//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the default implementation of the Alias Analysis interface // that simply implements a few identities (two different globals cannot alias, // etc), but otherwise does no analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Passes.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Operator.h" #include "llvm/Pass.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/ErrorHandling.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // Useful predicates //===----------------------------------------------------------------------===// /// isKnownNonNull - Return true if we know that the specified value is never /// null. static bool isKnownNonNull(const Value *V) { // Alloca never returns null, malloc might. if (isa(V)) return true; // A byval argument is never null. if (const Argument *A = dyn_cast(V)) return A->hasByValAttr(); // Global values are not null unless extern weak. if (const GlobalValue *GV = dyn_cast(V)) return !GV->hasExternalWeakLinkage(); return false; } /// isNonEscapingLocalObject - Return true if the pointer is to a function-local /// object that never escapes from the function. static bool isNonEscapingLocalObject(const Value *V, bool Interprocedural) { // If this is a local allocation, check to see if it escapes. if (isa(V) || (!Interprocedural && isNoAliasCall(V))) // Set StoreCaptures to True so that we can assume in our callers that the // pointer is not the result of a load instruction. Currently // PointerMayBeCaptured doesn't have any special analysis for the // StoreCaptures=false case; if it did, our callers could be refined to be // more precise. return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); // If this is an argument that corresponds to a byval or noalias argument, // then it has not escaped before entering the function. Check if it escapes // inside the function. if (!Interprocedural) if (const Argument *A = dyn_cast(V)) if (A->hasByValAttr() || A->hasNoAliasAttr()) { // Don't bother analyzing arguments already known not to escape. if (A->hasNoCaptureAttr()) return true; return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); } return false; } /// isEscapeSource - Return true if the pointer is one which would have /// been considered an escape by isNonEscapingLocalObject. static bool isEscapeSource(const Value *V, bool Interprocedural) { if (!Interprocedural) if (isa(V) || isa(V) || isa(V)) return true; // The load case works because isNonEscapingLocalObject considers all // stores to be escapes (it passes true for the StoreCaptures argument // to PointerMayBeCaptured). if (isa(V)) return true; return false; } /// isObjectSmallerThan - Return true if we can prove that the object specified /// by V is smaller than Size. static bool isObjectSmallerThan(const Value *V, unsigned Size, const TargetData &TD) { const Type *AccessTy; if (const GlobalVariable *GV = dyn_cast(V)) { AccessTy = GV->getType()->getElementType(); } else if (const AllocaInst *AI = dyn_cast(V)) { if (!AI->isArrayAllocation()) AccessTy = AI->getType()->getElementType(); else return false; } else if (const CallInst* CI = extractMallocCall(V)) { if (!isArrayMalloc(V, &TD)) // The size is the argument to the malloc call. if (const ConstantInt* C = dyn_cast(CI->getArgOperand(0))) return (C->getZExtValue() < Size); return false; } else if (const Argument *A = dyn_cast(V)) { if (A->hasByValAttr()) AccessTy = cast(A->getType())->getElementType(); else return false; } else { return false; } if (AccessTy->isSized()) return TD.getTypeAllocSize(AccessTy) < Size; return false; } //===----------------------------------------------------------------------===// // NoAA Pass //===----------------------------------------------------------------------===// namespace { /// NoAA - This class implements the -no-aa pass, which always returns "I /// don't know" for alias queries. NoAA is unlike other alias analysis /// implementations, in that it does not chain to a previous analysis. As /// such it doesn't follow many of the rules that other alias analyses must. /// struct NoAA : public ImmutablePass, public AliasAnalysis { static char ID; // Class identification, replacement for typeinfo NoAA() : ImmutablePass(&ID) {} explicit NoAA(void *PID) : ImmutablePass(PID) { } virtual void getAnalysisUsage(AnalysisUsage &AU) const { } virtual void initializePass() { TD = getAnalysisIfAvailable(); } virtual AliasResult alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { return MayAlias; } virtual void getArgumentAccesses(Function *F, CallSite CS, std::vector &Info) { llvm_unreachable("This method may not be called on this