//===-- LLVMContext.cpp - Implement LLVMContext -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements LLVMContext, as a wrapper around the opaque // class LLVMContextImpl. // //===----------------------------------------------------------------------===// #include "llvm/LLVMContext.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instruction.h" #include "llvm/MDNode.h" #include "llvm/Support/ManagedStatic.h" #include "LLVMContextImpl.h" #include using namespace llvm; static ManagedStatic GlobalContext; LLVMContext& llvm::getGlobalContext() { return *GlobalContext; } LLVMContext::LLVMContext() : pImpl(new LLVMContextImpl(*this)) { } LLVMContext::~LLVMContext() { delete pImpl; } // Constant accessors // Constructor to create a '0' constant of arbitrary type... static const uint64_t zero[2] = {0, 0}; Constant* LLVMContext::getNullValue(const Type* Ty) { switch (Ty->getTypeID()) { case Type::IntegerTyID: return getConstantInt(Ty, 0); case Type::FloatTyID: return getConstantFP(APFloat(APInt(32, 0))); case Type::DoubleTyID: return getConstantFP(APFloat(APInt(64, 0))); case Type::X86_FP80TyID: return getConstantFP(APFloat(APInt(80, 2, zero))); case Type::FP128TyID: return getConstantFP(APFloat(APInt(128, 2, zero), true)); case Type::PPC_FP128TyID: return getConstantFP(APFloat(APInt(128, 2, zero))); case Type::PointerTyID: return getConstantPointerNull(cast(Ty)); case Type::StructTyID: case Type::ArrayTyID: case Type::VectorTyID: return getConstantAggregateZero(Ty); default: // Function, Label, or Opaque type? assert(!"Cannot create a null constant of that type!"); return 0; } } Constant* LLVMContext::getAllOnesValue(const Type* Ty) { if (const IntegerType* ITy = dyn_cast(Ty)) return getConstantInt(APInt::getAllOnesValue(ITy->getBitWidth())); std::vector Elts; const VectorType* VTy = cast(Ty); Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType())); assert(Elts[0] && "Not a vector integer type!"); return cast(getConstantVector(Elts)); } // UndefValue accessors. UndefValue* LLVMContext::getUndef(const Type* Ty) { return UndefValue::get(Ty); } // ConstantInt accessors. ConstantInt* LLVMContext::getTrue() { assert(this && "Context not initialized!"); assert(pImpl && "Context not initialized!"); return pImpl->getTrue(); } ConstantInt* LLVMContext::getFalse() { assert(this && "Context not initialized!"); assert(pImpl && "Context not initialized!"); return pImpl->getFalse(); } Constant* LLVMContext::getConstantInt(const Type* Ty, uint64_t V, bool isSigned) { Constant *C = getConstantInt(cast(Ty->getScalarType()), V, isSigned); // For vectors, broadcast the value. if (const VectorType *VTy = dyn_cast(Ty)) return getConstantVector(std::vector(VTy->getNumElements(), C)); return C; } ConstantInt* LLVMContext::getConstantInt(const IntegerType* Ty, uint64_t V, bool isSigned) { return getConstantInt(APInt(Ty->getBitWidth(), V, isSigned)); } ConstantInt* LLVMContext::getConstantIntSigned(const IntegerType* Ty, int64_t V) { return getConstantInt(Ty, V, true); } Constant *LLVMContext::getConstantIntSigned(const Type *Ty, int64_t V) { return getConstantInt(Ty, V, true); } ConstantInt* LLVMContext::getConstantInt(const APInt& V) { return pImpl->getConstantInt(V); } Constant* LLVMContext::getConstantInt(const Type* Ty, const APInt& V) { ConstantInt *C = getConstantInt(V); assert(C->getType() == Ty->getScalarType() && "ConstantInt type doesn't match the type implied by its value!"); // For vectors, broadcast the value. if (const VectorType *VTy = dyn_cast(Ty)) return getConstantVector(std::vector(VTy->getNumElements(), C)); return C; } // ConstantPointerNull accessors. ConstantPointerNull* LLVMContext::getConstantPointerNull(const PointerType* T) { return ConstantPointerNull::get(T); } // ConstantStruct