//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveVariable analysis pass. For each machine // instruction in the function, this pass calculates the set of registers that // are immediately dead after the instruction (i.e., the instruction calculates // the value, but it is never used) and the set of registers that are used by // the instruction, but are never used after the instruction (i.e., they are // killed). // // This class computes live variables using are sparse implementation based on // the machine code SSA form. This class computes live variable information for // each virtual and _register allocatable_ physical register in a function. It // uses the dominance properties of SSA form to efficiently compute live // variables for virtual registers, and assumes that physical registers are only // live within a single basic block (allowing it to do a single local analysis // to resolve physical register lifetimes in each basic block). If a physical // register is not register allocatable, it is not tracked. This is useful for // things like the stack pointer and condition codes. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CFG.h" #include "Support/DepthFirstIterator.h" namespace llvm { static RegisterAnalysis X("livevars", "Live Variable Analysis"); const std::pair & LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{ return BBMap.find(MBB->getBasicBlock())->second; } LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { assert(RegIdx >= MRegisterInfo::FirstVirtualRegister && "getVarInfo: not a virtual register!"); RegIdx -= MRegisterInfo::FirstVirtualRegister; if (RegIdx >= VirtRegInfo.size()) { if (RegIdx >= 2*VirtRegInfo.size()) VirtRegInfo.resize(RegIdx*2); else VirtRegInfo.resize(2*VirtRegInfo.size()); } return VirtRegInfo[RegIdx]; } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, const BasicBlock *BB) { const std::pair &Info = BBMap.find(BB)->second; MachineBasicBlock *MBB = Info.first; unsigned BBNum = Info.second; // Check to see if this basic block is one of the killing blocks. If so, // remove it... for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) if (VRInfo.Kills[i].first == MBB) { VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry break; } if (MBB == VRInfo.DefBlock) return; // Terminate recursion if (VRInfo.AliveBlocks.size() <= BBNum) VRInfo.AliveBlocks.resize(BBNum+1); // Make space... if (VRInfo.AliveBlocks[BBNum]) return; // We already know the block is live // Mark the variable known alive in this bb VRInfo.AliveBlocks[BBNum] = true; for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) MarkVirtRegAliveInBlock(VRInfo, *PI); } void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, MachineInstr *MI) { // Check to see if this basic block is already a kill block... if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) { // Yes, this register is killed in this basic block already. Increase the // live range by updating the kill instruction. VRInfo.Kills.back().second = MI; return; } #ifndef NDEBUG for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) assert(VRInfo.Kills[i].first != MBB && "entry should be at end!"); #endif assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!"); // Add a new kill entry for this basic block. VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Update all dominating blocks to mark them known live. const BasicBlock *BB = MBB->getBasicBlock(); for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) MarkVirtRegAliveInBlock(VRInfo, *PI); } void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { if (PhysRegInfo[Reg]) { PhysRegInfo[Reg] = MI; PhysRegUsed[Reg] = true; } else { for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); *AliasSet; ++AliasSet) { if (MachineInstr *LastUse = PhysRegInfo[*AliasSet]) { PhysRegInfo[*AliasSet] = MI; PhysRegUsed[*AliasSet] = true; } } } } void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { // Does this kill a previous version of this register? if (MachineInstr *LastUse = PhysRegInfo[Reg]) { if (PhysRegUsed[Reg]) RegistersKilled.insert(std::make_pair(LastUse, Reg)); else RegistersDead.insert(std::make_pair(LastUse, Reg)); } else { for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); *AliasSet; ++AliasSet) { if (MachineInstr *LastUse = PhysRegInfo[*AliasSet]) { if (PhysRegUsed[*AliasSet]) RegistersKilled.insert(std::make_pair(LastUse, *AliasSet)); else RegistersDead.insert(std::make_pair(LastUse, *AliasSet)); PhysRegInfo[*AliasSet] = 0; // Kill the aliased register } } } PhysRegInfo[Reg] = MI; PhysRegUsed[Reg] = false; } bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { // First time though, initialize AllocatablePhysicalRegisters for the target if (AllocatablePhysicalRegisters.empty()) { const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo(); assert(&MRI && "Target doesn't have register information?"); // Make space, initializing to false... AllocatablePhysicalRegisters.resize(MRegisterInfo::FirstVirtualRegister); // Loop over all of the register classes... for (MRegisterInfo::regclass_iterator RCI = MRI.regclass_begin(), E = MRI.regclass_end(); RCI != E; ++RCI) // Loop over all of the allocatable registers in the function... for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF), E = (*RCI)->allocation_order_end(MF); I != E; ++I) AllocatablePhysicalRegisters[*I] = true; // The reg is allocatable! } // Build BBMap... unsigned BBNum = 0; for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++); // PhysRegInfo - Keep track of which instruction was the last use of a // physical register. This is a purely local property, because all physical // register references as presumed dead across basic blocks. // MachineInstr *PhysRegInfoA[MRegisterInfo::FirstVirtualRegister]; bool PhysRegUsedA[MRegisterInfo::FirstVirtualRegister]; std::fill(PhysRegInfoA, PhysRegInfoA+MRegisterInfo::FirstVirtualRegister, (MachineInstr*)0); PhysRegInfo = PhysRegInfoA; PhysRegUsed = PhysRegUsedA; const TargetInstrInfo &TII = MF.getTarget().getInstrInfo(); RegInfo = MF.getTarget().getRegisterInfo(); /// Get some space for a respectable number of registers... VirtRegInfo.resize(64); // Calculate live variable information in depth first order on the CFG of the // function. This guarantees that we will see the definition of a virtual // register before its uses due to dominance properties of SSA (except for PHI // nodes, which are treated as a special case). // const BasicBlock *Entry = MF.getFunction()->begin(); for (df_iterator DFI = df_begin(Entry), E = df_end(Entry); DFI != E; ++DFI) { const BasicBlock *BB = *DFI; std::pair &BBRec = BBMap.find(BB)->second; MachineBasicBlock *MBB = BBRec.first; unsigned BBNum = BBRec.second; // Loop over all of the instructions, processing them. for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { MachineInstr *MI = *I; const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); // Process all of the operands of the instruction... unsigned NumOperandsToProcess = MI->getNumOperands(); // Unless it is a PHI node. In this case, ONLY process the DEF, not any // of the uses. They will be handled in other basic blocks. if (MI->getOpcode() == TargetInstrInfo::PHI) NumOperandsToProcess = 1; // Loop over implicit uses, using them. for (const unsigned *ImplicitUses = MID.ImplicitUses; *ImplicitUses; ++ImplicitUses) HandlePhysRegUse(*ImplicitUses, MI); // Process all explicit uses... for (unsigned i = 0; i != NumOperandsToProcess; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isUse()) { if (MO.isVirtualRegister() && !MO.getVRegValueOrNull()) { HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); } else if (MO.isPhysicalRegister() && AllocatablePhysicalRegisters[MO.getReg()]) { HandlePhysRegUse(MO.getReg(), MI); } } } // Loop over implicit defs, defining them. for (const unsigned *ImplicitDefs = MID.ImplicitDefs; *ImplicitDefs; ++ImplicitDefs) HandlePhysRegDef(*ImplicitDefs, MI); // Process all explicit defs... for (unsigned i = 0; i != NumOperandsToProcess; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isDef()) { if (MO.isVirtualRegister()) { VarInfo &VRInfo = getVarInfo(MO.getReg()); assert(VRInfo.DefBlock == 0 && "Variable multiply defined!"); VRInfo.DefBlock = MBB; // Created here... VRInfo.DefInst = MI; VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead } else if (MO.isPhysicalRegister() && AllocatablePhysicalRegisters[MO.getReg()]) { HandlePhysRegDef(MO.getReg(), MI); } } } } // Handle any virtual assignments from PHI nodes which might be at the // bottom of this basic block. We check all of our successor blocks to see // if they have PHI nodes, and if so, we simulate an assignment at the end // of the current block. for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { MachineBasicBlock *Succ = BBMap.find(*SI)->second.first; // PHI nodes are guaranteed to be at the top of the block... for (MachineBasicBlock::iterator I = Succ->begin(), E = Succ->end(); I != E && (*I)->getOpcode() == TargetInstrInfo::PHI; ++I) { MachineInstr *MI = *I; for (unsigned i = 1; ; i += 2) if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { MachineOperand &MO = MI->getOperand(i); if (!MO.getVRegValueOrNull()) { VarInfo &VRInfo = getVarInfo(MO.getReg()); // Only mark it alive only in the block we are representing... MarkVirtRegAliveInBlock(VRInfo, BB); break; // Found the PHI entry for this block... } } } } // Loop over PhysRegInfo, killing any registers that are available at the // end of the basic block. This also resets the PhysRegInfo map. for (unsigned i = 0, e = MRegisterInfo::FirstVirtualRegister; i != e; ++i) if (PhysRegInfo[i]) HandlePhysRegDef(i, 0); } // Convert the information we have gathered into VirtRegInfo and transform it // into a form usable by RegistersKilled. // for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst) RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, i + MRegisterInfo::FirstVirtualRegister)); else RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, i + MRegisterInfo::FirstVirtualRegister)); } return false; } } // End llvm namespace