function!"); } virtual bool pointsToConstantMemory(const Value *P) { return false; } virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) { return ModRef; } virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) { return ModRef; } virtual void deleteValue(Value *V) {} virtual void copyValue(Value *From, Value *To) {} /// getAdjustedAnalysisPointer - This method is used when a pass implements /// an analysis interface through multiple inheritance. If needed, it should /// override this to adjust the this pointer as needed for the specified pass /// info. virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) { if (PI->isPassID(&AliasAnalysis::ID)) return (AliasAnalysis*)this; return this; } }; } // End of anonymous namespace // Register this pass... char NoAA::ID = 0; static RegisterPass U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true); // Declare that we implement the AliasAnalysis interface static RegisterAnalysisGroup V(U); ImmutablePass *llvm::createNoAAPass() { return new NoAA(); } //===----------------------------------------------------------------------===// // BasicAliasAnalysis Pass //===----------------------------------------------------------------------===// #ifdef XDEBUG static const Function *getParent(const Value *V) { if (const Instruction *inst = dyn_cast(V)) return inst->getParent()->getParent(); if (const Argument *arg = dyn_cast(V)) return arg->getParent(); return NULL; } static bool sameParent(const Value *O1, const Value *O2) { const Function *F1 = getParent(O1); const Function *F2 = getParent(O2); return !F1 || !F2 || F1 == F2; } #endif namespace { /// BasicAliasAnalysis - This is the default alias analysis implementation. /// Because it doesn't chain to a previous alias analysis (like -no-aa), it /// derives from the NoAA class. struct BasicAliasAnalysis : public NoAA { /// Interprocedural - Flag for "interprocedural" mode, where we must /// support queries of values which live in different functions. bool Interprocedural; static char ID; // Class identification, replacement for typeinfo BasicAliasAnalysis() : NoAA(&ID), Interprocedural(false) {} BasicAliasAnalysis(void *PID, bool interprocedural) : NoAA(PID), Interprocedural(interprocedural) {} AliasResult alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { assert(Visited.empty() && "Visited must be cleared after use!"); #ifdef XDEBUG assert((Interprocedural || sameParent(V1, V2)) && "BasicAliasAnalysis (-basicaa) doesn't support interprocedural " "queries; use InterproceduralAliasAnalysis " "(-interprocedural-basic-aa) instead."); #endif AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size); Visited.clear(); return Alias; } ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); ModRefResult getModRefInfo(CallSite CS1, CallSite CS2); /// pointsToConstantMemory - Chase pointers until we find a (constant /// global) or not. bool pointsToConstantMemory(const Value *P); /// getAdjustedAnalysisPointer - This method is used when a pass implements /// an analysis interface through multiple inheritance. If needed, it should /// override this to adjust the this pointer as needed for the specified pass /// info. virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) { if (PI->isPassID(&AliasAnalysis::ID)) return (AliasAnalysis*)this; return this; } private: // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP(). SmallPtrSet Visited; // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP // instruction against another. AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size, const Value *V2, unsigned V2Size, const Value *UnderlyingV1, const Value *UnderlyingV2); // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI // instruction against another. AliasResult aliasPHI(const PHINode *PN, unsigned PNSize, const Value *V2, unsigned V2Size); /// aliasSelect - Disambiguate a Select instruction against another value. AliasResult aliasSelect(const SelectInst *SI, unsigned SISize, const Value *V2, unsigned V2Size); AliasResult aliasCheck(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size); }; } // End of anonymous namespace // Register this pass... char BasicAliasAnalysis::ID = 0; static RegisterPass X("basicaa", "Basic Alias Analysis (default AA impl)", false, true); // Declare that we implement the AliasAnalysis interface static RegisterAnalysisGroup Y(X); ImmutablePass *llvm::createBasicAliasAnalysisPass() { return new BasicAliasAnalysis(); } /// pointsToConstantMemory - Chase pointers until we find a (constant /// global) or not. bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) { if (const GlobalVariable *GV = dyn_cast(P->getUnderlyingObject())) // Note: this doesn't