accessors. Constant* LLVMContext::getConstantStruct(const StructType* T, const std::vector& V) { return ConstantStruct::get(T, V); } Constant* LLVMContext::getConstantStruct(const std::vector& V, bool packed) { std::vector StructEls; StructEls.reserve(V.size()); for (unsigned i = 0, e = V.size(); i != e; ++i) StructEls.push_back(V[i]->getType()); return getConstantStruct(getStructType(StructEls, packed), V); } Constant* LLVMContext::getConstantStruct(Constant* const *Vals, unsigned NumVals, bool Packed) { // FIXME: make this the primary ctor method. return getConstantStruct(std::vector(Vals, Vals+NumVals), Packed); } // ConstantAggregateZero accessors. ConstantAggregateZero* LLVMContext::getConstantAggregateZero(const Type* Ty) { return pImpl->getConstantAggregateZero(Ty); } // ConstantArray accessors. Constant* LLVMContext::getConstantArray(const ArrayType* T, const std::vector& V) { return pImpl->getConstantArray(T, V); } Constant* LLVMContext::getConstantArray(const ArrayType* T, Constant* const* Vals, unsigned NumVals) { // FIXME: make this the primary ctor method. return getConstantArray(T, std::vector(Vals, Vals+NumVals)); } /// ConstantArray::get(const string&) - Return an array that is initialized to /// contain the specified string. If length is zero then a null terminator is /// added to the specified string so that it may be used in a natural way. /// Otherwise, the length parameter specifies how much of the string to use /// and it won't be null terminated. /// Constant* LLVMContext::getConstantArray(const std::string& Str, bool AddNull) { std::vector ElementVals; for (unsigned i = 0; i < Str.length(); ++i) ElementVals.push_back(getConstantInt(Type::Int8Ty, Str[i])); // Add a null terminator to the string... if (AddNull) { ElementVals.push_back(getConstantInt(Type::Int8Ty, 0)); } ArrayType *ATy = getArrayType(Type::Int8Ty, ElementVals.size()); return getConstantArray(ATy, ElementVals); } // ConstantExpr accessors. Constant* LLVMContext::getConstantExpr(unsigned Opcode, Constant* C1, Constant* C2) { return ConstantExpr::get(Opcode, C1, C2); } Constant* LLVMContext::getConstantExprTrunc(Constant* C, const Type* Ty) { return ConstantExpr::getTrunc(C, Ty); } Constant* LLVMContext::getConstantExprSExt(Constant* C, const Type* Ty) { return ConstantExpr::getSExt(C, Ty); } Constant* LLVMContext::getConstantExprZExt(Constant* C, const Type* Ty) { return ConstantExpr::getZExt(C, Ty); } Constant* LLVMContext::getConstantExprFPTrunc(Constant* C, const Type* Ty) { return ConstantExpr::getFPTrunc(C, Ty); } Constant* LLVMContext::getConstantExprFPExtend(Constant* C, const Type* Ty) { return ConstantExpr::getFPExtend(C, Ty); } Constant* LLVMContext::getConstantExprUIToFP(Constant* C, const Type* Ty) { return ConstantExpr::getUIToFP(C, Ty); } Constant* LLVMContext::getConstantExprSIToFP(Constant* C, const Type* Ty) { return ConstantExpr::getSIToFP(C, Ty); } Constant* LLVMContext::getConstantExprFPToUI(Constant* C, const Type* Ty) { return ConstantExpr::getFPToUI(C, Ty); } Constant* LLVMContext::getConstantExprFPToSI(Constant* C, const Type* Ty) { return ConstantExpr::getFPToSI(C, Ty); } Constant* LLVMContext::getConstantExprPtrToInt(Constant* C, const Type* Ty) { return ConstantExpr::getPtrToInt(C, Ty); } Constant* LLVMContext::getConstantExprIntToPtr(Constant* C, const Type* Ty) { return ConstantExpr::getIntToPtr(C, Ty); } Constant* LLVMContext::getConstantExprBitCast(Constant* C, const Type* Ty) { return ConstantExpr::getBitCast(C, Ty); } Constant* LLVMContext::getConstantExprCast(unsigned ops, Constant* C, const Type* Ty) { return ConstantExpr::getCast(ops, C, Ty); } Constant* LLVMContext::getConstantExprZExtOrBitCast(Constant* C, const Type* Ty) { return ConstantExpr::getZExtOrBitCast(C, Ty); } Constant* LLVMContext::getConstantExprSExtOrBitCast(Constant* C, const