//===- AsmWriterEmitter.cpp - Generate an assembly writer -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is emits an assembly printer for the current target. // Note that this is currently fairly skeletal, but will grow over time. // //===----------------------------------------------------------------------===// #include "AsmWriterEmitter.h" #include "AsmWriterInst.h" #include "CodeGenTarget.h" #include "Record.h" #include "StringToOffsetTable.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include using namespace llvm; static void PrintCases(std::vector > &OpsToPrint, raw_ostream &O) { O << " case " << OpsToPrint.back().first << ": "; AsmWriterOperand TheOp = OpsToPrint.back().second; OpsToPrint.pop_back(); // Check to see if any other operands are identical in this list, and if so, // emit a case label for them. for (unsigned i = OpsToPrint.size(); i != 0; --i) if (OpsToPrint[i-1].second == TheOp) { O << "\n case " << OpsToPrint[i-1].first << ": "; OpsToPrint.erase(OpsToPrint.begin()+i-1); } // Finally, emit the code. O << TheOp.getCode(); O << "break;\n"; } /// EmitInstructions - Emit the last instruction in the vector and any other /// instructions that are suitably similar to it. static void EmitInstructions(std::vector &Insts, raw_ostream &O) { AsmWriterInst FirstInst = Insts.back(); Insts.pop_back(); std::vector SimilarInsts; unsigned DifferingOperand = ~0; for (unsigned i = Insts.size(); i != 0; --i) { unsigned DiffOp = Insts[i-1].MatchesAllButOneOp(FirstInst); if (DiffOp != ~1U) { if (DifferingOperand == ~0U) // First match! DifferingOperand = DiffOp; // If this differs in the same operand as the rest of the instructions in // this class, move it to the SimilarInsts list. if (DifferingOperand == DiffOp || DiffOp == ~0U) { SimilarInsts.push_back(Insts[i-1]); Insts.erase(Insts.begin()+i-1); } } } O << " case " << FirstInst.CGI->Namespace << "::" << FirstInst.CGI->TheDef->getName() << ":\n"; for (unsigned i = 0, e = SimilarInsts.size(); i != e; ++i) O << " case " << SimilarInsts[i].CGI->Namespace << "::" << SimilarInsts[i].CGI->TheDef->getName() << ":\n"; for (unsigned i = 0, e = FirstInst.Operands.size(); i != e; ++i) { if (i != DifferingOperand) { // If the operand is the same for all instructions, just print it. O << " " << FirstInst.Operands[i].getCode(); } else { // If this is the operand that varies between all of the instructions, // emit a switch for just this operand now. O << " switch (MI->getOpcode()) {\n"; std::vector > OpsToPrint; OpsToPrint.push_back(std::make_pair(FirstInst.CGI->Namespace + "::" + FirstInst.CGI->TheDef->getName(), FirstInst.Operands[i])); for (unsigned si = 0, e = SimilarInsts.size(); si != e; ++si) { AsmWriterInst &AWI = SimilarInsts[si]; OpsToPrint.push_back(std::make_pair(AWI.CGI->Namespace+"::"+ AWI.CGI->TheDef->getName(), AWI.Operands[i])); } std::reverse(OpsToPrint.begin(), OpsToPrint.end()); while (!OpsToPrint.empty()) PrintCases(OpsToPrint, O); O << " }"; } O << "\n"; } O << " break;\n"; } void AsmWriterEmitter:: FindUniqueOperandCommands(std::vector &UniqueOperandCommands, std::vector &InstIdxs, std::vector &InstOpsUsed) const { InstIdxs.assign(NumberedInstructions.size(), ~0U); // This vector parallels UniqueOperandCommands, keeping track of which // instructions each case are used for. It is a comma separated string of // enums. std::vector InstrsForCase; InstrsForCase.resize(UniqueOperandCommands.size()); InstOpsUsed.assign(UniqueOperandCommands.size(), 0); for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { const AsmWriterInst *Inst = getAsmWriterInstByID(i); if (Inst == 0) continue; // PHI, INLINEASM, PROLOG_LABEL, etc. std::string Command; if (Inst->Operands.empty()) continue; // Instruction already done. Command = " " + Inst->Operands[0].getCode() + "\n"; // Check to see