//===-- COFFDumper.cpp - COFF-specific dumper -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file implements the COFF-specific dumper for llvm-readobj. /// //===----------------------------------------------------------------------===// #include "llvm-readobj.h" #include "Error.h" #include "ObjDumper.h" #include "StreamWriter.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/Object/COFF.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/COFF.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Format.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/Win64EH.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/system_error.h" #include #include #include using namespace llvm; using namespace llvm::object; using namespace llvm::Win64EH; namespace { class COFFDumper : public ObjDumper { public: COFFDumper(const llvm::object::COFFObjectFile *Obj, StreamWriter& Writer) : ObjDumper(Writer) , Obj(Obj) { cacheRelocations(); } virtual void printFileHeaders() override; virtual void printSections() override; virtual void printRelocations() override; virtual void printSymbols() override; virtual void printDynamicSymbols() override; virtual void printUnwindInfo() override; private: void printSymbol(symbol_iterator SymI); void printRelocation(section_iterator SecI, const RelocationRef &Reloc); void printDataDirectory(uint32_t Index, const std::string &FieldName); void printX64UnwindInfo(); template void printPEHeader(const PEHeader *Hdr); void printBaseOfDataField(const pe32_header *Hdr); void printBaseOfDataField(const pe32plus_header *Hdr); void printRuntimeFunction( const RuntimeFunction& RTF, uint64_t OffsetInSection, const std::vector &Rels); void printUnwindInfo( const Win64EH::UnwindInfo& UI, uint64_t OffsetInSection, const std::vector &Rels); void printUnwindCode(const Win64EH::UnwindInfo& UI, ArrayRef UCs); void printCodeViewLineTables(section_iterator SecI); void cacheRelocations(); error_code getSectionContents( const std::vector &Rels, uint64_t Offset, ArrayRef &Contents, uint64_t &Addr); error_code getSection( const std::vector &Rels, uint64_t Offset, const coff_section **Section, uint64_t *AddrPtr); typedef DenseMap > RelocMapTy; const llvm::object::COFFObjectFile *Obj; RelocMapTy RelocMap; std::vector EmptyRelocs; }; } // namespace namespace llvm { error_code createCOFFDumper(const object::ObjectFile *Obj, StreamWriter &Writer, std::unique_ptr &Result) { const COFFObjectFile *COFFObj = dyn_cast(Obj); if (!COFFObj) return readobj_error::unsupported_obj_file_format; Result.reset(new COFFDumper(COFFObj, Writer)); return readobj_error::success; } } // namespace llvm // Returns the name of the unwind code. static StringRef getUnwindCodeTypeName(uint8_t Code) { switch(Code) { default: llvm_unreachable("Invalid unwind code"); case UOP_PushNonVol: return "PUSH_NONVOL"; case UOP_AllocLarge: return "ALLOC_LARGE"; case UOP_AllocSmall: return "ALLOC_SMALL"; case UOP_SetFPReg: return "SET_FPREG"; case UOP_SaveNonVol: return "SAVE_NONVOL"; case UOP_SaveNonVolBig: return "SAVE_NONVOL_FAR"; case UOP_SaveXMM128: return "SAVE_XMM128"; case UOP_SaveXMM128Big: return "SAVE_XMM128_FAR"; case UOP_PushMachFrame: return "PUSH_MACHFRAME"; } } // Returns the name of a referenced register. static StringRef getUnwindRegisterName(uint8_t Reg) { switch(Reg) { default: llvm_unreachable("Invalid register"); case 0: return "RAX"; case 1: return "RCX"; case 2: return "RDX"; case 3: return "RBX"; case 4: return "RSP"; case 5: return "RBP"; case 6: return "RSI"; case 7: return "RDI"; case 8: return "R8"; case 9: return "R9"; case 10: return "R10"; case 11: return "R11"; case 12: return "R12"; case 13: return "R13"; case 14: return "R14"; case 15: return "R15"; } } // Calculates the number of array slots required for the unwind code. static unsigned getNumUsedSlots(const UnwindCode &UnwindCode) { switch (UnwindCode.getUnwindOp()) { default: llvm_unreachable("Invalid unwind code"); case UOP_PushNonVol: case UOP_AllocSmall: case UOP_SetFPReg: case UOP_PushMachFrame: return 1; case UOP_SaveNonVol: case UOP_SaveXMM128: return 2; case UOP_SaveNonVolBig: case UOP_SaveXMM128Big: return 3; case UOP_AllocLarge: return (UnwindCode.getOpInfo() == 0) ? 