require GV to be "ODR" because it isn't legal for a // global to be marked constant in some modules and non-constant in others. // GV may even be a declaration, not a definition. return GV->isConstant(); return false; } /// getModRefInfo - Check to see if the specified callsite can clobber the /// specified memory object. Since we only look at local properties of this /// function, we really can't say much about this query. We do, however, use /// simple "address taken" analysis on local objects. AliasAnalysis::ModRefResult BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { const Value *Object = P->getUnderlyingObject(); // If this is a tail call and P points to a stack location, we know that // the tail call cannot access or modify the local stack. // We cannot exclude byval arguments here; these belong to the caller of // the current function not to the current function, and a tail callee // may reference them. if (isa(Object)) if (CallInst *CI = dyn_cast(CS.getInstruction())) if (CI->isTailCall()) return NoModRef; // If the pointer is to a locally allocated object that does not escape, // then the call can not mod/ref the pointer unless the call takes the pointer // as an argument, and itself doesn't capture it. if (!isa(Object) && CS.getInstruction() != Object && isNonEscapingLocalObject(Object, Interprocedural)) { bool PassedAsArg = false; unsigned ArgNo = 0; for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); CI != CE; ++CI, ++ArgNo) { // Only look at the no-capture pointer arguments. if (!(*CI)->getType()->isPointerTy() || !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)) continue; // If this is a no-capture pointer argument, see if we can tell that it // is impossible to alias the pointer we're checking. If not, we have to // assume that the call could touch the pointer, even though it doesn't // escape. if (!isNoAlias(cast(CI), ~0U, P, ~0U)) { PassedAsArg = true; break; } } if (!PassedAsArg) return NoModRef; } // Finally, handle specific knowledge of intrinsics. IntrinsicInst *II = dyn_cast(CS.getInstruction()); if (II == 0) return AliasAnalysis::getModRefInfo(CS, P, Size); switch (II->getIntrinsicID()) { default: break; case Intrinsic::memcpy: case Intrinsic::memmove: { unsigned Len = ~0U; if (ConstantInt *LenCI = dyn_cast(II->getArgOperand(2))) Len = LenCI->getZExtValue(); Value *Dest = II->getArgOperand(0); Value *Src = II->getArgOperand(1); if (isNoAlias(Dest, Len, P, Size)) { if (isNoAlias(Src, Len, P, Size)) return NoModRef; return Ref; } break; } case Intrinsic::memset: // Since memset is 'accesses arguments' only, the AliasAnalysis base class // will handle it for the variable length case. if (ConstantInt *LenCI = dyn_cast(II->getArgOperand(2))) { unsigned Len = LenCI->getZExtValue(); Value *Dest = II->getArgOperand(0); if (isNoAlias(Dest, Len, P, Size)) return NoModRef; } break; case Intrinsic::atomic_cmp_swap: case Intrinsic::atomic_swap: case Intrinsic::atomic_load_add: case Intrinsic::atomic_load_sub: case Intrinsic::atomic_load_and: case Intrinsic::atomic_load_nand: case Intrinsic::atomic_load_or: case Intrinsic::atomic_load_xor: case Intrinsic::atomic_load_max: case Intrinsic::atomic_load_min: case Intrinsic::atomic_load_umax: case Intrinsic::atomic_load_umin: if (TD) { Value *Op1 = II->getArgOperand(0); unsigned Op1Size = TD->getTypeStoreSize(Op1->getType()); if (isNoAlias(Op1, Op1Size, P, Size)) return NoModRef; } break; case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::invariant_start: { unsigned PtrSize = cast(II->getArgOperand(0))->getZExtValue(); if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size)) return NoModRef; break; } case Intrinsic::invariant_end: { unsigned PtrSize = cast(II->getArgOperand(1))->getZExtValue(); if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size)) return NoModRef; break; } } // The AliasAnalysis base class has some smarts, lets use them. return AliasAnalysis::getModRefInfo(CS, P, Size); } AliasAnalysis::ModRefResult BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) { // If CS1 or CS2 are readnone, they don't interact. ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1); if (CS1B == DoesNotAccessMemory) return NoModRef; ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2); if (CS2B == DoesNotAccessMemory) return NoModRef; // If they both only read from memory, just return ref. if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory) return Ref; // Otherwise, fall back to NoAA (mod+ref). return NoAA::getModRefInfo(CS1, CS2); } /// GetIndiceDifference - Dest and Src are the variable indices from two /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic /// difference between the two pointers. static void GetIndiceDifference( SmallVectorImpl > &Dest, const SmallVectorImpl > &Src) { if (Src.empty()) return; for (unsigned i = 0, e = Src.size(); i != e; ++i) { const Value *V = Src[i].first; int64_t Scale = Src[i].second; // Find V in Dest. This is N^2, but pointer indices almost never have more // than a few variable indexes. for (unsigned j = 0, e = Dest.size(); j != e; ++j) { if (Dest[j].first != V) continue; // If we found it, subtract off Scale V's from the entry in Dest. If it // goes to zero, remove the entry. if (Dest[j].second != Scale) Dest[j].second -= Scale; else Dest.erase(Dest.begin()+j); Scale = 0; break; } // If we didn't consume this entry, add it to the end of the Dest list. if (Scale) Dest.push_back(std::make_pair(V, -Scale)); } } /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction /// against another pointer. We know that V1 is a GEP, but we don't know /// anything about V2. UnderlyingV1 is GEP1->getUnderlyingObject(), /// UnderlyingV2 is the same for V2. /// AliasAnalysis::AliasResult BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size, const Value *V2, unsigned V2Size, const Value *UnderlyingV1, const Value *UnderlyingV2) { // If this GEP has been visited before, we're on a use-def cycle. // Such cycles are only valid when PHI nodes are involved or in unreachable // code. The visitPHI function catches cycles containing PHIs, but there // could still be a cycle without PHIs in unreachable code. if (!Visited.insert(GEP1)) return MayAlias; int64_t GEP1BaseOffset; SmallVector, 4> GEP1VariableIndices; // If we have two gep instructions with must-alias'ing base pointers, figure // out if the indexes to the GEP tell us anything about the derived pointer. if (const GEPOperator *GEP2 = dyn_cast(V2)) { // Do the base pointers alias? AliasResult BaseAlias = aliasCheck(UnderlyingV1, ~0U, UnderlyingV2, ~0U); // If we get a No or May, then return it immediately, no amount of analysis // will improve this situation. if (BaseAlias != MustAlias) return BaseAlias; // Otherwise, we have a MustAlias. Since the base pointers alias each other // exactly, see if the computed offset from the common pointer tells us // about the relation of the resulting pointer. const Value *GEP1BasePtr = DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); int64_t GEP2BaseOffset; SmallVector, 4> GEP2VariableIndices; const Value *GEP2BasePtr = DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); // If DecomposeGEPExpression isn't able to look all the way through the // addressing operation, we must not have TD and this is too complex for us // to handle without it. if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { assert(TD == 0 && "DecomposeGEPExpression and getUnderlyingObject disagree!"); return MayAlias; } // Subtract the GEP2 pointer from the GEP1 pointer to find out their // symbolic difference. GEP1BaseOffset -= GEP2BaseOffset; GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices); } else { // Check to see if these two pointers are related by the getelementptr // instruction. If one pointer is a GEP with a non-zero index of the other // pointer, we know they cannot alias. // If both accesses are unknown size, we can't do anything useful here. if (V1Size == ~0U && V2Size == ~0U) return MayAlias; AliasResult R = aliasCheck(UnderlyingV1, ~0U, V2, V2Size); if (R != MustAlias) // If V2 may alias GEP base pointer, conservatively returns MayAlias. // If V2 is known not to alias GEP base pointer, then the two values // cannot alias per GEP semantics: "A pointer value formed from a // getelementptr instruction is associated with the addresses associated // with the first operand of the getelementptr". return R; const Value *GEP1BasePtr = DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); // If DecomposeGEPExpression isn't able to look all the way through the // addressing operation, we must not have TD and this is too complex for us // to handle without it. if (GEP1BasePtr != UnderlyingV1) { assert(TD == 0 && "DecomposeGEPExpression and getUnderlyingObject disagree!"); return MayAlias; } } // In the two GEP Case, if there is no difference in the offsets of the // computed pointers, the resultant pointers are a must alias. This // hapens when we have two lexically identical GEP's (for example). // // In the other case, if we have getelementptr , 0, 0, 0, 0, ... and V2 // must aliases the GEP, the end result is a must alias also. if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) return MustAlias; // If we have a known constant offset, see if this offset is larger than the // access size being queried. If so, and if no