if we already have 'Command' in UniqueOperandCommands. // If not, add it. bool FoundIt = false; for (unsigned idx = 0, e = UniqueOperandCommands.size(); idx != e; ++idx) if (UniqueOperandCommands[idx] == Command) { InstIdxs[i] = idx; InstrsForCase[idx] += ", "; InstrsForCase[idx] += Inst->CGI->TheDef->getName(); FoundIt = true; break; } if (!FoundIt) { InstIdxs[i] = UniqueOperandCommands.size(); UniqueOperandCommands.push_back(Command); InstrsForCase.push_back(Inst->CGI->TheDef->getName()); // This command matches one operand so far. InstOpsUsed.push_back(1); } } // For each entry of UniqueOperandCommands, there is a set of instructions // that uses it. If the next command of all instructions in the set are // identical, fold it into the command. for (unsigned CommandIdx = 0, e = UniqueOperandCommands.size(); CommandIdx != e; ++CommandIdx) { for (unsigned Op = 1; ; ++Op) { // Scan for the first instruction in the set. std::vector::iterator NIT = std::find(InstIdxs.begin(), InstIdxs.end(), CommandIdx); if (NIT == InstIdxs.end()) break; // No commonality. // If this instruction has no more operands, we isn't anything to merge // into this command. const AsmWriterInst *FirstInst = getAsmWriterInstByID(NIT-InstIdxs.begin()); if (!FirstInst || FirstInst->Operands.size() == Op) break; // Otherwise, scan to see if all of the other instructions in this command // set share the operand. bool AllSame = true; // Keep track of the maximum, number of operands or any // instruction we see in the group. size_t MaxSize = FirstInst->Operands.size(); for (NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx); NIT != InstIdxs.end(); NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx)) { // Okay, found another instruction in this command set. If the operand // matches, we're ok, otherwise bail out. const AsmWriterInst *OtherInst = getAsmWriterInstByID(NIT-InstIdxs.begin()); if (OtherInst && OtherInst->Operands.size() > FirstInst->Operands.size()) MaxSize = std::max(MaxSize, OtherInst->Operands.size()); if (!OtherInst || OtherInst->Operands.size() == Op || OtherInst->Operands[Op] != FirstInst->Operands[Op]) { AllSame = false; break; } } if (!AllSame) break; // Okay, everything in this command set has the same next operand. Add it // to UniqueOperandCommands and remember that it was consumed. std::string Command = " " + FirstInst->Operands[Op].getCode() + "\n"; UniqueOperandCommands[CommandIdx] += Command; InstOpsUsed[CommandIdx]++; } } // Prepend some of the instructions each case is used for onto the case val. for (unsigned i = 0, e = InstrsForCase.size(); i != e; ++i) { std::string Instrs = InstrsForCase[i]; if (Instrs.size() > 70) { Instrs.erase(Instrs.begin()+70, Instrs.end()); Instrs += "..."; } if (!Instrs.empty()) UniqueOperandCommands[i] = " // " + Instrs + "\n" + UniqueOperandCommands[i]; } } static void UnescapeString(std::string &Str) { for (unsigned i = 0; i != Str.size(); ++i) { if (Str[i] == '\\' && i != Str.size()-1) { switch (Str[i+1]) { default: continue; // Don't execute the code after the switch. case 'a': Str[i] = '\a'; break; case 'b': Str[i] = '\b'; break; case 'e': Str[i] = 27; break; case 'f': Str[i] = '\f'; break; case 'n': Str[i] = '\n'; break; case 'r': Str[i] = '\r'; break; case 't': Str[i] = '\t'; break; case 'v': Str[i] = '\v'; break; case '"': Str[i] = '\"'; break; case '\'': Str[i] = '\''; break; case '\\': Str[i] = '\\'; break; } // Nuke the second character. Str.erase(Str.begin()+i+1); } } } /// EmitPrintInstruction - Generate the code for the "printInstruction" method /// implementation. void AsmWriterEmitter::EmitPrintInstruction(raw_ostream &O) { CodeGenTarget Target(Records); Record *AsmWriter = Target.getAsmWriter(); std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); bool isMC = AsmWriter->getValueAsBit("isMCAsmWriter"); const char *MachineInstrClassName = isMC ? "MCInst" : "MachineInstr"; O << "/// printInstruction - This method is automatically generated by tablegen\n" "/// from the instruction set description.