2 : 3; } } // Given a symbol sym this functions returns the address and section of it. static error_code resolveSectionAndAddress(const COFFObjectFile *Obj, const SymbolRef &Sym, const coff_section *&ResolvedSection, uint64_t &ResolvedAddr) { if (error_code EC = Sym.getAddress(ResolvedAddr)) return EC; section_iterator iter(Obj->section_begin()); if (error_code EC = Sym.getSection(iter)) return EC; ResolvedSection = Obj->getCOFFSection(iter); return object_error::success; } // Given a vector of relocations for a section and an offset into this section // the function returns the symbol used for the relocation at the offset. static error_code resolveSymbol(const std::vector &Rels, uint64_t Offset, SymbolRef &Sym) { for (std::vector::const_iterator RelI = Rels.begin(), RelE = Rels.end(); RelI != RelE; ++RelI) { uint64_t Ofs; if (error_code EC = RelI->getOffset(Ofs)) return EC; if (Ofs == Offset) { Sym = *RelI->getSymbol(); return readobj_error::success; } } return readobj_error::unknown_symbol; } // Given a vector of relocations for a section and an offset into this section // the function returns the name of the symbol used for the relocation at the // offset. static error_code resolveSymbolName(const std::vector &Rels, uint64_t Offset, StringRef &Name) { SymbolRef Sym; if (error_code EC = resolveSymbol(Rels, Offset, Sym)) return EC; if (error_code EC = Sym.getName(Name)) return EC; return object_error::success; } static const EnumEntry ImageFileMachineType[] = { LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_UNKNOWN ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_AM33 ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_AMD64 ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_ARM ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_ARMNT ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_EBC ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_I386 ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_IA64 ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_M32R ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_MIPS16 ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_MIPSFPU ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_MIPSFPU16), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_POWERPC ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_POWERPCFP), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_R4000 ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH3 ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH3DSP ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH4 ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH5 ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_THUMB ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_WCEMIPSV2) }; static const EnumEntry ImageFileCharacteristics[] = { LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_RELOCS_STRIPPED ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_EXECUTABLE_IMAGE ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_LINE_NUMS_STRIPPED ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_LOCAL_SYMS_STRIPPED ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_AGGRESSIVE_WS_TRIM ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_LARGE_ADDRESS_AWARE ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_BYTES_REVERSED_LO ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_32BIT_MACHINE ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_DEBUG_STRIPPED ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_NET_RUN_FROM_SWAP ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_SYSTEM ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_DLL ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_UP_SYSTEM_ONLY ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_BYTES_REVERSED_HI ) }; static const EnumEntry PEWindowsSubsystem[] = { LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_UNKNOWN ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_NATIVE ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_WINDOWS_GUI ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_WINDOWS_CUI ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_POSIX_CUI ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_WINDOWS_CE_GUI ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_APPLICATION ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_ROM ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_XBOX ), }; static const EnumEntry PEDLLCharacteristics[] = { LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NX_COMPAT ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NO_SEH ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NO_BIND ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE), }; static const EnumEntry ImageSectionCharacteristics[] = { LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_TYPE_NO_PAD ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_CNT_CODE ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_CNT_INITIALIZED_DATA ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_CNT_UNINITIALIZED_DATA), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_OTHER ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_INFO ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_REMOVE ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_COMDAT ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_GPREL ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_PURGEABLE ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_16BIT ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_LOCKED ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_PRELOAD ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_1BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_2BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_4BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_8BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_16BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_32BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_64BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_128BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_256BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_512BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_1024BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_2048BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_4096BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_8192BYTES ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_NRELOC_OVFL ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_DISCARDABLE ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_NOT_CACHED ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_NOT_PAGED ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_SHARED ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_EXECUTE ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_READ ), LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_WRITE ) }; static const EnumEntry ImageSymType[] = { { "Null" , COFF::IMAGE_SYM_TYPE_NULL }, { "Void" , COFF::IMAGE_SYM_TYPE_VOID }, { "Char" , COFF::IMAGE_SYM_TYPE_CHAR }, { "Short" , COFF::IMAGE_SYM_TYPE_SHORT }, { "Int" , COFF::IMAGE_SYM_TYPE_INT }, { "Long" , COFF::IMAGE_SYM_TYPE_LONG }, { "Float" , COFF::IMAGE_SYM_TYPE_FLOAT }, { "Double", COFF::IMAGE_SYM_TYPE_DOUBLE }, { "Struct", COFF::IMAGE_SYM_TYPE_STRUCT }, { "Union" , COFF::IMAGE_SYM_TYPE_UNION }, { "Enum" , COFF::IMAGE_SYM_TYPE_ENUM }, { "MOE" , COFF::IMAGE_SYM_TYPE_MOE }, { "Byte" , COFF::IMAGE_SYM_TYPE_BYTE }, { "Word" , COFF::IMAGE_SYM_TYPE_WORD }, { "UInt" , COFF::IMAGE_SYM_TYPE_UINT }, { "DWord" , COFF::IMAGE_SYM_TYPE_DWORD } }; static const EnumEntry ImageSymDType[] = { { "Null" , COFF::IMAGE_SYM_DTYPE_NULL }, { "Pointer" , COFF::IMAGE_SYM_DTYPE_POINTER }, { "Function", COFF::IMAGE_SYM_DTYPE_FUNCTION }, { "Array" , COFF::IMAGE_SYM_DTYPE_ARRAY } }; static const EnumEntry ImageSymClass[] = { { "EndOfFunction" , COFF::IMAGE_SYM_CLASS_END_OF_FUNCTION }, { "Null" , COFF::IMAGE_SYM_CLASS_NULL }, { "Automatic" , COFF::IMAGE_SYM_CLASS_AUTOMATIC }, { "External" , COFF::IMAGE_SYM_CLASS_EXTERNAL }, { "Static" , COFF::IMAGE_SYM_CLASS_STATIC }, { "Register" , COFF::IMAGE_SYM_CLASS_REGISTER }, { "ExternalDef" , COFF::IMAGE_SYM_CLASS_EXTERNAL_DEF }, { "Label" , COFF::IMAGE_SYM_CLASS_LABEL }, { "UndefinedLabel" , COFF::IMAGE_SYM_CLASS_UNDEFINED_LABEL }, { "MemberOfStruct" , COFF::IMAGE_SYM_CLASS_MEMBER_OF_STRUCT }, { "Argument" , COFF::IMAGE_SYM_CLASS_ARGUMENT }, { "StructTag" , COFF::IMAGE_SYM_CLASS_STRUCT_TAG }, { "MemberOfUnion" , COFF::IMAGE_SYM_CLASS_MEMBER_OF_UNION }, { "UnionTag" , COFF::IMAGE_SYM_CLASS_UNION_TAG }, { "TypeDefinition" , COFF::IMAGE_SYM_CLASS_TYPE_DEFINITION }, { "UndefinedStatic", COFF::IMAGE_SYM_CLASS_UNDEFINED_STATIC }, { "EnumTag" , COFF::IMAGE_SYM_CLASS_ENUM_TAG }, { "MemberOfEnum" , COFF::IMAGE_SYM_CLASS_MEMBER_OF_ENUM }, { "RegisterParam" , COFF::IMAGE_SYM_CLASS_REGISTER_PARAM }, { "BitField" , COFF::IMAGE_SYM_CLASS_BIT_FIELD }, { "Block" , COFF::IMAGE_SYM_CLASS_BLOCK }, { "Function" , COFF::IMAGE_SYM_CLASS_FUNCTION }, { "EndOfStruct" , COFF::IMAGE_SYM_CLASS_END_OF_STRUCT }, { "File" , COFF::IMAGE_SYM_CLASS_FILE }, { "Section" , COFF::IMAGE_SYM_CLASS_SECTION }, { "WeakExternal" , COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL }, { "CLRToken" , COFF::IMAGE_SYM_CLASS_CLR_TOKEN } }; static const EnumEntry ImageCOMDATSelect[] = { { "NoDuplicates", COFF::IMAGE_COMDAT_SELECT_NODUPLICATES }, { "Any" , COFF::IMAGE_COMDAT_SELECT_ANY }, { "SameSize" , COFF::IMAGE_COMDAT_SELECT_SAME_SIZE }, { "ExactMatch" , COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH }, { "Associative" , COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE }, { "Largest" , COFF::IMAGE_COMDAT_SELECT_LARGEST }, { "Newest" , COFF::IMAGE_COMDAT_SELECT_NEWEST } }; static const EnumEntry WeakExternalCharacteristics[] = { { "NoLibrary", COFF::IMAGE_WEAK_EXTERN_SEARCH_NOLIBRARY }, { "Library" , COFF::IMAGE_WEAK_EXTERN_SEARCH_LIBRARY }, { "Alias" , COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS } }; static const EnumEntry UnwindFlags[] = { { "ExceptionHandler", Win64EH::UNW_ExceptionHandler }, { "TerminateHandler", Win64EH::UNW_TerminateHandler }, { "ChainInfo" , Win64EH::UNW_ChainInfo } }; static const EnumEntry UnwindOpInfo[] = { { "RAX", 0 }, { "RCX", 1 }, { "RDX", 2 }, { "RBX", 3 }, { "RSP", 4 }, { "RBP", 5 }, { "RSI", 6 }, { "RDI", 7 }, { "R8", 8 }, { "R9", 9 }, { "R10", 10 }, { "R11", 11 }, { "R12", 