobberPhysReg - This is called when the specified physreg changes /// value. We use this to invalidate any info about stuff we thing lives in /// it and any of its aliases. void ClobberPhysReg(unsigned PhysReg); /// ModifyStackSlot - This method is called when the value in a stack slot /// changes. This removes information about which register the previous value /// for this slot lives in (as the previous value is dead now). void ModifyStackSlot(int Slot); }; /// ClobberPhysRegOnly - This is called when the specified physreg changes /// value. We use this to invalidate any info about stuff we thing lives in it. void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { std::multimap::iterator I = PhysRegsAvailable.lower_bound(PhysReg); while (I != PhysRegsAvailable.end() && I->first == PhysReg) { int Slot = I->second; PhysRegsAvailable.erase(I++); assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg && "Bidirectional map mismatch!"); SpillSlotsAvailable.erase(Slot); DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg) << " clobbered, invalidating SS#" << Slot << "\n"); } } /// ClobberPhysReg - This is called when the specified physreg changes /// value. We use this to invalidate any info about stuff we thing lives in /// it and any of its aliases. void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS) ClobberPhysRegOnly(*AS); ClobberPhysRegOnly(PhysReg); } /// ModifyStackSlot - This method is called when the value in a stack slot /// changes. This removes information about which register the previous value /// for this slot lives in (as the previous value is dead now). void AvailableSpills::ModifyStackSlot(int Slot) { std::map::iterator It = SpillSlotsAvailable.find(Slot); if (It == SpillSlotsAvailable.end()) return; unsigned Reg = It->second >> 1; SpillSlotsAvailable.erase(It); // This register may hold the value of multiple stack slots, only remove this // stack slot from the set of values the register contains. std::multimap::iterator I = PhysRegsAvailable.lower_bound(Reg); for (; ; ++I) { assert(I != PhysRegsAvailable.end() && I->first == Reg && "Map inverse broken!"); if (I->second == Slot) break; } PhysRegsAvailable.erase(I); } // ReusedOp - For each reused operand, we keep track of a bit of information, in // case we need to rollback upon processing a new operand. See comments below. namespace { struct ReusedOp { // The MachineInstr operand that reused an available value. unsigned Operand; // StackSlot - The spill slot of the value being reused. unsigned StackSlot; // PhysRegReused - The physical register the value was available in. unsigned PhysRegReused; // AssignedPhysReg - The physreg that was assigned for use by the reload. unsigned AssignedPhysReg; // VirtReg - The virtual register itself. unsigned VirtReg; ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, unsigned vreg) : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr), VirtReg(vreg) {} }; /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that /// is reused instead of reloaded. class ReuseInfo { MachineInstr &MI; std::vector Reuses; public: ReuseInfo(MachineInstr &mi) : MI(mi) {} bool hasReuses() const { return !Reuses.empty(); } /// addReuse - If we choose to reuse a virtual register that is already /// available instead of reloading it, remember that we did so. void addReuse(unsigned OpNo, unsigned StackSlot, unsigned PhysRegReused, unsigned AssignedPhysReg, unsigned VirtReg) { // If the reload is to the assigned register anyway, no undo will be // required. if (PhysRegReused == AssignedPhysReg) return; // Otherwise, remember this. Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused, AssignedPhysReg, VirtReg)); } /// GetRegForReload - We are about to emit a reload into PhysReg. If there /// is some other operand that is using the specified register, either pick /// a new register to use, or evict the previous reload and use this reg. unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, AvailableSpills &Spills, std::map &MaybeDeadStores) { if (Reuses.empty()) return PhysReg; // This is most often empty. for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { ReusedOp &Op = Reuses[ro]; // If we find some other reuse that was supposed to use this register // exactly for its reload, we can change this reload to use ITS reload // register. if (Op.PhysRegReused == PhysReg) { // Yup, use the reload register that we didn't use before. unsigned NewReg = Op.AssignedPhysReg; // Remove the record for the previous reuse. We know it can never be // invalidated now. Reuses.erase(Reuses.begin()+ro); return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores); } else { // Otherwise, we might also have a problem if a previously reused // value aliases the new register. If so, codegen the previous reload // and use this one. unsigned PRRU = Op.PhysRegReused; const MRegisterInfo *MRI = Spills.getRegInfo(); if (MRI->areAliases(PRRU, PhysReg)) { // Okay, we found out that an alias of a reused register // was used. This isn't good because it means we have // to undo a previous reuse. MachineBasicBlock *MBB = MI->getParent(); const TargetRegisterClass *AliasRC = MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg); // Copy Op out of the vector and remove it, we're going to insert an // explicit load for it. ReusedOp NewOp = Op; Reuses.erase(Reuses.begin()+ro); // Ok, we're going to try to reload the assigned physreg into the // slot that we were supposed to in the first place. However, that // register could hold a reuse. Check to see if it conflicts or // would prefer us to use a different register. unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg, MI, Spills, MaybeDeadStores); MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg, NewOp.StackSlot, AliasRC); Spills.ClobberPhysReg(NewPhysReg); Spills.ClobberPhysReg(NewOp.PhysRegReused); // Any stores to this stack slot are not dead anymore. MaybeDeadStores.erase(NewOp.StackSlot); MI->SetMachineOperandReg(NewOp.Operand, NewPhysReg); Spills.addAvailable(NewOp.StackSlot, NewPhysReg); ++NumLoads; DEBUG(MachineBasicBlock::iterator MII = MI; std::cerr << '\t' << *prior(MII)); DEBUG(std::cerr << "Reuse undone!\n"); --NumReused; // Finally, PhysReg is now available, go ahead and use it. return PhysReg; } } } return PhysReg; } }; } /// rewriteMBB - Keep track of which spills are available even after the /// register allocator is done with them. If possible, avoid reloading vregs. void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM) { DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n"); // Spills - Keep track of which spilled values are available in physregs so // that we can choose to reuse the physregs instead of emitting reloads. AvailableSpills Spills(MRI, TII); // DefAndUseVReg - When we see a def&use operand that is spilled, keep track // of it. ".first" is the machine operand index (should always be 0 for now), // and ".second" is the virtual register that is spilled. std::vector > DefAndUseVReg; // MaybeDeadStores - When we need to write a value back into a stack slot, // keep track of the inserted store. If the stack slot value is never read // (because the value was used from some available register, for example), and // subsequently stored to, the original store is dead. This map keeps track // of inserted stores that are not used. If we see a subsequent store to the // same stack slot, the original store is deleted. std::map MaybeDeadStores; bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs(); for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); MII != E; ) { MachineInstr &MI = *MII; MachineBasicBlock::iterator NextMII = MII; ++NextMII; /// ReusedOperands - Keep track of operand reuse in case we need to undo /// reuse. ReuseInfo ReusedOperands(MI); DefAndUseVReg.clear(); // Process all of the spilled uses and all non spilled reg references. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isRegister() || MO.getReg() == 0) continue; // Ignore non-register operands. if (MRegisterInfo::isPhysicalRegister(MO.getReg())) { // Ignore physregs for spilling, but remember that it is used by this // function. PhysRegsUsed[MO.getReg()] = true; continue; } assert(MRegisterInfo::isVirtualRegister(MO.getReg()) && "Not a virtual or a physical register?"); unsigned VirtReg = MO.getReg(); if (!VRM.hasStackSlot(VirtReg)) { // This virtual register was assigned a physreg! unsigned Phys = VRM.getPhys(VirtReg); PhysRegsUsed[Phys] = true; MI.SetMachineOperandReg(i, Phys); continue; } // This virtual register is now known to be a spilled value. if (!MO.isUse()) continue; // Handle defs in the loop below (handle use&def here though) // If this is both a def and a use, we need to emit a store to the // stack slot after the instruction. Keep track of D&U operands // because we are about to change it to a physreg here. if (MO.isDef()) { // Remember that this was a def-and-use operand, and that the // stack slot is live after this instruction executes. DefAndUseVReg.push_back(std::make_pair(i, VirtReg)); } int StackSlot = VRM.getStackSlot(VirtReg); unsigned PhysReg; // Check to see if this stack slot is available. if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) { // Don't reuse it for a def&use operand if we aren't allowed to change // the physreg! if (!MO.isDef() || Spills.canClobberPhysReg(StackSlot)) { // If this stack slot value is already available, reuse it! DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg " << MRI->getName(PhysReg) << " for vreg" << VirtReg <<" instead of reloading into physreg " << MRI->getName(VRM.getPhys(VirtReg)) << "\n"); MI.SetMachineOperandReg(i, PhysReg); // The only technical detail we have is that we don't know that // PhysReg