\n" "void " << Target.getName() << ClassName << "::printInstruction(const " << MachineInstrClassName << " *MI, raw_ostream &O) {\n"; std::vector Instructions; for (CodeGenTarget::inst_iterator I = Target.inst_begin(), E = Target.inst_end(); I != E; ++I) if (!(*I)->AsmString.empty() && (*I)->TheDef->getName() != "PHI") Instructions.push_back( AsmWriterInst(**I, AsmWriter->getValueAsInt("Variant"), AsmWriter->getValueAsInt("FirstOperandColumn"), AsmWriter->getValueAsInt("OperandSpacing"))); // Get the instruction numbering. NumberedInstructions = Target.getInstructionsByEnumValue(); // Compute the CodeGenInstruction -> AsmWriterInst mapping. Note that not // all machine instructions are necessarily being printed, so there may be // target instructions not in this map. for (unsigned i = 0, e = Instructions.size(); i != e; ++i) CGIAWIMap.insert(std::make_pair(Instructions[i].CGI, &Instructions[i])); // Build an aggregate string, and build a table of offsets into it. StringToOffsetTable StringTable; /// OpcodeInfo - This encodes the index of the string to use for the first /// chunk of the output as well as indices used for operand printing. std::vector OpcodeInfo; unsigned MaxStringIdx = 0; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { AsmWriterInst *AWI = CGIAWIMap[NumberedInstructions[i]]; unsigned Idx; if (AWI == 0) { // Something not handled by the asmwriter printer. Idx = ~0U; } else if (AWI->Operands[0].OperandType != AsmWriterOperand::isLiteralTextOperand || AWI->Operands[0].Str.empty()) { // Something handled by the asmwriter printer, but with no leading string. Idx = StringTable.GetOrAddStringOffset(""); } else { std::string Str = AWI->Operands[0].Str; UnescapeString(Str); Idx = StringTable.GetOrAddStringOffset(Str); MaxStringIdx = std::max(MaxStringIdx, Idx); // Nuke the string from the operand list. It is now handled! AWI->Operands.erase(AWI->Operands.begin()); } // Bias offset by one since we want 0 as a sentinel. OpcodeInfo.push_back(Idx+1); } // Figure out how many bits we used for the string index. unsigned AsmStrBits = Log2_32_Ceil(MaxStringIdx+2); // To reduce code size, we compactify common instructions into a few bits // in the opcode-indexed table. unsigned BitsLeft = 32-AsmStrBits; std::vector > TableDrivenOperandPrinters; while (1) { std::vector UniqueOperandCommands; std::vector InstIdxs; std::vector NumInstOpsHandled; FindUniqueOperandCommands(UniqueOperandCommands, InstIdxs, NumInstOpsHandled); // If we ran out of operands to print, we're done. if (UniqueOperandCommands.empty()) break; // Compute the number of bits we need to represent these cases, this is // ceil(log2(numentries)). unsigned NumBits = Log2_32_Ceil(UniqueOperandCommands.size()); // If we don't have enough bits for this operand, don't include it. if (NumBits > BitsLeft) { DEBUG(errs() << "Not enough bits to densely encode " << NumBits << " more bits\n"); break; } // Otherwise, we can include this in the initial lookup table. Add it in. BitsLeft -= NumBits; for (unsigned i = 0, e = InstIdxs.size(); i != e; ++i) if (InstIdxs[i] != ~0U) OpcodeInfo[i] |= InstIdxs[i] << (BitsLeft+AsmStrBits); // Remove the info about this operand. for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { if (AsmWriterInst *Inst = getAsmWriterInstByID(i)) if (!Inst->Operands.empty()) { unsigned NumOps = NumInstOpsHandled[InstIdxs[i]]; assert(NumOps <= Inst->Operands.size() && "Can't remove this many ops!"); Inst->Operands.erase(Inst->Operands.begin(), Inst->Operands.begin()+NumOps); } } // Remember the handlers for this set of operands. TableDrivenOperandPrinters.push_back(UniqueOperandCommands); } O<<" static const unsigned OpInfo[] = {\n"; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { O << " " << OpcodeInfo[i] << "U,\t// " << NumberedInstructions[i]->TheDef->getName() << "\n"; } // Add a dummy entry so the array init doesn't end with a comma. O << " 0U\n"; O << " };\n\n"; // Emit the string itself. O << " const char *AsmStrs = \n"; StringTable.EmitString(O); O << ";\n\n"; O << " O << \"\\t\";\n\n"; O << " // Emit the opcode for the instruction.