12 }, { "R13", 13 }, { "R14", 14 }, { "R15", 15 } }; // Some additional COFF structures not defined by llvm::object. namespace { struct coff_aux_function_definition { support::ulittle32_t TagIndex; support::ulittle32_t TotalSize; support::ulittle32_t PointerToLineNumber; support::ulittle32_t PointerToNextFunction; uint8_t Unused[2]; }; struct coff_aux_weak_external_definition { support::ulittle32_t TagIndex; support::ulittle32_t Characteristics; uint8_t Unused[10]; }; struct coff_aux_file_record { char FileName[18]; }; struct coff_aux_clr_token { support::ulittle8_t AuxType; support::ulittle8_t Reserved; support::ulittle32_t SymbolTableIndex; uint8_t Unused[12]; }; } // namespace static uint64_t getOffsetOfLSDA(const Win64EH::UnwindInfo& UI) { return static_cast(UI.getLanguageSpecificData()) - reinterpret_cast(&UI); } static uint32_t getLargeSlotValue(ArrayRef UCs) { if (UCs.size() < 3) return 0; return UCs[1].FrameOffset + (static_cast(UCs[2].FrameOffset) << 16); } template static error_code getSymbolAuxData(const COFFObjectFile *Obj, const coff_symbol *Symbol, const T* &Aux) { ArrayRef AuxData = Obj->getSymbolAuxData(Symbol); Aux = reinterpret_cast(AuxData.data()); return readobj_error::success; } static std::string formatSymbol(const std::vector &Rels, uint64_t Offset, uint32_t Disp) { std::string Buffer; raw_string_ostream Str(Buffer); StringRef Sym; if (resolveSymbolName(Rels, Offset, Sym)) { Str << format(" (0x%" PRIX64 ")", Offset); return Str.str(); } Str << Sym; if (Disp > 0) { Str << format(" +0x%X (0x%" PRIX64 ")", Disp, Offset); } else { Str << format(" (0x%" PRIX64 ")", Offset); } return Str.str(); } // Given a vector of relocations for a section and an offset into this section // the function resolves the symbol used for the relocation at the offset and // returns the section content and the address inside the content pointed to // by the symbol. error_code COFFDumper::getSectionContents( const std::vector &Rels, uint64_t Offset, ArrayRef &Contents, uint64_t &Addr) { SymbolRef Sym; const coff_section *Section; if (error_code EC = resolveSymbol(Rels, Offset, Sym)) return EC; if (error_code EC = resolveSectionAndAddress(Obj, Sym, Section, Addr)) return EC; if (error_code EC = Obj->getSectionContents(Section, Contents)) return EC; return object_error::success; } error_code COFFDumper::getSection( const std::vector &Rels, uint64_t Offset, const coff_section **SectionPtr, uint64_t *AddrPtr) { SymbolRef Sym; if (error_code EC = resolveSymbol(Rels, Offset, Sym)) return EC; const coff_section *Section; uint64_t Addr; if (error_code EC = resolveSectionAndAddress(Obj, Sym, Section, Addr)) return EC; if (SectionPtr) *SectionPtr = Section; if (AddrPtr) *AddrPtr = Addr; return object_error::success; } void COFFDumper::cacheRelocations() { for (section_iterator SecI = Obj->section_begin(), SecE = Obj->section_end(); SecI != SecE; ++SecI) { const coff_section *Section = Obj->getCOFFSection(SecI); for (const RelocationRef &Reloc : SecI->relocations()) RelocMap[Section].push_back(Reloc); // Sort relocations by address. std::sort(RelocMap[Section].begin(), RelocMap[Section].end(), relocAddressLess); } } void COFFDumper::printDataDirectory(uint32_t Index, const std::string &FieldName) { const data_directory *Data; if (Obj->getDataDirectory(Index, Data)) return; W.printHex(FieldName + "RVA", Data->RelativeVirtualAddress); W.printHex(FieldName + "Size", Data->Size); } void COFFDumper::printFileHeaders() { // Print COFF header const coff_file_header *COFFHeader = 0; if (error(Obj->getCOFFHeader(COFFHeader))) return; time_t TDS = COFFHeader->TimeDateStamp; char FormattedTime[20] = { }; strftime(FormattedTime, 20, "%Y-%m-%d %H:%M:%S", gmtime(&TDS)); { DictScope D(W, "ImageFileHeader"); W.printEnum ("Machine", COFFHeader->Machine, makeArrayRef(ImageFileMachineType)); W.printNumber("SectionCount", COFFHeader->NumberOfSections); W.printHex ("TimeDateStamp", FormattedTime, COFFHeader->TimeDateStamp); W.printHex ("PointerToSymbolTable", COFFHeader->PointerToSymbolTable); W.printNumber("SymbolCount", COFFHeader->NumberOfSymbols); W.printNumber("OptionalHeaderSize", COFFHeader->SizeOfOptionalHeader); W.printFlags ("Characteristics", COFFHeader->Characteristics, makeArrayRef(ImageFileCharacteristics)); } // Print PE header. This header does not exist if this is an object file and // not an executable. const pe32_header *PEHeader = 0; if (error(Obj->getPE32Header(PEHeader))) return; if (PEHeader) printPEHeader(PEHeader); const pe32plus_header *PEPlusHeader = 0; if (error(Obj->getPE32PlusHeader(PEPlusHeader))) return; if (PEPlusHeader) printPEHeader(PEPlusHeader); } template void COFFDumper::printPEHeader(const PEHeader *Hdr) { DictScope