won't be clobbered by a reloaded stack slot that occurs // later in the instruction. In particular, consider 'op V1, V2'. // If V1 is available in physreg R0, we would choose to reuse it // here, instead of reloading it into the register the allocator // indicated (say R1). However, V2 might have to be reloaded // later, and it might indicate that it needs to live in R0. When // this occurs, we need to have information available that // indicates it is safe to use R1 for the reload instead of R0. // // To further complicate matters, we might conflict with an alias, // or R0 and R1 might not be compatible with each other. In this // case, we actually insert a reload for V1 in R1, ensuring that // we can get at R0 or its alias. ReusedOperands.addReuse(i, StackSlot, PhysReg, VRM.getPhys(VirtReg), VirtReg); ++NumReused; continue; } // Otherwise we have a situation where we have a two-address instruction // whose mod/ref operand needs to be reloaded. This reload is already // available in some register "PhysReg", but if we used PhysReg as the // operand to our 2-addr instruction, the instruction would modify // PhysReg. This isn't cool if something later uses PhysReg and expects // to get its initial value. // // To avoid this problem, and to avoid doing a load right after a store, // we emit a copy from PhysReg into the designated register for this // operand. unsigned DesignatedReg = VRM.getPhys(VirtReg); assert(DesignatedReg && "Must map virtreg to physreg!"); // Note that, if we reused a register for a previous operand, the // register we want to reload into might not actually be // available. If this occurs, use the register indicated by the // reuser. if (ReusedOperands.hasReuses()) DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, Spills, MaybeDeadStores); // If the mapped designated register is actually the physreg we have // incoming, we don't need to inserted a dead copy. if (DesignatedReg == PhysReg) { // If this stack slot value is already available, reuse it! DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg " << MRI->getName(PhysReg) << " for vreg" << VirtReg << " instead of reloading into same physreg.\n"); MI.SetMachineOperandReg(i, PhysReg); ++NumReused; continue; } const TargetRegisterClass* RC = MBB.getParent()->getSSARegMap()->getRegClass(VirtReg); PhysRegsUsed[DesignatedReg] = true; MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC); // This invalidates DesignatedReg. Spills.ClobberPhysReg(DesignatedReg); Spills.addAvailable(StackSlot, DesignatedReg); MI.SetMachineOperandReg(i, DesignatedReg); DEBUG(std::cerr << '\t' << *prior(MII)); ++NumReused; continue; } // Otherwise, reload it and remember that we have it. PhysReg = VRM.getPhys(VirtReg); assert(PhysReg && "Must map virtreg to physreg!"); const TargetRegisterClass* RC = MBB.getParent()->getSSARegMap()->getRegClass(VirtReg); // Note that, if we reused a register for a previous operand, the // register we want to reload into might not actually be // available. If this occurs, use the register indicated by the // reuser. if (ReusedOperands.hasReuses()) PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, Spills, MaybeDeadStores); PhysRegsUsed[PhysReg] = true; MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC); // This invalidates PhysReg. Spills.ClobberPhysReg(PhysReg); // Any stores to this stack slot are not dead anymore. MaybeDeadStores.erase(StackSlot); Spills.addAvailable(StackSlot, PhysReg); ++NumLoads; MI.SetMachineOperandReg(i, PhysReg); DEBUG(std::cerr << '\t' << *prior(MII)); } // Loop over all of the implicit defs, clearing them from our available // sets. for (const unsigned *ImpDef = TII->getImplicitDefs(MI.getOpcode()); *ImpDef; ++ImpDef) { PhysRegsUsed[*ImpDef] = true; Spills.ClobberPhysReg(*ImpDef); } DEBUG(std::cerr << '\t' << MI); // If we have folded references to memory operands, make sure we clear all // physical registers that may contain the value of the spilled virtual // register VirtRegMap::MI2VirtMapTy::const_iterator I, End; for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { DEBUG(std::cerr << "Folded vreg: " << I->second.first << " MR: " << I->second.second); unsigned VirtReg = I->second.first; VirtRegMap::ModRef MR = I->second.second; if (!VRM.hasStackSlot(VirtReg)) { DEBUG(std::cerr << ": No stack slot!