Type* Ty) { return ConstantExpr::getSExtOrBitCast(C, Ty); } Constant* LLVMContext::getConstantExprTruncOrBitCast(Constant* C, const Type* Ty) { return ConstantExpr::getTruncOrBitCast(C, Ty); } Constant* LLVMContext::getConstantExprPointerCast(Constant* C, const Type* Ty) { return ConstantExpr::getPointerCast(C, Ty); } Constant* LLVMContext::getConstantExprIntegerCast(Constant* C, const Type* Ty, bool isSigned) { return ConstantExpr::getIntegerCast(C, Ty, isSigned); } Constant* LLVMContext::getConstantExprFPCast(Constant* C, const Type* Ty) { return ConstantExpr::getFPCast(C, Ty); } Constant* LLVMContext::getConstantExprSelect(Constant* C, Constant* V1, Constant* V2) { return ConstantExpr::getSelect(C, V1, V2); } Constant* LLVMContext::getConstantExprAlignOf(const Type* Ty) { // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1 const Type *AligningTy = getStructType(Type::Int8Ty, Ty, NULL); Constant *NullPtr = getNullValue(AligningTy->getPointerTo()); Constant *Zero = getConstantInt(Type::Int32Ty, 0); Constant *One = getConstantInt(Type::Int32Ty, 1); Constant *Indices[2] = { Zero, One }; Constant *GEP = getConstantExprGetElementPtr(NullPtr, Indices, 2); return getConstantExprCast(Instruction::PtrToInt, GEP, Type::Int32Ty); } Constant* LLVMContext::getConstantExprCompare(unsigned short pred, Constant* C1, Constant* C2) { return ConstantExpr::getCompare(pred, C1, C2); } Constant* LLVMContext::getConstantExprNeg(Constant* C) { // API compatibility: Adjust integer opcodes to floating-point opcodes. if (C->getType()->isFPOrFPVector()) return getConstantExprFNeg(C); assert(C->getType()->isIntOrIntVector() && "Cannot NEG a nonintegral value!"); return getConstantExpr(Instruction::Sub, getZeroValueForNegation(C->getType()), C); } Constant* LLVMContext::getConstantExprFNeg(Constant* C) { assert(C->getType()->isFPOrFPVector() && "Cannot FNEG a non-floating-point value!"); return getConstantExpr(Instruction::FSub, getZeroValueForNegation(C->getType()), C); } Constant* LLVMContext::getConstantExprNot(Constant* C) { assert(C->getType()->isIntOrIntVector() && "Cannot NOT a nonintegral value!"); return getConstantExpr(Instruction::Xor, C, getAllOnesValue(C->getType())); } Constant* LLVMContext::getConstantExprAdd(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::Add, C1, C2); } Constant* LLVMContext::getConstantExprFAdd(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::FAdd, C1, C2); } Constant* LLVMContext::getConstantExprSub(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::Sub, C1, C2); } Constant* LLVMContext::getConstantExprFSub(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::FSub, C1, C2); } Constant* LLVMContext::getConstantExprMul(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::Mul, C1, C2); } Constant* LLVMContext::getConstantExprFMul(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::FMul, C1, C2); } Constant* LLVMContext::getConstantExprUDiv(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::UDiv, C1, C2); } Constant* LLVMContext::getConstantExprSDiv(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::SDiv, C1, C2); } Constant* LLVMContext::getConstantExprFDiv(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::FDiv, C1, C2); } Constant* LLVMContext::getConstantExprURem(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::URem, C1, C2); } Constant* LLVMContext::getConstantExprSRem(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::SRem, C1, C2); } Constant* LLVMContext::getConstantExprFRem(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::FRem, C1, C2); } Constant* LLVMContext::getConstantExprAnd(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::And, C1, C2); } Constant* LLVMContext::getConstantExprOr(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::Or, C1, C2); } Constant* LLVMContext::getConstantExprXor(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::Xor, C1, C2); } Constant* LLVMContext::getConstantExprICmp(unsigned