D(W, "ImageOptionalHeader"); W.printNumber("MajorLinkerVersion", Hdr->MajorLinkerVersion); W.printNumber("MinorLinkerVersion", Hdr->MinorLinkerVersion); W.printNumber("SizeOfCode", Hdr->SizeOfCode); W.printNumber("SizeOfInitializedData", Hdr->SizeOfInitializedData); W.printNumber("SizeOfUninitializedData", Hdr->SizeOfUninitializedData); W.printHex ("AddressOfEntryPoint", Hdr->AddressOfEntryPoint); W.printHex ("BaseOfCode", Hdr->BaseOfCode); printBaseOfDataField(Hdr); W.printHex ("ImageBase", Hdr->ImageBase); W.printNumber("SectionAlignment", Hdr->SectionAlignment); W.printNumber("FileAlignment", Hdr->FileAlignment); W.printNumber("MajorOperatingSystemVersion", Hdr->MajorOperatingSystemVersion); W.printNumber("MinorOperatingSystemVersion", Hdr->MinorOperatingSystemVersion); W.printNumber("MajorImageVersion", Hdr->MajorImageVersion); W.printNumber("MinorImageVersion", Hdr->MinorImageVersion); W.printNumber("MajorSubsystemVersion", Hdr->MajorSubsystemVersion); W.printNumber("MinorSubsystemVersion", Hdr->MinorSubsystemVersion); W.printNumber("SizeOfImage", Hdr->SizeOfImage); W.printNumber("SizeOfHeaders", Hdr->SizeOfHeaders); W.printEnum ("Subsystem", Hdr->Subsystem, makeArrayRef(PEWindowsSubsystem)); W.printFlags ("Subsystem", Hdr->DLLCharacteristics, makeArrayRef(PEDLLCharacteristics)); W.printNumber("SizeOfStackReserve", Hdr->SizeOfStackReserve); W.printNumber("SizeOfStackCommit", Hdr->SizeOfStackCommit); W.printNumber("SizeOfHeapReserve", Hdr->SizeOfHeapReserve); W.printNumber("SizeOfHeapCommit", Hdr->SizeOfHeapCommit); W.printNumber("NumberOfRvaAndSize", Hdr->NumberOfRvaAndSize); if (Hdr->NumberOfRvaAndSize > 0) { DictScope D(W, "DataDirectory"); static const char * const directory[] = { "ExportTable", "ImportTable", "ResourceTable", "ExceptionTable", "CertificateTable", "BaseRelocationTable", "Debug", "Architecture", "GlobalPtr", "TLSTable", "LoadConfigTable", "BoundImport", "IAT", "DelayImportDescriptor", "CLRRuntimeHeader", "Reserved" }; for (uint32_t i = 0; i < Hdr->NumberOfRvaAndSize; ++i) { printDataDirectory(i, directory[i]); } } } void COFFDumper::printBaseOfDataField(const pe32_header *Hdr) { W.printHex("BaseOfData", Hdr->BaseOfData); } void COFFDumper::printBaseOfDataField(const pe32plus_header *) {} void COFFDumper::printCodeViewLineTables(section_iterator SecI) { StringRef Data; if (error(SecI->getContents(Data))) return; SmallVector FunctionNames; StringMap FunctionLineTables; StringRef FileIndexToStringOffsetTable; StringRef StringTable; ListScope D(W, "CodeViewLineTables"); { DataExtractor DE(Data, true, 4); uint32_t Offset = 0, Magic = DE.getU32(&Offset); W.printHex("Magic", Magic); if (Magic != COFF::DEBUG_SECTION_MAGIC) { error(object_error::parse_failed); return; } bool Finished = false; while (DE.isValidOffset(Offset) && !Finished) { // The section consists of a number of subsection in the following format: // |Type|PayloadSize|Payload...| uint32_t SubSectionType = DE.getU32(&Offset), PayloadSize = DE.getU32(&Offset); ListScope S(W, "Subsection"); W.printHex("Type", SubSectionType); W.printHex("PayloadSize", PayloadSize); if (PayloadSize > Data.size() - Offset) { error(object_error::parse_failed); return; } // Print the raw contents to simplify debugging if anything goes wrong // afterwards. StringRef Contents = Data.substr(Offset, PayloadSize); W.printBinaryBlock("Contents", Contents); switch (SubSectionType) { case COFF::DEBUG_LINE_TABLE_SUBSECTION: { // Holds a PC to file:line table. Some data to parse this subsection is // stored in the other subsections, so just check sanity and store the // pointers for deferred processing. if (PayloadSize < 12) { // There should be at least three words to store two function // relocations and size of the code. error(object_error::parse_failed); return; } StringRef FunctionName; if (error(resolveSymbolName(RelocMap[Obj->getCOFFSection(SecI)], Offset, FunctionName))) return; W.printString("FunctionName", FunctionName); if (FunctionLineTables.count(FunctionName) != 0) { // Saw debug info for this function already? error(object_error::parse_failed); return; } FunctionLineTables[FunctionName] = Contents; FunctionNames.push_back(FunctionName); break; } case COFF::DEBUG_STRING_TABLE_SUBSECTION: if (PayloadSize == 0 || StringTable.data() != 0 || Contents.back() != '\0') { // Empty or duplicate or non-null-terminated subsection. error(object_error::parse_failed); return; } StringTable = Contents; break; case COFF::DEBUG_INDEX_SUBSECTION: // Holds the translation table from file indices // to offsets in the string table. if (PayloadSize == 0 || FileIndexToStringOffsetTable.data() != 0) { // Empty or duplicate subsection. error(object_error::parse_failed); return; } FileIndexToStringOffsetTable = Contents; break; } Offset += PayloadSize; // Align the reading pointer by 4. Offset += (-Offset) % 4; } } // Dump the line tables now that we've read all the subsections and know all // the required information. for (unsigned I = 0, E = FunctionNames.size(); I != E; ++I) { StringRef Name = FunctionNames[I]; ListScope