//===-- Constants.cpp - Implement Constant nodes -----------------*- C++ -*--=// // // This file implements the Constant* classes... // //===----------------------------------------------------------------------===// #define __STDC_LIMIT_MACROS // Get defs for INT64_MAX and friends... #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/iMemory.h" #include "llvm/SymbolTable.h" #include "llvm/Module.h" #include "llvm/SlotCalculator.h" #include "Support/StringExtras.h" #include using std::map; using std::pair; using std::make_pair; ConstantBool *ConstantBool::True = new ConstantBool(true); ConstantBool *ConstantBool::False = new ConstantBool(false); //===----------------------------------------------------------------------===// // Constant Class //===----------------------------------------------------------------------===// // Specialize setName to take care of symbol table majik void Constant::setName(const std::string &Name, SymbolTable *ST) { assert(ST && "Type::setName - Must provide symbol table argument!"); if (Name.size()) ST->insert(Name, this); } // Static constructor to create a '0' constant of arbitrary type... Constant *Constant::getNullValue(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return ConstantBool::get(false); case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: return ConstantSInt::get(Ty, 0); case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: return ConstantUInt::get(Ty, 0); case Type::FloatTyID: case Type::DoubleTyID: return ConstantFP::get(Ty, 0); case Type::PointerTyID: return ConstantPointerNull::get(cast(Ty)); default: return 0; } } void Constant::destroyConstantImpl() { // When a Constant is destroyed, there may be lingering // references to the constant by other constants in the constant pool. These // constants are implicitly dependant on the module that is being deleted, // but they don't know that. Because we only find out when the CPV is // deleted, we must now notify all of our users (that should only be // Constants) that they are, in fact, invalid now and should be deleted. // while (!use_empty()) { Value *V = use_back(); #ifndef NDEBUG // Only in -g mode... if (!isa(V)) { std::cerr << "While deleting: "; dump(); std::cerr << "\nUse still stuck around after Def is destroyed: "; V->dump(); std::cerr << "\n"; } #endif assert(isa(V) && "References remain to Constant being destroyed"); Constant *CPV = cast(V); CPV->destroyConstant(); // The constant should remove itself from our use list... assert((use_empty() || use_back() != V) && "Constant not removed!"); } // Value has no outstanding references it is safe to delete it now... delete this; } //===----------------------------------------------------------------------===// // ConstantXXX Classes //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Normal Constructors ConstantBool::ConstantBool(bool V) : Constant(Type::BoolTy) { Val = V; } ConstantInt::ConstantInt(const Type *Ty, uint64_t V) : Constant(Ty) { Val.Unsigned = V; } ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, V) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); } ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, V) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); } ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); Val = V; } ConstantArray::ConstantArray(const ArrayType *T, const std::vector &V) : Constant(T) { for (unsigned i = 0; i < V.size(); i++) { assert(V[i]->getType() == T->getElementType()); Operands.push_back(Use(V[i], this)); } } ConstantStruct::ConstantStruct(const StructType *T, const std::vector &V) : Constant(T) { const StructType::ElementTypes &ETypes = T->getElementTypes(); assert(V.size() == ETypes.size() && "Invalid initializer vector for constant structure"); for (unsigned i = 0; i < V.size(); i++) { assert(V[i]->getType() == ETypes[i]); Operands.push_back(Use(V[i], this)); } } ConstantPointerRef::ConstantPointerRef(GlobalValue *GV) : ConstantPointer(GV->getType()) { Operands.push_back(Use(GV, this)); } ConstantExpr::ConstantExpr(unsigned opCode, Constant *C, const Type *Ty) : Constant(Ty), iType(opCode) { Operands.push_back(Use(C, this)); } ConstantExpr::ConstantExpr(unsigned opCode, Constant* C1, Constant* C2, const Type *Ty) : Constant(Ty), iType(opCode) { Operands.push_back(Use(C1, this)); Operands.push_back(Use(C2, this)); } ConstantExpr::ConstantExpr(unsigned opCode, Constant* C, const std::vector& IdxList, const Type *Ty) : Constant(Ty), iType(opCode) { Operands.reserve(1+IdxList.size()); Operands.push_back(Use(C, this)); for (unsigned i = 0, E = IdxList.size(); i != E; ++i) Operands.push_back(Use(IdxList[i], this)); } //===----------------------------------------------------------------------===// // classof implementations bool ConstantInt::classof(const Constant *CPV) { return CPV->getType()->isIntegral() && ! isa(CPV); } bool ConstantSInt::classof(const Constant *CPV) { return CPV->getType()->isSigned() && ! isa(CPV); } bool ConstantUInt::classof(const Constant *CPV) { return CPV->getType()->isUnsigned() && ! isa(CPV); } bool ConstantFP::classof(const Constant *CPV) { const Type *Ty = CPV->getType(); return ((Ty == Type::FloatTy || Ty == Type::DoubleTy) && ! isa(CPV)); } bool ConstantArray::classof(const Constant *CPV) { return isa(CPV->getType()) && ! isa(CPV); } bool ConstantStruct::classof(const Constant *CPV) { return isa(CPV->getType()) && ! isa(CPV); } bool ConstantPointer::classof(const Constant *CPV) { return (isa(CPV->getType()) && ! isa(CPV)); } //===----------------------------------------------------------------------===// // isValueValidForType implementations bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as integers!!! // Signed types... case Type::SByteTyID: return (Val <= INT8_MAX && Val >= INT8_MIN); case Type::ShortTyID: return (Val <= INT16_MAX && Val >= INT16_MIN); case Type::IntTyID: return (Val <= INT32_MAX && Val >= INT32_MIN); case Type::LongTyID: return true; // This is the largest type... } assert(0 && "WTF?"); return false; } bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as integers!!! // Unsigned types... case Type::UByteTyID: return (Val <= UINT8_MAX); case Type::UShortTyID: return (Val <= UINT16_MAX); case Type::UIntTyID: return (Val <= UINT32_MAX); case Type::ULongTyID: return true; // This is the largest type... } assert(0 && "WTF?"); return false; } bool ConstantFP::isValueValidForType(const Type *Ty, double Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as floating point! // TODO: Figure out how to test if a double can be cast to a float! case Type::FloatTyID: /* return (Val <= UINT8_MAX); */ case Type::DoubleTyID: return true; // This is the largest type... } }; //===----------------------------------------------------------------------===// // Factory Function Implementation template struct ValueMap { typedef pair ConstHashKey; map Map; inline ConstantClass *get(const Type *Ty, ValType V) { map::iterator I = Map.find(ConstHashKey(Ty, V)); return (I != Map.end()) ? I->second : 0; } inline void add(const Type *Ty, ValType V, ConstantClass *CP) { Map.insert(make_pair(ConstHashKey(Ty, V), CP)); } inline void remove(ConstantClass *CP) { for (map::iterator I = Map.begin(), E = Map.end(); I != E;++I) if (I->second == CP) { Map.erase(I); return; } } }; //---- ConstantUInt::get() and ConstantSInt::get() implementations... // static ValueMap IntConstants; ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) { ConstantSInt *Result = (ConstantSInt*)IntConstants.get(Ty, (uint64_t)V); if (!Result) // If no preexisting value, create one now... IntConstants.add(Ty, V, Result = new ConstantSInt(Ty, V)); return Result; } ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) { ConstantUInt *Result = (ConstantUInt*)IntConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... IntConstants.add(Ty, V, Result = new ConstantUInt(Ty, V)); return Result; } ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) { assert(V <= 127 && "Can only be used with very small positive constants!"); if (Ty->isSigned()) return ConstantSInt::get(Ty, V); return ConstantUInt::get(Ty, V); } //---- ConstantFP::get() implementation... // static ValueMap FPConstants; ConstantFP *ConstantFP::get(const Type *Ty, double V) { ConstantFP *Result = FPConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... FPConstants.add(Ty, V, Result = new ConstantFP(Ty, V)); return Result; } //---- ConstantArray::get() implementation... // static ValueMap, ConstantArray> ArrayConstants; ConstantArray *ConstantArray::get(const ArrayType *Ty, const std::vector &V) { ConstantArray *Result = ArrayConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... ArrayConstants.add(Ty, V, Result = new ConstantArray(Ty, V)); return Result; } // ConstantArray::get(const string&) - Return an array that is initialized to // contain the specified string. A null terminator is added to the specified // string so that it may be used in a natural way... // ConstantArray *ConstantArray::get(const std::string &Str) { std::vector ElementVals; for (unsigned i = 0; i < Str.length(); ++i) ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i])); // Add a null terminator to the string... ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0)); ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1); return ConstantArray::get(ATy, ElementVals); } // destroyConstant - Remove the constant from the constant table... // void ConstantArray::destroyConstant() { ArrayConstants.remove(this); destroyConstantImpl(); } //---- ConstantStruct::get() implementation... // static ValueMap, ConstantStruct> StructConstants; ConstantStruct *ConstantStruct::get(const StructType *Ty, const std::vector &V) { ConstantStruct *Result = StructConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... StructConstants.add(Ty, V, Result = new ConstantStruct(Ty, V)); return Result; } // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { StructConstants.remove(this); destroyConstantImpl(); } //---- ConstantPointerNull::get() implementation... // static ValueMap NullPtrConstants; ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { ConstantPointerNull *Result = NullPtrConstants.get(Ty, 0); if (!Result) // If no preexisting value, create one now... NullPtrConstants.add(Ty, 0, Result = new ConstantPointerNull(Ty)); return Result; } //---- ConstantPointerRef::get() implementation... // ConstantPointerRef *ConstantPointerRef::get(GlobalValue *GV) { assert(GV->getParent() && "Global Value must be attached to a module!"); // The Module handles the pointer reference sharing... return GV->getParent()->getConstantPointerRef(GV); } //---- ConstantExpr::get() implementations... // Return NULL on invalid expressions. // ConstantExpr* ConstantExpr::get(unsigned opCode, Constant *C, const Type *Ty) { if (opCode != Instruction::Cast && (opCode < Instruction::FirstUnaryOp || opCode >= Instruction::NumUnaryOps)) { cerr << "Invalid opcode " << ConstantExpr::getOpcodeName(opCode) << " in unary constant expression" << endl; return NULL; // Not Cast or other unary opcode } // type of operand will not match result for Cast operation if (opCode != Instruction::Cast && Ty != C->getType()) { cerr << "Type of operand in unary constant expression should match result" << endl; return NULL; } return new ConstantExpr(opCode, C, Ty); } ConstantExpr* ConstantExpr::get(unsigned opCode, Constant *C1, Constant *C2,const Type *Ty) { if (opCode < Instruction::FirstBinaryOp || opCode >= Instruction::NumBinaryOps) { cerr << "Invalid opcode " << ConstantExpr::getOpcodeName(opCode) << " in binary constant expression" << endl; return NULL; } if (Ty != C1->getType() || Ty != C2->getType()) { cerr << "Types of both operands in binary constant expression should match result" << endl; return NULL; } return new ConstantExpr(opCode, C1, C2, Ty); } ConstantExpr* ConstantExpr::get(unsigned opCode, Constant*C, const std::vector& idxList, const Type *Ty) { // Must be a getElementPtr. Check for valid getElementPtr expression. // if (opCode != Instruction::GetElementPtr) { cerr << "operator other than GetElementPtr used with an index list" << endl; return NULL; } if (!isa(C)) { cerr << "Constant GelElementPtr expression using something other than a constant pointer" << endl; return NULL; } if (!isa(Ty)) { cerr << "Non-pointer type for constant GelElementPtr expression" << endl; return NULL; } const Type* fldType = GetElementPtrInst::getIndexedType(C->getType(), idxList, true); if (!fldType) { cerr << "Invalid index list for constant GelElementPtr expression" << endl; return NULL; } if (cast(Ty)->getElementType() != fldType) { cerr << "Type for constant GelElementPtr expression does not match field type" << endl; return NULL; } return new ConstantExpr(opCode, C, idxList, Ty); } const char* ConstantExpr::getOpcodeName(unsigned opCode) { return Instruction::getOpcodeName(opCode); } //---- ConstantPointerRef::mutateReferences() implementation... // unsigned ConstantPointerRef::mutateReferences(Value* OldV, Value *NewV) { assert(getValue() == OldV && "Cannot mutate old value if I'm not using it!"); GlobalValue* NewGV = cast(NewV); getValue()->getParent()->mutateConstantPointerRef(getValue(), NewGV); Operands[0] = NewGV; return 1; } //---- ConstantPointerExpr::mutateReferences() implementation... // unsigned ConstantExpr::mutateReferences(Value* OldV, Value *NewV) { unsigned numReplaced = 0; Constant* NewC = cast(NewV); for (unsigned i=0, N = getNumOperands(); i < N; ++i) if (Operands[i] == OldV) { ++numReplaced; Operands[i] = NewC; } return numReplaced; }