\n" << " unsigned Bits = OpInfo[MI->getOpcode()];\n" << " assert(Bits != 0 && \"Cannot print this instruction.\");\n" << " O << AsmStrs+(Bits & " << (1 << AsmStrBits)-1 << ")-1;\n\n"; // Output the table driven operand information. BitsLeft = 32-AsmStrBits; for (unsigned i = 0, e = TableDrivenOperandPrinters.size(); i != e; ++i) { std::vector &Commands = TableDrivenOperandPrinters[i]; // Compute the number of bits we need to represent these cases, this is // ceil(log2(numentries)). unsigned NumBits = Log2_32_Ceil(Commands.size()); assert(NumBits <= BitsLeft && "consistency error"); // Emit code to extract this field from Bits. BitsLeft -= NumBits; O << "\n // Fragment " << i << " encoded into " << NumBits << " bits for " << Commands.size() << " unique commands.\n"; if (Commands.size() == 2) { // Emit two possibilitys with if/else. O << " if ((Bits >> " << (BitsLeft+AsmStrBits) << ") & " << ((1 << NumBits)-1) << ") {\n" << Commands[1] << " } else {\n" << Commands[0] << " }\n\n"; } else if (Commands.size() == 1) { // Emit a single possibility. O << Commands[0] << "\n\n"; } else { O << " switch ((Bits >> " << (BitsLeft+AsmStrBits) << ") & " << ((1 << NumBits)-1) << ") {\n" << " default: // unreachable.\n"; // Print out all the cases. for (unsigned i = 0, e = Commands.size(); i != e; ++i) { O << " case " << i << ":\n"; O << Commands[i]; O << " break;\n"; } O << " }\n\n"; } } // Okay, delete instructions with no operand info left. for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { // Entire instruction has been emitted? AsmWriterInst &Inst = Instructions[i]; if (Inst.Operands.empty()) { Instructions.erase(Instructions.begin()+i); --i; --e; } } // Because this is a vector, we want to emit from the end. Reverse all of the // elements in the vector. std::reverse(Instructions.begin(), Instructions.end()); // Now that we've emitted all of the operand info that fit into 32 bits, emit // information for those instructions that are left. This is a less dense // encoding, but we expect the main 32-bit table to handle the majority of // instructions. if (!Instructions.empty()) { // Find the opcode # of inline asm. O << " switch (MI->getOpcode()) {\n"; while (!Instructions.empty()) EmitInstructions(Instructions, O); O << " }\n"; O << " return;\n"; } O << "}\n"; } void AsmWriterEmitter::EmitGetRegisterName(raw_ostream &O) { CodeGenTarget Target(Records); Record *AsmWriter = Target.getAsmWriter(); std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); const std::vector &Registers = Target.getRegisters(); StringToOffsetTable StringTable; O << "\n\n/// getRegisterName - This method is automatically generated by tblgen\n" "/// from the register set description. This returns the assembler name\n" "/// for the specified register.\n" "const char *" << Target.getName() << ClassName << "::getRegisterName(unsigned RegNo) {\n" << " assert(RegNo && RegNo < " << (Registers.size()+1) << " && \"Invalid register number!