S(W, "FunctionLineTable"); W.printString("FunctionName", Name); DataExtractor DE(FunctionLineTables[Name], true, 4); uint32_t Offset = 8; // Skip relocations. uint32_t FunctionSize = DE.getU32(&Offset); W.printHex("CodeSize", FunctionSize); while (DE.isValidOffset(Offset)) { // For each range of lines with the same filename, we have a segment // in the line table. The filename string is accessed using double // indirection to the string table subsection using the index subsection. uint32_t OffsetInIndex = DE.getU32(&Offset), SegmentLength = DE.getU32(&Offset), FullSegmentSize = DE.getU32(&Offset); if (FullSegmentSize != 12 + 8 * SegmentLength) { error(object_error::parse_failed); return; } uint32_t FilenameOffset; { DataExtractor SDE(FileIndexToStringOffsetTable, true, 4); uint32_t OffsetInSDE = OffsetInIndex; if (!SDE.isValidOffset(OffsetInSDE)) { error(object_error::parse_failed); return; } FilenameOffset = SDE.getU32(&OffsetInSDE); } if (FilenameOffset == 0 || FilenameOffset + 1 >= StringTable.size() || StringTable.data()[FilenameOffset - 1] != '\0') { // Each string in an F3 subsection should be preceded by a null // character. error(object_error::parse_failed); return; } StringRef Filename(StringTable.data() + FilenameOffset); ListScope S(W, "FilenameSegment"); W.printString("Filename", Filename); for (unsigned J = 0; J != SegmentLength && DE.isValidOffset(Offset); ++J) { // Then go the (PC, LineNumber) pairs. The line number is stored in the // least significant 31 bits of the respective word in the table. uint32_t PC = DE.getU32(&Offset), LineNumber = DE.getU32(&Offset) & 0x7fffffff; if (PC >= FunctionSize) { error(object_error::parse_failed); return; } char Buffer[32]; format("+0x%X", PC).snprint(Buffer, 32); W.printNumber(Buffer, LineNumber); } } } } void COFFDumper::printSections() { ListScope SectionsD(W, "Sections"); int SectionNumber = 0; for (section_iterator SecI = Obj->section_begin(), SecE = Obj->section_end(); SecI != SecE; ++SecI) { ++SectionNumber; const coff_section *Section = Obj->getCOFFSection(SecI); StringRef Name; if (error(SecI->getName(Name))) Name = ""; DictScope D(W, "Section"); W.printNumber("Number", SectionNumber); W.printBinary("Name", Name, Section->Name); W.printHex ("VirtualSize", Section->VirtualSize); W.printHex ("VirtualAddress", Section->VirtualAddress); W.printNumber("RawDataSize", Section->SizeOfRawData); W.printHex ("PointerToRawData", Section->PointerToRawData); W.printHex ("PointerToRelocations", Section->PointerToRelocations); W.printHex ("PointerToLineNumbers", Section->PointerToLinenumbers); W.printNumber("RelocationCount", Section->NumberOfRelocations); W.printNumber("LineNumberCount", Section->NumberOfLinenumbers); W.printFlags ("Characteristics", Section->Characteristics, makeArrayRef(ImageSectionCharacteristics), COFF::SectionCharacteristics(0x00F00000)); if (opts::SectionRelocations) { ListScope D(W, "Relocations"); for (const RelocationRef &Reloc : SecI->relocations()) printRelocation(SecI, Reloc); } if (opts::SectionSymbols) { ListScope D(W, "Symbols"); for (symbol_iterator SymI = Obj->symbol_begin(), SymE = Obj->symbol_end(); SymI != SymE; ++SymI) { bool Contained = false; if (SecI->containsSymbol(*SymI, Contained) || !Contained) continue; printSymbol(SymI); } } if (Name == ".debug$S" && opts::CodeViewLineTables) printCodeViewLineTables(SecI); if (opts::SectionData) { StringRef Data; if (error(SecI->getContents(Data))) break; W.printBinaryBlock("SectionData", Data); } } } void COFFDumper::printRelocations() { ListScope D(W, "Relocations"); int SectionNumber = 0; for (section_iterator SecI = Obj->section_begin(), SecE = Obj->section_end(); SecI != SecE; ++SecI) { ++SectionNumber; StringRef Name; if (error(SecI->getName(Name))) continue; bool PrintedGroup = false; for (const RelocationRef &Reloc : SecI->relocations()) { if (!PrintedGroup) { W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n"; W.indent(); PrintedGroup = true; } printRelocation(SecI, Reloc); } if (PrintedGroup) { W.unindent(); W.startLine() << "}\n"; } } } void COFFDumper::printRelocation(section_iterator SecI, const RelocationRef &Reloc) { uint64_t Offset; uint64_t RelocType; SmallString<32> RelocName; StringRef SymbolName; StringRef Contents; if (error(Reloc.getOffset(Offset))) return; if (error(Reloc.getType(RelocType))) return; if (error(Reloc.getTypeName(RelocName))) return; symbol_iterator Symbol = Reloc.getSymbol(); if (error(Symbol->getName(SymbolName))) return; if (error(SecI->getContents(Contents))) return; if (opts::ExpandRelocs) { DictScope Group(W, "Relocation"); W.printHex("Offset", Offset); W.printNumber("Type", RelocName, RelocType); W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-"); } else { raw_ostream& OS = W.startLine(); OS << W.hex(Offset) << " " << RelocName << " " << (SymbolName.size() > 0 ? SymbolName : "-") << "\n"; } } void