variable indices can remove // pieces of this constant, then we know we have a no-alias. For example, // &A[100] != &A. // In order to handle cases like &A[100][i] where i is an out of range // subscript, we have to ignore all constant offset pieces that are a multiple // of a scaled index. Do this by removing constant offsets that are a // multiple of any of our variable indices. This allows us to transform // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1 // provides an offset of 4 bytes (assuming a <= 4 byte access). for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e && GEP1BaseOffset;++i) if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second) GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second; // If our known offset is bigger than the access size, we know we don't have // an alias. if (GEP1BaseOffset) { if (GEP1BaseOffset >= (int64_t)V2Size || GEP1BaseOffset <= -(int64_t)V1Size) return NoAlias; } return MayAlias; } /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select /// instruction against another. AliasAnalysis::AliasResult BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize, const Value *V2, unsigned V2Size) { // If this select has been visited before, we're on a use-def cycle. // Such cycles are only valid when PHI nodes are involved or in unreachable // code. The visitPHI function catches cycles containing PHIs, but there // could still be a cycle without PHIs in unreachable code. if (!Visited.insert(SI)) return MayAlias; // If the values are Selects with the same condition, we can do a more precise // check: just check for aliases between the values on corresponding arms. if (const SelectInst *SI2 = dyn_cast(V2)) if (SI->getCondition() == SI2->getCondition()) { AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SI2->getTrueValue(), V2Size); if (Alias == MayAlias) return MayAlias; AliasResult ThisAlias = aliasCheck(SI->getFalseValue(), SISize, SI2->getFalseValue(), V2Size); if (ThisAlias != Alias) return MayAlias; return Alias; } // If both arms of the Select node NoAlias or MustAlias V2, then returns // NoAlias / MustAlias. Otherwise, returns MayAlias. AliasResult Alias = aliasCheck(V2, V2Size, SI->getTrueValue(), SISize); if (Alias == MayAlias) return MayAlias; // If V2 is visited, the recursive case will have been caught in the // above aliasCheck call, so these subsequent calls to aliasCheck // don't need to assume that V2 is being visited recursively. Visited.erase(V2); AliasResult ThisAlias = aliasCheck(V2, V2Size, SI->getFalseValue(), SISize); if (ThisAlias != Alias) return MayAlias; return Alias; } // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction // against another. AliasAnalysis::AliasResult BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize, const Value *V2, unsigned V2Size) { // The PHI node has already been visited, avoid recursion any further. if (!Visited.insert(PN)) return MayAlias; // If the values are PHIs in the same block, we can do a more precise // as well as efficient check: just check for aliases between the values // on corresponding edges. if (const PHINode *PN2 = dyn_cast(V2)) if (PN2->getParent() == PN->getParent()) { AliasResult Alias = aliasCheck(PN->getIncomingValue(0), PNSize, PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)), V2Size); if (Alias == MayAlias) return MayAlias; for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { AliasResult ThisAlias = aliasCheck(PN->getIncomingValue(i), PNSize, PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size); if (ThisAlias != Alias) return MayAlias; } return Alias; } SmallPtrSet UniqueSrc; SmallVector V1Srcs; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *PV1 = PN->getIncomingValue(i); if (isa(PV1)) // If any of the source itself is a PHI, return MayAlias conservatively // to avoid compile time explosion. The worst possible case is if both // sides are PHI nodes. In which case, this is O(m x n) time where 'm' // and 'n' are the number of PHI sources. return MayAlias; if (UniqueSrc.insert(PV1)) V1Srcs.push_back(PV1); } AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize); // Early exit if the check of the first PHI source against V2 is MayAlias. // Other results are not possible. if (Alias == MayAlias) return MayAlias; // If all sources of the PHI node NoAlias or MustAlias V2, then returns // NoAlias / MustAlias. Otherwise, returns MayAlias. for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { Value *V = V1Srcs[i]; // If V2 is visited, the recursive case will have been caught in the // above aliasCheck call, so these subsequent calls to aliasCheck // don't need to assume that V2 is being visited