\n"); continue; } int SS = VRM.getStackSlot(VirtReg); DEBUG(std::cerr << " - StackSlot: " << SS << "\n"); // If this folded instruction is just a use, check to see if it's a // straight load from the virt reg slot. if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { int FrameIdx; if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { // If this spill slot is available, turn it into a copy (or nothing) // instead of leaving it as a load! unsigned InReg; if (FrameIdx == SS && (InReg = Spills.getSpillSlotPhysReg(SS))) { DEBUG(std::cerr << "Promoted Load To Copy: " << MI); MachineFunction &MF = *MBB.getParent(); if (DestReg != InReg) { MRI->copyRegToReg(MBB, &MI, DestReg, InReg, MF.getSSARegMap()->getRegClass(VirtReg)); // Revisit the copy so we make sure to notice the effects of the // operation on the destreg (either needing to RA it if it's // virtual or needing to clobber any values if it's physical). NextMII = &MI; --NextMII; // backtrack to the copy. } MBB.erase(&MI); goto ProcessNextInst; } } } // If this reference is not a use, any previous store is now dead. // Otherwise, the store to this stack slot is not dead anymore. std::map::iterator MDSI = MaybeDeadStores.find(SS); if (MDSI != MaybeDeadStores.end()) { if (MR & VirtRegMap::isRef) // Previous store is not dead. MaybeDeadStores.erase(MDSI); else { // If we get here, the store is dead, nuke it now. assert(!(MR & VirtRegMap::isRef) && "Can't be modref!"); // Don't nuke it if the value is needed in another block. if (!SpillerCheckLiveOut || !(MR & VirtRegMap::isLiveOut)) { DEBUG(std::cerr << " Killed store:\t" << *MDSI->second); MBB.erase(MDSI->second); MaybeDeadStores.erase(MDSI); ++NumDSE; } } } // If the spill slot value is available, and this is a new definition of // the value, the value is not available anymore. if (MR & VirtRegMap::isMod) { // Notice that the value in this stack slot has been modified. Spills.ModifyStackSlot(SS); // If this is *just* a mod of the value, check to see if this is just a // store to the spill slot (i.e. the spill got merged into the copy). If // so, realize that the vreg is available now, and add the store to the // MaybeDeadStore info. int StackSlot; if (!(MR & VirtRegMap::isRef)) { if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { assert(MRegisterInfo::isPhysicalRegister(SrcReg) && "Src hasn't been allocated yet?"); // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark // this as a potentially dead store in case there is a subsequent // store into the stack slot without a read from it. MaybeDeadStores[StackSlot] = &MI; // If the stack slot value was previously available in some other // register, change it now. Otherwise, make the register available, // in PhysReg. Spills.addAvailable(StackSlot, SrcReg, false /*don't clobber*/); } } } } // Process all of the spilled defs. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (MO.isRegister() && MO.getReg() && MO.isDef()) { unsigned VirtReg = MO.getReg(); if (!MRegisterInfo::isVirtualRegister(VirtReg)) { // Check to see if this is a def-and-use vreg operand that we do need // to insert a store for. bool OpTakenCareOf = false; if (MO.isUse() && !DefAndUseVReg.empty()) { for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau) if (DefAndUseVReg[dau].first == i) { VirtReg = DefAndUseVReg[dau].second; OpTakenCareOf = true; break; } } if (!OpTakenCareOf) { // Check to see if this is a noop copy. If so, eliminate the // instruction before considering the dest reg to be changed. unsigned Src, Dst; if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) { ++NumDCE; DEBUG(std::cerr << "Removing now-noop copy: " << MI); MBB.erase(&MI); goto ProcessNextInst; } Spills.ClobberPhysReg(VirtReg); continue; } } // The only vregs left are stack slot definitions. int StackSlot = VRM.getStackSlot(VirtReg); const TargetRegisterClass *RC = MBB.getParent()->getSSARegMap()->getRegClass(VirtReg); unsigned PhysReg; // If this is a def&use operand, and we used a different physreg for // it than the one assigned, make sure to execute the store from the // correct physical register. if (MO.getReg() == VirtReg) PhysReg = VRM.getPhys(VirtReg); else PhysReg = MO.getReg(); PhysRegsUsed[PhysReg] = true; MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC); DEBUG(std::cerr << "Store:\t" << *next(MII)); MI.SetMachineOperandReg(i, PhysReg); // Check to see if this is a noop copy. If so, eliminate the // instruction before considering the dest reg to be changed. { unsigned Src, Dst; if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) { ++NumDCE; DEBUG(std::cerr << "Removing now-noop copy: " << MI); MBB.erase(&MI); goto ProcessNextInst; } } // If there is a dead store to this stack slot, nuke it now. MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; if (LastStore) { DEBUG(std::cerr << " Killed store:\t" << *LastStore); ++NumDSE; MBB.erase(LastStore); } LastStore = next(MII); // If the stack slot value was previously available in some other // register, change it now. Otherwise, make the register available, // in PhysReg. Spills.ModifyStackSlot(StackSlot); Spills.ClobberPhysReg(PhysReg); Spills.addAvailable(StackSlot, PhysReg); ++NumStores; } } ProcessNextInst: MII = NextMII; } } llvm::Spiller* llvm::createSpiller() { switch (SpillerOpt) { default: assert(0 && "Unreachable!"); case local: return new LocalSpiller(); case simple: return new SimpleSpiller(); } }