COFFDumper::printSymbols() { ListScope Group(W, "Symbols"); for (symbol_iterator SymI = Obj->symbol_begin(), SymE = Obj->symbol_end(); SymI != SymE; ++SymI) printSymbol(SymI); } void COFFDumper::printDynamicSymbols() { ListScope Group(W, "DynamicSymbols"); } void COFFDumper::printSymbol(symbol_iterator SymI) { DictScope D(W, "Symbol"); const coff_symbol *Symbol = Obj->getCOFFSymbol(SymI); const coff_section *Section; if (error_code EC = Obj->getSection(Symbol->SectionNumber, Section)) { W.startLine() << "Invalid section number: " << EC.message() << "\n"; W.flush(); return; } StringRef SymbolName; if (Obj->getSymbolName(Symbol, SymbolName)) SymbolName = ""; StringRef SectionName = ""; if (Section) Obj->getSectionName(Section, SectionName); W.printString("Name", SymbolName); W.printNumber("Value", Symbol->Value); W.printNumber("Section", SectionName, Symbol->SectionNumber); W.printEnum ("BaseType", Symbol->getBaseType(), makeArrayRef(ImageSymType)); W.printEnum ("ComplexType", Symbol->getComplexType(), makeArrayRef(ImageSymDType)); W.printEnum ("StorageClass", Symbol->StorageClass, makeArrayRef(ImageSymClass)); W.printNumber("AuxSymbolCount", Symbol->NumberOfAuxSymbols); for (unsigned I = 0; I < Symbol->NumberOfAuxSymbols; ++I) { if (Symbol->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL && Symbol->getBaseType() == COFF::IMAGE_SYM_TYPE_NULL && Symbol->getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION && Symbol->SectionNumber > 0) { const coff_aux_function_definition *Aux; if (error(getSymbolAuxData(Obj, Symbol + I, Aux))) break; DictScope AS(W, "AuxFunctionDef"); W.printNumber("TagIndex", Aux->TagIndex); W.printNumber("TotalSize", Aux->TotalSize); W.printHex("PointerToLineNumber", Aux->PointerToLineNumber); W.printHex("PointerToNextFunction", Aux->PointerToNextFunction); W.printBinary("Unused", makeArrayRef(Aux->Unused)); } else if ( Symbol->StorageClass == COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL || (Symbol->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL && Symbol->SectionNumber == 0 && Symbol->Value == 0)) { const coff_aux_weak_external_definition *Aux; if (error(getSymbolAuxData(Obj, Symbol + I, Aux))) break; const coff_symbol *Linked; StringRef LinkedName; error_code EC; if ((EC = Obj->getSymbol(Aux->TagIndex, Linked)) || (EC = Obj->getSymbolName(Linked, LinkedName))) { LinkedName = ""; error(EC); } DictScope AS(W, "AuxWeakExternal"); W.printNumber("Linked", LinkedName, Aux->TagIndex); W.printEnum ("Search", Aux->Characteristics, makeArrayRef(WeakExternalCharacteristics)); W.printBinary("Unused", Aux->Unused); } else if (Symbol->StorageClass == COFF::IMAGE_SYM_CLASS_FILE) { const coff_aux_file_record *Aux; if (error(getSymbolAuxData(Obj, Symbol + I, Aux))) break; DictScope AS(W, "AuxFileRecord"); W.printString("FileName", StringRef(Aux->FileName)); // C++/CLI creates external ABS symbols for non-const appdomain globals. // These are also followed by an auxiliary section definition. } else if (Symbol->StorageClass == COFF::IMAGE_SYM_CLASS_STATIC || (Symbol->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL && Symbol->SectionNumber == COFF::IMAGE_SYM_ABSOLUTE)) { const coff_aux_section_definition *Aux; if (error(getSymbolAuxData(Obj, Symbol + I, Aux))) break; DictScope AS(W, "AuxSectionDef"); W.printNumber("Length", Aux->Length); W.printNumber("RelocationCount", Aux->NumberOfRelocations); W.printNumber("LineNumberCount", Aux->NumberOfLinenumbers); W.printHex("Checksum", Aux->CheckSum); W.printNumber("Number", Aux->Number); W.printEnum("Selection", Aux->Selection, makeArrayRef(ImageCOMDATSelect)); W.printBinary("Unused", makeArrayRef(Aux->Unused)); if (Section && Section->Characteristics & COFF::IMAGE_SCN_LNK_COMDAT && Aux->Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) { const coff_section *Assoc; StringRef AssocName; error_code EC; if ((EC = Obj->getSection(Aux->Number, Assoc)) || (EC = Obj->getSectionName(Assoc, AssocName))) { AssocName = ""; error(EC); } W.printNumber("AssocSection", AssocName, Aux->Number); } } else if (Symbol->StorageClass == COFF::IMAGE_SYM_CLASS_CLR_TOKEN) { const coff_aux_clr_token *Aux; if (error(getSymbolAuxData(Obj, Symbol + I, Aux))) break; DictScope AS(W, "AuxCLRToken"); W.printNumber("AuxType", Aux->AuxType); W.printNumber("Reserved", Aux->Reserved); W.printNumber("SymbolTableIndex", Aux->SymbolTableIndex); W.printBinary("Unused", Aux->Unused); } else { W.startLine() << "\n"; } } } void COFFDumper::printUnwindInfo() { const coff_file_header *Header; if (error(Obj->getCOFFHeader(Header))) return; ListScope D(W, "UnwindInformation"); if (Header->Machine != COFF::IMAGE_FILE_MACHINE_AMD64) { W.startLine() << "Unsupported image machine type " "(currently only AMD64 is supported).