//===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===// // // This pass is designed to be a very quick global transformation that // eliminates global common subexpressions from a function. It does this by // using an existing value numbering implementation to identify the common // subexpressions, eliminating them when possible. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/iMemory.h" #include "llvm/Type.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/ValueNumbering.h" #include "llvm/Support/InstIterator.h" #include "Support/Statistic.h" #include namespace { Statistic<> NumInstRemoved("gcse", "Number of instructions removed"); Statistic<> NumLoadRemoved("gcse", "Number of loads removed"); Statistic<> NumNonInsts ("gcse", "Number of instructions removed due " "to non-instruction values"); class GCSE : public FunctionPass { std::set WorkList; DominatorSet *DomSetInfo; #if 0 ImmediateDominators *ImmDominator; #endif ValueNumbering *VN; public: virtual bool runOnFunction(Function &F); private: bool EliminateRedundancies(Instruction *I,std::vector &EqualValues); Instruction *EliminateCSE(Instruction *I, Instruction *Other); void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI); // This transformation requires dominator and immediate dominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } }; RegisterOpt X("gcse", "Global Common Subexpression Elimination"); } // createGCSEPass - The public interface to this file... Pass *createGCSEPass() { return new GCSE(); } // GCSE::runOnFunction - This is the main transformation entry point for a // function. // bool GCSE::runOnFunction(Function &F) { bool Changed = false; // Get pointers to the analysis results that we will be using... DomSetInfo = &getAnalysis(); #if 0 ImmDominator = &getAnalysis(); #endif VN = &getAnalysis(); // Step #1: Add all instructions in the function to the worklist for // processing. All of the instructions are considered to be our // subexpressions to eliminate if possible. // WorkList.insert(inst_begin(F), inst_end(F)); // Step #2: WorkList processing. Iterate through all of the instructions, // checking to see if there are any additionally defined subexpressions in the // program. If so, eliminate them! // while (!WorkList.empty()) { Instruction &I = **WorkList.begin(); // Get an instruction from the worklist WorkList.erase(WorkList.begin()); // If this instruction computes a value, try to fold together common // instructions that compute it. // if (I.getType() != Type::VoidTy) { std::vector EqualValues; VN->getEqualNumberNodes(&I, EqualValues); if (!EqualValues.empty()) Changed |= EliminateRedundancies(&I, EqualValues); } } // When the worklist is empty, return whether or not we changed anything... return Changed; } bool GCSE::EliminateRedundancies(Instruction *I, std::vector &EqualValues) { // If the EqualValues set contains any non-instruction values, then we know // that all of the instructions can be replaced with the non-instruction value // because it is guaranteed to dominate all of the instructions in the // function. We only have to do hard work if all we have are instructions. // for (unsigned i = 0, e = EqualValues.size(); i != e; ++i) if (!isa(EqualValues[i])) { // Found a non-instruction. Replace all instructions with the // non-instruction. // Value *Replacement = EqualValues[i]; // Make sure we get I as well... EqualValues[i] = I; // Replace all instructions with the Replacement value. for (i = 0; i != e; ++i) if (Instruction *I = dyn_cast(EqualValues[i])) { // Change all users of I to use Replacement. I->replaceAllUsesWith(Replacement); if (isa(I)) ++NumLoadRemoved; // Keep track of loads eliminated ++NumInstRemoved; // Keep track of number of instructions eliminated ++NumNonInsts; // Keep track of number of insts repl with values // Erase the instruction from the program. I->getParent()->getInstList().erase(I); } return true; } // Remove duplicate entries from EqualValues... std::sort(EqualValues.begin(), EqualValues.end()); EqualValues.erase(std::unique(EqualValues.begin(), EqualValues.end()), EqualValues.end()); // From this point on, EqualValues is logically a vector of instructions. // bool Changed = false; EqualValues.push_back(I); // Make sure I is included... while (EqualValues.size() > 1) { // FIXME, this could be done better than simple iteration! Instruction *Test = cast(EqualValues.back()); EqualValues.pop_back(); for (unsigned i = 0, e = EqualValues.size(); i != e; ++i) if (Instruction *Ret = EliminateCSE(Test, cast(EqualValues[i]))) { if (Ret == Test) // Eliminated EqualValues[i] EqualValues[i] = Test; // Make