short pred, Constant* LHS, Constant* RHS) { return ConstantExpr::getICmp(pred, LHS, RHS); } Constant* LLVMContext::getConstantExprFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { return ConstantExpr::getFCmp(pred, LHS, RHS); } Constant* LLVMContext::getConstantExprShl(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::Shl, C1, C2); } Constant* LLVMContext::getConstantExprLShr(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::LShr, C1, C2); } Constant* LLVMContext::getConstantExprAShr(Constant* C1, Constant* C2) { return getConstantExpr(Instruction::AShr, C1, C2); } Constant* LLVMContext::getConstantExprGetElementPtr(Constant* C, Constant* const* IdxList, unsigned NumIdx) { return ConstantExpr::getGetElementPtr(C, IdxList, NumIdx); } Constant* LLVMContext::getConstantExprGetElementPtr(Constant* C, Value* const* IdxList, unsigned NumIdx) { return ConstantExpr::getGetElementPtr(C, IdxList, NumIdx); } Constant* LLVMContext::getConstantExprExtractElement(Constant* Vec, Constant* Idx) { return ConstantExpr::getExtractElement(Vec, Idx); } Constant* LLVMContext::getConstantExprInsertElement(Constant* Vec, Constant* Elt, Constant* Idx) { return ConstantExpr::getInsertElement(Vec, Elt, Idx); } Constant* LLVMContext::getConstantExprShuffleVector(Constant* V1, Constant* V2, Constant* Mask) { return ConstantExpr::getShuffleVector(V1, V2, Mask); } Constant* LLVMContext::getConstantExprExtractValue(Constant* Agg, const unsigned* IdxList, unsigned NumIdx) { return ConstantExpr::getExtractValue(Agg, IdxList, NumIdx); } Constant* LLVMContext::getConstantExprInsertValue(Constant* Agg, Constant* Val, const unsigned* IdxList, unsigned NumIdx) { return ConstantExpr::getInsertValue(Agg, Val, IdxList, NumIdx); } Constant* LLVMContext::getConstantExprSizeOf(const Type* Ty) { // sizeof is implemented as: (i64) gep (Ty*)null, 1 Constant *GEPIdx = getConstantInt(Type::Int32Ty, 1); Constant *GEP = getConstantExprGetElementPtr( getNullValue(getPointerTypeUnqual(Ty)), &GEPIdx, 1); return getConstantExprCast(Instruction::PtrToInt, GEP, Type::Int64Ty); } Constant* LLVMContext::getZeroValueForNegation(const Type* Ty) { if (const VectorType *PTy = dyn_cast(Ty)) if (PTy->getElementType()->isFloatingPoint()) { std::vector zeros(PTy->getNumElements(), getConstantFPNegativeZero(PTy->getElementType())); return getConstantVector(PTy, zeros); } if (Ty->isFloatingPoint()) return getConstantFPNegativeZero(Ty); return getNullValue(Ty); } // ConstantFP accessors. ConstantFP* LLVMContext::getConstantFP(const APFloat& V) { return pImpl->getConstantFP(V); } static const fltSemantics *TypeToFloatSemantics(const Type *Ty) { if (Ty == Type::FloatTy) return &APFloat::IEEEsingle; if (Ty == Type::DoubleTy) return &APFloat::IEEEdouble; if (Ty == Type::X86_FP80Ty) return &APFloat::x87DoubleExtended; else if (Ty == Type::FP128Ty) return &APFloat::IEEEquad; assert(Ty == Type::PPC_FP128Ty && "Unknown FP format"); return &APFloat::PPCDoubleDouble; } /// get() - This returns a constant fp for the specified value in the /// specified type. This should only be used for simple constant values like /// 2.0/1.0 etc, that are known-valid both as double and as the target format. Constant* LLVMContext::getConstantFP(const Type* Ty, double V) { APFloat FV(V); bool ignored; FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), APFloat::rmNearestTiesToEven, &ignored); Constant *C = getConstantFP(FV); // For vectors, broadcast the value. if (const VectorType *VTy = dyn_cast(Ty)) return getConstantVector(std::vector(VTy->getNumElements(), C)); return