\");\n" << "\n" << " static const unsigned RegAsmOffset[] = {"; for (unsigned i = 0, e = Registers.size(); i != e; ++i) { const CodeGenRegister &Reg = Registers[i]; std::string AsmName = Reg.TheDef->getValueAsString("AsmName"); if (AsmName.empty()) AsmName = Reg.getName(); if ((i % 14) == 0) O << "\n "; O << StringTable.GetOrAddStringOffset(AsmName) << ", "; } O << "0\n" << " };\n" << "\n"; O << " const char *AsmStrs =\n"; StringTable.EmitString(O); O << ";\n"; O << " return AsmStrs+RegAsmOffset[RegNo-1];\n" << "}\n"; } void AsmWriterEmitter::EmitGetInstructionName(raw_ostream &O) { CodeGenTarget Target(Records); Record *AsmWriter = Target.getAsmWriter(); std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); const std::vector &NumberedInstructions = Target.getInstructionsByEnumValue(); StringToOffsetTable StringTable; O << "\n\n#ifdef GET_INSTRUCTION_NAME\n" "#undef GET_INSTRUCTION_NAME\n\n" "/// getInstructionName: This method is automatically generated by tblgen\n" "/// from the instruction set description. This returns the enum name of the\n" "/// specified instruction.\n" "const char *" << Target.getName() << ClassName << "::getInstructionName(unsigned Opcode) {\n" << " assert(Opcode < " << NumberedInstructions.size() << " && \"Invalid instruction number!\");\n" << "\n" << " static const unsigned InstAsmOffset[] = {"; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { const CodeGenInstruction &Inst = *NumberedInstructions[i]; std::string AsmName = Inst.TheDef->getName(); if ((i % 14) == 0) O << "\n "; O << StringTable.GetOrAddStringOffset(AsmName) << ", "; } O << "0\n" << " };\n" << "\n"; O << " const char *Strs =\n"; StringTable.EmitString(O); O << ";\n"; O << " return Strs+InstAsmOffset[Opcode];\n" << "}\n\n#endif\n"; } namespace { /// SubtargetFeatureInfo - Helper class for storing information on a subtarget /// feature which participates in instruction matching. struct SubtargetFeatureInfo { /// \brief The predicate record for this feature. const Record *TheDef; /// \brief An unique index assigned to represent this feature. unsigned Index; SubtargetFeatureInfo(const Record *D, unsigned Idx) : TheDef(D), Index(Idx) {} /// \brief The name of the enumerated constant identifying this feature. std::string getEnumName() const { return "Feature_" + TheDef->getName(); } }; struct AsmWriterInfo { /// Map of Predicate records to their subtarget information. std::map SubtargetFeatures; /// getSubtargetFeature - Lookup or create the subtarget feature info for the /// given operand. SubtargetFeatureInfo *getSubtargetFeature(const Record *Def) const { assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); std::map::const_iterator I = SubtargetFeatures.find(Def); return I == SubtargetFeatures.end() ? 0 : I->second; } void addReqFeatures(const std::vector &Features) { for (std::vector::const_iterator I = Features.begin(), E = Features.end(); I != E; ++I) { const Record *Pred = *I; // Ignore predicates that are not intended for the assembler. if (!Pred->getValueAsBit("AssemblerMatcherPredicate")) continue; if (Pred->getName().empty()) throw TGError(Pred->getLoc(), "Predicate has no name!"); // Don't add the predicate again. if (getSubtargetFeature(Pred)) continue; unsigned FeatureNo = SubtargetFeatures.size(); SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo); assert(FeatureNo < 32 && "Too many subtarget features!"); } } const SubtargetFeatureInfo *getFeatureInfo(const Record *R) { return SubtargetFeatures[R]; } }; } // end anonymous namespace /// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag /// definitions. static void EmitSubtargetFeatureFlagEnumeration(AsmWriterInfo &Info, raw_ostream &O) { O << "namespace {\n\n"; O << "// Flags for subtarget features that participate in " << "alias instruction matching.