recursively. Visited.erase(V2); AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize); if (ThisAlias != Alias || ThisAlias == MayAlias) return MayAlias; } return Alias; } // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, // such as array references. // AliasAnalysis::AliasResult BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { // If either of the memory references is empty, it doesn't matter what the // pointer values are. if (V1Size == 0 || V2Size == 0) return NoAlias; // Strip off any casts if they exist. V1 = V1->stripPointerCasts(); V2 = V2->stripPointerCasts(); // Are we checking for alias of the same value? if (V1 == V2) return MustAlias; if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) return NoAlias; // Scalars cannot alias each other // Figure out what objects these things are pointing to if we can. const Value *O1 = V1->getUnderlyingObject(); const Value *O2 = V2->getUnderlyingObject(); // Null values in the default address space don't point to any object, so they // don't alias any other pointer. if (const ConstantPointerNull *CPN = dyn_cast(O1)) if (CPN->getType()->getAddressSpace() == 0) return NoAlias; if (const ConstantPointerNull *CPN = dyn_cast(O2)) if (CPN->getType()->getAddressSpace() == 0) return NoAlias; if (O1 != O2) { // If V1/V2 point to two different objects we know that we have no alias. if (isIdentifiedObject(O1, Interprocedural) && isIdentifiedObject(O2, Interprocedural)) return NoAlias; // Constant pointers can't alias with non-const isIdentifiedObject objects. if ((isa(O1) && isIdentifiedObject(O2, Interprocedural) && !isa(O2)) || (isa(O2) && isIdentifiedObject(O1, Interprocedural) && !isa(O1))) return NoAlias; // Arguments can't alias with local allocations or noalias calls, unless // we have to consider interprocedural aliasing. if (!Interprocedural) if ((isa(O1) && (isa(O2) || isNoAliasCall(O2))) || (isa(O2) && (isa(O1) || isNoAliasCall(O1)))) return NoAlias; // Most objects can't alias null. if ((isa(V2) && isKnownNonNull(O1)) || (isa(V1) && isKnownNonNull(O2))) return NoAlias; } // If the size of one access is larger than the entire object on the other // side, then we know such behavior is undefined and can assume no alias. if (TD) if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) || (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD))) return NoAlias; // If one pointer is the result of a call/invoke or load and the other is a // non-escaping local object, then we know the object couldn't escape to a // point where the call could return it. if (O1 != O2) { if (isEscapeSource(O1, Interprocedural) && isNonEscapingLocalObject(O2, Interprocedural)) return NoAlias; if (isEscapeSource(O2, Interprocedural) && isNonEscapingLocalObject(O1, Interprocedural)) return NoAlias; } // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the // GEP can't simplify, we don't even look at the PHI cases. if (!isa(V1) && isa(V2)) { std::swap(V1, V2); std::swap(V1Size, V2Size); std::swap(O1, O2); } if (const GEPOperator *GV1 = dyn_cast(V1)) return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2); if (isa(V2) && !isa(V1)) { std::swap(V1, V2); std::swap(V1Size, V2Size); } if (const PHINode *PN = dyn_cast(V1)) return aliasPHI(PN, V1Size, V2, V2Size); if (isa(V2) && !isa(V1)) { std::swap(V1, V2); std::swap(V1Size, V2Size); } if (const SelectInst *S1 = dyn_cast(V1)) return aliasSelect(S1, V1Size, V2, V2Size); return MayAlias; } // Make sure that anything that uses AliasAnalysis pulls in this file. DEFINING_FILE_FOR(BasicAliasAnalysis) //===----------------------------------------------------------------------===// // InterproceduralBasicAliasAnalysis Pass //===----------------------------------------------------------------------===// namespace { /// InterproceduralBasicAliasAnalysis - This is similar to basicaa, except /// that it properly supports queries to values which live in different /// functions. /// /// Note that we don't currently take this to the extreme, analyzing all /// call sites of a function to answer a query about an Argument. /// struct InterproceduralBasicAliasAnalysis : public BasicAliasAnalysis { static char ID; // Class identification, replacement for typeinfo InterproceduralBasicAliasAnalysis() : BasicAliasAnalysis(&ID, true) {} }; } // Register this pass... char InterproceduralBasicAliasAnalysis::ID = 0; static RegisterPass W("interprocedural-basic-aa", "Interprocedural Basic Alias Analysis", false, true); // Declare that we implement the AliasAnalysis interface static RegisterAnalysisGroup Z(W); ImmutablePass *llvm::createInterproceduralBasicAliasAnalysisPass() { return new InterproceduralBasicAliasAnalysis(); }