\n"; return; } printX64UnwindInfo(); } void COFFDumper::printX64UnwindInfo() { for (section_iterator SecI = Obj->section_begin(), SecE = Obj->section_end(); SecI != SecE; ++SecI) { StringRef Name; if (error(SecI->getName(Name))) continue; if (Name != ".pdata" && !Name.startswith(".pdata$")) continue; const coff_section *PData = Obj->getCOFFSection(SecI); ArrayRef Contents; if (error(Obj->getSectionContents(PData, Contents)) || Contents.empty()) continue; ArrayRef RFs( reinterpret_cast(Contents.data()), Contents.size() / sizeof(RuntimeFunction)); for (const RuntimeFunction *I = RFs.begin(), *E = RFs.end(); I < E; ++I) { const uint64_t OffsetInSection = std::distance(RFs.begin(), I) * sizeof(RuntimeFunction); printRuntimeFunction(*I, OffsetInSection, RelocMap[PData]); } } } void COFFDumper::printRuntimeFunction( const RuntimeFunction& RTF, uint64_t OffsetInSection, const std::vector &Rels) { DictScope D(W, "RuntimeFunction"); W.printString("StartAddress", formatSymbol(Rels, OffsetInSection + 0, RTF.StartAddress)); W.printString("EndAddress", formatSymbol(Rels, OffsetInSection + 4, RTF.EndAddress)); W.printString("UnwindInfoAddress", formatSymbol(Rels, OffsetInSection + 8, RTF.UnwindInfoOffset)); const coff_section* XData = 0; uint64_t UnwindInfoOffset = 0; if (error(getSection(Rels, OffsetInSection + 8, &XData, &UnwindInfoOffset))) return; ArrayRef XContents; if (error(Obj->getSectionContents(XData, XContents)) || XContents.empty()) return; UnwindInfoOffset += RTF.UnwindInfoOffset; if (UnwindInfoOffset > XContents.size()) return; const Win64EH::UnwindInfo *UI = reinterpret_cast( XContents.data() + UnwindInfoOffset); printUnwindInfo(*UI, UnwindInfoOffset, RelocMap[XData]); } void COFFDumper::printUnwindInfo( const Win64EH::UnwindInfo& UI, uint64_t OffsetInSection, const std::vector &Rels) { DictScope D(W, "UnwindInfo"); W.printNumber("Version", UI.getVersion()); W.printFlags("Flags", UI.getFlags(), makeArrayRef(UnwindFlags)); W.printNumber("PrologSize", UI.PrologSize); if (UI.getFrameRegister() != 0) { W.printEnum("FrameRegister", UI.getFrameRegister(), makeArrayRef(UnwindOpInfo)); W.printHex("FrameOffset", UI.getFrameOffset()); } else { W.printString("FrameRegister", StringRef("-")); W.printString("FrameOffset", StringRef("-")); } W.printNumber("UnwindCodeCount", UI.NumCodes); { ListScope CodesD(W, "UnwindCodes"); ArrayRef UCs(&UI.UnwindCodes[0], UI.NumCodes); for (const UnwindCode *I = UCs.begin(), *E = UCs.end(); I < E; ++I) { unsigned UsedSlots = getNumUsedSlots(*I); if (UsedSlots > UCs.size()) { errs() << "Corrupt unwind data"; return; } printUnwindCode(UI, ArrayRef(I, E)); I += UsedSlots - 1; } } uint64_t LSDAOffset = OffsetInSection + getOffsetOfLSDA(UI); if (UI.getFlags() & (UNW_ExceptionHandler | UNW_TerminateHandler)) { W.printString("Handler", formatSymbol(Rels, LSDAOffset, UI.getLanguageSpecificHandlerOffset())); } else if (UI.getFlags() & UNW_ChainInfo) { const RuntimeFunction *Chained = UI.getChainedFunctionEntry(); if (Chained) { DictScope D(W, "Chained"); W.printString("StartAddress", formatSymbol(Rels, LSDAOffset + 0, Chained->StartAddress)); W.printString("EndAddress", formatSymbol(Rels, LSDAOffset + 4, Chained->EndAddress)); W.printString("UnwindInfoAddress", formatSymbol(Rels, LSDAOffset + 8, Chained->UnwindInfoOffset)); } } } // Prints one unwind code. Because an unwind code can occupy up to 3 slots in // the unwind codes array, this function requires that the correct number of // slots is provided. void COFFDumper::printUnwindCode(const Win64EH::UnwindInfo& UI, ArrayRef UCs) { assert(UCs.size() >= getNumUsedSlots(UCs[0])); W.startLine() << format("0x%02X: ", unsigned(UCs[0].u.CodeOffset)) << getUnwindCodeTypeName(UCs[0].getUnwindOp()); uint32_t AllocSize = 0; switch (UCs[0].getUnwindOp()) { case UOP_PushNonVol: outs() << " reg=" << getUnwindRegisterName(UCs[0].getOpInfo()); break; case UOP_AllocLarge: if (UCs[0].getOpInfo() == 0) { AllocSize = UCs[1].FrameOffset * 8; } else { AllocSize = getLargeSlotValue(UCs); } outs() << " size=" << AllocSize; break; case UOP_AllocSmall: outs() << " size=" << ((UCs[0].getOpInfo() + 1) * 8); break; case UOP_SetFPReg: if (UI.getFrameRegister() == 0) { outs() << " reg="; } else { outs() << " reg=" << getUnwindRegisterName(UI.getFrameRegister()) << format(", offset=0x%X", UI.getFrameOffset() * 16); } break; case UOP_SaveNonVol: outs() << " reg=" << getUnwindRegisterName(UCs[0].getOpInfo()) << format(", offset=0x%X", UCs[1].FrameOffset * 8); break; case UOP_SaveNonVolBig: outs() << " reg=" << getUnwindRegisterName(UCs[0].getOpInfo()) << format(", offset=0x%X", getLargeSlotValue(UCs)); break; case UOP_SaveXMM128: outs() << " reg=XMM" << static_cast(UCs[0].getOpInfo()) << format(", offset=0x%X", UCs[1].FrameOffset * 16); break; case UOP_SaveXMM128Big: outs() << " reg=XMM" << static_cast(UCs[0].getOpInfo()) << format(", offset=0x%X", getLargeSlotValue(UCs)); break; case UOP_PushMachFrame: outs() << " errcode=" << (UCs[0].getOpInfo() == 0 ? "no" : "yes"); break; } outs() << "\n"; }