C; } ConstantFP* LLVMContext::getConstantFPNegativeZero(const Type* Ty) { APFloat apf = cast (getNullValue(Ty))->getValueAPF(); apf.changeSign(); return getConstantFP(apf); } // ConstantVector accessors. Constant* LLVMContext::getConstantVector(const VectorType* T, const std::vector& V) { return ConstantVector::get(T, V); } Constant* LLVMContext::getConstantVector(const std::vector& V) { assert(!V.empty() && "Cannot infer type if V is empty"); return getConstantVector(getVectorType(V.front()->getType(),V.size()), V); } Constant* LLVMContext::getConstantVector(Constant* const* Vals, unsigned NumVals) { // FIXME: make this the primary ctor method. return getConstantVector(std::vector(Vals, Vals+NumVals)); } // MDNode accessors MDNode* LLVMContext::getMDNode(Value* const* Vals, unsigned NumVals) { return pImpl->getMDNode(Vals, NumVals); } // MDString accessors MDString* LLVMContext::getMDString(const char *StrBegin, const char *StrEnd) { return pImpl->getMDString(StrBegin, StrEnd); } MDString* LLVMContext::getMDString(const std::string &Str) { return getMDString(Str.data(), Str.data()+Str.size()); } // FunctionType accessors FunctionType* LLVMContext::getFunctionType(const Type* Result, bool isVarArg) { return FunctionType::get(Result, isVarArg); } FunctionType* LLVMContext::getFunctionType(const Type* Result, const std::vector& Params, bool isVarArg) { return FunctionType::get(Result, Params, isVarArg); } // IntegerType accessors const IntegerType* LLVMContext::getIntegerType(unsigned NumBits) { return IntegerType::get(NumBits); } // OpaqueType accessors OpaqueType* LLVMContext::getOpaqueType() { return OpaqueType::get(); } // StructType accessors StructType* LLVMContext::getStructType(bool isPacked) { return StructType::get(isPacked); } StructType* LLVMContext::getStructType(const std::vector& Params, bool isPacked) { return StructType::get(Params, isPacked); } StructType *LLVMContext::getStructType(const Type *type, ...) { va_list ap; std::vector StructFields; va_start(ap, type); while (type) { StructFields.push_back(type); type = va_arg(ap, llvm::Type*); } return StructType::get(StructFields); } // ArrayType accessors ArrayType* LLVMContext::getArrayType(const Type* ElementType, uint64_t NumElements) { return ArrayType::get(ElementType, NumElements); } // PointerType accessors PointerType* LLVMContext::getPointerType(const Type* ElementType, unsigned AddressSpace) { return PointerType::get(ElementType, AddressSpace); } PointerType* LLVMContext::getPointerTypeUnqual(const Type* ElementType) { return PointerType::getUnqual(ElementType); } // VectorType accessors VectorType* LLVMContext::getVectorType(const Type* ElementType, unsigned NumElements) { return VectorType::get(ElementType, NumElements); } VectorType* LLVMContext::getVectorTypeInteger(const VectorType* VTy) { return VectorType::getInteger(VTy); } VectorType* LLVMContext::getVectorTypeExtendedElement(const VectorType* VTy) { return VectorType::getExtendedElementVectorType(VTy); } VectorType* LLVMContext::getVectorTypeTruncatedElement(const VectorType* VTy) { return VectorType::getTruncatedElementVectorType(VTy); } const Type* LLVMContext::makeCmpResultType(const Type* opnd_type) { if (const VectorType* vt = dyn_cast(opnd_type)) { return getVectorType(Type::Int1Ty, vt->getNumElements()); } return Type::Int1Ty; } void LLVMContext::erase(MDString *M) { pImpl->erase(M); } void LLVMContext::erase(MDNode *M) { pImpl->erase(M); } void LLVMContext::erase(ConstantAggregateZero *Z) { pImpl->erase(Z); } void LLVMContext::erase(ConstantArray *C) { pImpl->erase(C); } Constant *LLVMContext::replaceUsesOfWithOnConstant(ConstantArray *CA, Value *From, Value *To, Use *U) { return pImpl->replaceUsesOfWithOnConstant(CA, From, To, U); }