sure that we reprocess I at some point Changed = true; break; } } return Changed; } // ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all // uses of the instruction use First now instead. // void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) { Instruction &Second = *SI; //cerr << "DEL " << (void*)Second << Second; // Add the first instruction back to the worklist WorkList.insert(First); // Add all uses of the second instruction to the worklist for (Value::use_iterator UI = Second.use_begin(), UE = Second.use_end(); UI != UE; ++UI) WorkList.insert(cast(*UI)); // Make all users of 'Second' now use 'First' Second.replaceAllUsesWith(First); // Erase the second instruction from the program Second.getParent()->getInstList().erase(SI); } // EliminateCSE - The two instruction I & Other have been found to be common // subexpressions. This function is responsible for eliminating one of them, // and for fixing the worklist to be correct. The instruction that is preserved // is returned from the function if the other is eliminated, otherwise null is // returned. // Instruction *GCSE::EliminateCSE(Instruction *I, Instruction *Other) { assert(I != Other); WorkList.erase(I); WorkList.erase(Other); // Other may not actually be on the worklist anymore... // Handle the easy case, where both instructions are in the same basic block BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent(); Instruction *Ret = 0; if (BB1 == BB2) { // Eliminate the second occuring instruction. Add all uses of the second // instruction to the worklist. // // Scan the basic block looking for the "first" instruction BasicBlock::iterator BI = BB1->begin(); while (&*BI != I && &*BI != Other) { ++BI; assert(BI != BB1->end() && "Instructions not found in parent BB!"); } // Keep track of which instructions occurred first & second Instruction *First = BI; Instruction *Second = I != First ? I : Other; // Get iterator to second inst BI = Second; // Destroy Second, using First instead. ReplaceInstWithInst(First, BI); Ret = First; // Otherwise, the two instructions are in different basic blocks. If one // dominates the other instruction, we can simply use it // } else if (DomSetInfo->dominates(BB1, BB2)) { // I dom Other? ReplaceInstWithInst(I, Other); Ret = I; } else if (DomSetInfo->dominates(BB2, BB1)) { // Other dom I? ReplaceInstWithInst(Other, I); Ret = Other; } else { // This code is disabled because it has several problems: // One, the actual assumption is wrong, as shown by this code: // int "test"(int %X, int %Y) { // %Z = add int %X, %Y // ret int %Z // Unreachable: // %Q = add int %X, %Y // ret int %Q // } // // Here there are no shared dominators. Additionally, this had the habit of // moving computations where they were not always computed. For example, in // a cast like this: // if (c) { // if (d) ... // else ... X+Y ... // } else { // ... X+Y ... // } // // In thiscase, the expression would be hoisted to outside the 'if' stmt, // causing the expression to be evaluated, even for the if (d) path, which // could cause problems, if, for example, it caused a divide by zero. In // general the problem this case is trying to solve is better addressed with // PRE than GCSE. // return 0; #if 0 // Handle the most general case now. In this case, neither I dom Other nor // Other dom I. Because we are in SSA form, we are guaranteed that the // operands of the two instructions both dominate the uses, so we _know_ // that there must exist a block that dominates both instructions (if the // operands of the instructions are globals or constants, worst case we // would get the entry node of the function). Search for this block now. // // Search up the immediate dominator chain of BB1 for the shared dominator BasicBlock *SharedDom = (*ImmDominator)[BB1]; while (!DomSetInfo->dominates(SharedDom, BB2)) SharedDom = (*ImmDominator)[SharedDom]; // At this point, shared dom must dominate BOTH BB1 and BB2... assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) && DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!"); // Rip 'I' out of BB1, and move it to the end of SharedDom. BB1->getInstList().remove(I); SharedDom->getInstList().insert(--SharedDom->end(), I); // Eliminate 'Other' now. ReplaceInstWithInst(I, Other); #endif } if (isa(Ret)) ++NumLoadRemoved; // Keep track of loads eliminated ++NumInstRemoved; // Keep track of number of instructions eliminated // Add all users of Ret to the worklist... for (Value::use_iterator I = Ret->use_begin(), E = Ret->use_end(); I != E;++I) if (Instruction *Inst = dyn_cast(*I)) WorkList.insert(Inst); return Ret; }