\n"; O << "enum SubtargetFeatureFlag {\n"; for (std::map::const_iterator I = Info.SubtargetFeatures.begin(), E = Info.SubtargetFeatures.end(); I != E; ++I) { SubtargetFeatureInfo &SFI = *I->second; O << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n"; } O << " Feature_None = 0\n"; O << "};\n\n"; O << "} // end anonymous namespace\n"; } /// EmitComputeAvailableFeatures - Emit the function to compute the list of /// available features given a subtarget. static void EmitComputeAvailableFeatures(AsmWriterInfo &Info, Record *AsmWriter, CodeGenTarget &Target, raw_ostream &O) { std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); O << "unsigned " << Target.getName() << ClassName << "::\n" << "ComputeAvailableFeatures(const " << Target.getName() << "Subtarget *Subtarget) const {\n"; O << " unsigned Features = 0;\n"; for (std::map::const_iterator I = Info.SubtargetFeatures.begin(), E = Info.SubtargetFeatures.end(); I != E; ++I) { SubtargetFeatureInfo &SFI = *I->second; O << " if (" << SFI.TheDef->getValueAsString("CondString") << ")\n"; O << " Features |= " << SFI.getEnumName() << ";\n"; } O << " return Features;\n"; O << "}\n\n"; } void AsmWriterEmitter::EmitRegIsInRegClass(raw_ostream &O) { CodeGenTarget Target(Records); // Enumerate the register classes. const std::vector &RegisterClasses = Target.getRegisterClasses(); O << "namespace { // Register classes\n"; O << " enum RegClass {\n"; // Emit the register enum value for each RegisterClass. for (unsigned I = 0, E = RegisterClasses.size(); I != E; ++I) { if (I != 0) O << ",\n"; O << " RC_" << RegisterClasses[I].TheDef->getName(); } O << "\n };\n"; O << "} // end anonymous namespace\n\n"; // Emit a function that returns 'true' if a regsiter is part of a particular // register class. I.e., RAX is part of GR64 on X86. O << "static bool regIsInRegisterClass" << "(unsigned RegClass, unsigned Reg) {\n"; // Emit the switch that checks if a register belongs to a particular register // class. O << " switch (RegClass) {\n"; O << " default: break;\n"; for (unsigned I = 0, E = RegisterClasses.size(); I != E; ++I) { const CodeGenRegisterClass &RC = RegisterClasses[I]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); O << " case RC_" << Name << ":\n"; // Emit the register list now. unsigned IE = RC.Elements.size(); if (IE == 1) { O << " if (Reg == " << getQualifiedName(RC.Elements[0]) << ")\n"; O << " return true;\n"; } else { O << " switch (Reg) {\n"; O << " default: break;\n"; for (unsigned II = 0; II != IE; ++II) { Record *Reg = RC.Elements[II]; O << " case " << getQualifiedName(Reg) << ":\n"; } O << " return true;\n"; O << " }\n"; } O << " break;\n"; } O << " }\n\n"; O << " return false;\n"; O << "}\n\n"; } void AsmWriterEmitter::EmitPrintAliasInstruction(raw_ostream &O) { CodeGenTarget Target(Records); Record *AsmWriter = Target.getAsmWriter(); O << "\n#ifdef PRINT_ALIAS_INSTR\n"; O << "#undef PRINT_ALIAS_INSTR\n\n"; EmitRegIsInRegClass(O); // Emit the method that prints the alias instruction. std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); bool isMC = AsmWriter->getValueAsBit("isMCAsmWriter"); const char *MachineInstrClassName = isMC ? "MCInst" : "MachineInstr"; O << "bool " << Target.getName() << ClassName << "::printAliasInstr(const " << MachineInstrClassName << " *MI, raw_ostream &OS) {\n"; std::vector AllInstAliases = Records.getAllDerivedDefinitions("InstAlias"); // Create a map from the qualified name to a list of potential matches. std::map > AliasMap; for (std::vector::iterator I = AllInstAliases.begin(), E = AllInstAliases.end(); I != E; ++I) { CodeGenInstAlias *Alias = new CodeGenInstAlias(*I, Target); const Record *R = *I; const DagInit *DI = R->getValueAsDag("ResultInst"); const DefInit *Op = dynamic_cast(DI->getOperator()); AliasMap[getQualifiedName(Op->getDef())].push_back(Alias); } if (AliasMap.empty() || !isMC) { // FIXME: Support MachineInstr InstAliases? O << " return true;\n"; O << "}\n\n"; O << "#endif // PRINT_ALIAS_INSTR\n"; return; } O << " StringRef AsmString;\n"; O << " std::map OpMap;\n"; O << " switch (MI->getOpcode()) {\n"; O << " default: return true;\n"; for (std::map >::iterator I = AliasMap.begin(), E = AliasMap.end(); I != E; ++I) { std::vector &Aliases = I->second; std::map CondCount; std::map BodyMap; std::string AsmString = ""; for (std::vector::iterator II = Aliases.begin(), IE = Aliases.end(); II != IE; ++II) { const CodeGenInstAlias *CGA = *II; AsmString = CGA->AsmString; unsigned Indent = 8; unsigned LastOpNo = CGA->ResultInstOperandIndex.size(); std::string Cond; raw_string_ostream CondO(Cond); CondO << "if (MI->getNumOperands() == " << LastOpNo; std::map OpMap; bool CantHandle = false; for (unsigned i = 0, e = LastOpNo; i != e; ++i) { const CodeGenInstAlias::ResultOperand &RO = CGA->ResultOperands[i]; switch (RO.Kind) { default: assert(0 && "unexpected InstAlias operand kind"); case CodeGenInstAlias::ResultOperand::K_Record: { const Record *Rec = RO.getRecord(); StringRef ROName = RO.getName(); if (Rec->isSubClassOf("RegisterClass")) { CondO << " &&\n"; CondO.indent(Indent) << "MI->getOperand(" << i << ").isReg() &&\n"; if (OpMap.find(ROName) == OpMap.end()) { OpMap[ROName] = i; CondO.indent(Indent) << "regIsInRegisterClass(RC_" << CGA->ResultOperands[i].getRecord()->getName() << ", MI->getOperand(" << i << ").getReg())"; } else { CondO.indent(Indent) << "MI->getOperand(" << i << ").getReg() == MI->getOperand(" << OpMap[ROName] << ").getReg()"; } } else { assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); // FIXME: We need to handle these situations. CantHandle = true; break; } break; } case CodeGenInstAlias::ResultOperand::K_Imm: CondO << " &&\n"; CondO.indent(Indent) << "MI->getOperand(" << i << ").getImm() == "; CondO << CGA->ResultOperands[i].getImm(); break; case CodeGenInstAlias::ResultOperand::K_Reg: CondO << " &&\n"; CondO.indent(Indent) << "MI->getOperand(" << i << ").getReg() == "; CondO << Target.getName() << "::" << CGA->ResultOperands[i].getRegister()->getName(); break; } if (CantHandle) break; } if (CantHandle) continue; CondO << ")"; std::string Body; raw_string_ostream BodyO(Body); BodyO << " // " << CGA->Result->getAsString() << "\n"; BodyO << " AsmString = \"" << AsmString << "\";\n"; for (std::map::iterator III = OpMap.begin(), IIE = OpMap.end(); III != IIE; ++III) BodyO << " OpMap[\"" << III->first << "\"] = " << III->second << ";\n"; ++CondCount[CondO.str()]; BodyMap[CondO.str()] = BodyO.str(); } std::string Code; raw_string_ostream CodeO(Code); bool EmitElse = false; for (std::map::iterator II = CondCount.begin(), IE = CondCount.end(); II != IE; ++II) { if (II->second != 1) continue; CodeO << " "; if (EmitElse) CodeO << "} else "; CodeO << II->first << " {\n"; CodeO << BodyMap[II->first]; EmitElse = true; } if (CodeO.str().empty()) continue; O << " case " << I->first << ":\n"; O << CodeO.str(); O << " }\n"; O << " break;\n"; } O << " }\n\n"; // Code that prints the alias, replacing the operands with the ones from the // MCInst. O << " if (AsmString.empty()) return true;\n"; O << " std::pair ASM = AsmString.split(' ');\n"; O << " OS << '\\t' << ASM.first;\n"; O << " if (!ASM.second.empty()) {\n"; O << " OS << '\\t';\n"; O << " for (StringRef::iterator\n"; O << " I = ASM.second.begin(), E = ASM.second.end(); I != E; ) {\n"; O << " if (*I == '$') {\n"; O << " StringRef::iterator Start = ++I;\n"; O << " while (I != E &&\n"; O << " ((*I >= 'a' && *I <= 'z') ||\n"; O << " (*I >= 'A' && *I <= 'Z') ||\n"; O << " (*I >= '0' && *I <= '9') ||\n"; O << " *I == '_'))\n"; O << " ++I;\n"; O << " StringRef Name(Start, I - Start);\n"; O << " printOperand(MI, OpMap[Name], OS);\n"; O << " } else {\n"; O << " OS << *I++;\n"; O << " }\n"; O << " }\n"; O << " }\n\n"; O << " return false;\n"; O << "}\n\n"; O << "#endif // PRINT_ALIAS_INSTR\n"; } void AsmWriterEmitter::run(raw_ostream &O) { EmitSourceFileHeader("Assembly Writer Source Fragment", O); EmitPrintInstruction(O); EmitGetRegisterName(O); EmitGetInstructionName(O); EmitPrintAliasInstruction(O); }