//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 instruction set, defining the instructions, and // properties of the instructions which are needed for code generation, machine // code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // X86 specific DAG Nodes. // def SDTIntShiftDOp: SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3>]>; def SDTX86CmpTest : SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisSameAs<1, 2>]>; def SDTX86Cmov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>, SDTCisVT<4, FlagVT>]>; def SDTX86BrCond : SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i8>, SDTCisVT<2, FlagVT>]>; def SDTX86SetCC : SDTypeProfile<1, 2, [SDTCisVT<0, i8>, SDTCisVT<1, i8>, SDTCisVT<2, FlagVT>]>; def SDTX86Ret : SDTypeProfile<0, 1, [SDTCisVT<0, i16>]>; def SDT_X86CallSeqStart : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>; def SDT_X86CallSeqEnd : SDTypeProfile<0, 2, [ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def SDT_X86Call : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def SDTX86FpGet : SDTypeProfile<1, 0, [SDTCisVT<0, f64>]>; def SDTX86FpSet : SDTypeProfile<0, 1, [SDTCisFP<0>]>; def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>; def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>; def SDTX86Fild64m : SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisPtrTy<1>]>; def SDTX86RdTsc : SDTypeProfile<0, 0, []>; def X86addflag : SDNode<"X86ISD::ADD_FLAG", SDTIntBinOp , [SDNPCommutative, SDNPAssociative, SDNPOutFlag]>; def X86subflag : SDNode<"X86ISD::SUB_FLAG", SDTIntBinOp, [SDNPOutFlag]>; def X86adc : SDNode<"X86ISD::ADC" , SDTIntBinOp , [SDNPCommutative, SDNPAssociative]>; def X86sbb : SDNode<"X86ISD::SBB" , SDTIntBinOp>; def X86shld : SDNode<"X86ISD::SHLD", SDTIntShiftDOp>; def X86shrd : SDNode<"X86ISD::SHRD", SDTIntShiftDOp>; def X86cmp : SDNode<"X86ISD::CMP" , SDTX86CmpTest, []>; def X86test : SDNode<"X86ISD::TEST", SDTX86CmpTest, []>; def X86cmov : SDNode<"X86ISD::CMOV", SDTX86Cmov, [SDNPOutFlag]>; def X86brcond : SDNode<"X86ISD::BRCOND", SDTX86BrCond, [SDNPHasChain]>; def X86setcc : SDNode<"X86ISD::SETCC", SDTX86SetCC, []>; def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret, [SDNPHasChain, SDNPOptInFlag]>; def X86callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart, [SDNPHasChain]>; def X86callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_X86CallSeqEnd, [SDNPHasChain]>; def X86call : SDNode<"X86ISD::CALL", SDT_X86Call, [SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>; def X86fpget : SDNode<"X86ISD::FP_GET_RESULT", SDTX86FpGet, [SDNPHasChain, SDNPInFlag]>; def X86fpset : SDNode<"X86ISD::FP_SET_RESULT", SDTX86FpSet, [SDNPHasChain, SDNPOutFlag]>; def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld, [SDNPHasChain]>; def X86fst : SDNode<"X86ISD::FST", SDTX86Fst, [SDNPHasChain]>; def X86fild64m : SDNode<"X86ISD::FILD64m", SDTX86Fild64m, [SDNPHasChain]>; def X86rdtsc : SDNode<"X86ISD::RDTSC_DAG",SDTX86RdTsc, [SDNPHasChain, SDNPOutFlag]>; //===----------------------------------------------------------------------===// // X86 Operand Definitions. // // *mem - Operand definitions for the funky X86 addressing mode operands. // class X86MemOperand : Operand { let PrintMethod = printMethod; let NumMIOperands = 4; let MIOperandInfo = (ops R32, i8imm, R32, i32imm); } def i8mem : X86MemOperand<"printi8mem">; def i16mem : X86MemOperand<"printi16mem">; def i32mem : X86MemOperand<"printi32mem">; def i64mem : X86MemOperand<"printi64mem">; def f32mem : X86MemOperand<"printf32mem">; def f64mem : X86MemOperand<"printf64mem">; def f80mem : X86MemOperand<"printf80mem">; def SSECC : Operand { let PrintMethod = "printSSECC"; } // A couple of more descriptive operand definitions. // 16-bits but only 8 bits are significant. def i16i8imm : Operand; // 32-bits but only 8 bits are significant. def i32i8imm : Operand; // PCRelative calls need special operand formatting. let PrintMethod = "printCallOperand" in def calltarget : Operand; // Branch targets have OtherVT type. def brtarget : Operand; //===----------------------------------------------------------------------===// // X86 Complex Pattern Definitions. // // Define X86 specific addressing mode. def addr : ComplexPattern; def leaaddr : ComplexPattern; //===----------------------------------------------------------------------===// // X86 Instruction Format Definitions. // // Format specifies the encoding used by the instruction. This is part of the // ad-hoc solution used to emit machine instruction encodings by our machine // code emitter. class Format val> { bits<5> Value = val; } def Pseudo : Format<0>; def RawFrm : Format<1>; def AddRegFrm : Format<2>; def MRMDestReg : Format<3>; def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>; def MRMSrcMem : Format<6>; def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>; def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>; def MRM6r : Format<22>; def MRM7r : Format<23>; def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>; def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>; def MRM6m : Format<30>; def MRM7m : Format<31>; //===----------------------------------------------------------------------===// // X86 Instruction Predicate Definitions. def HasSSE1 : Predicate<"X86Vector >= SSE">; def HasSSE2 : Predicate<"X86Vector >= SSE2">; def HasSSE3 : Predicate<"X86Vector >= SSE3">; def FPStack : Predicate<"X86Vector < SSE2">; //===----------------------------------------------------------------------===// // X86 specific pattern fragments. // // ImmType - This specifies the immediate type used by an instruction. This is // part of the ad-hoc solution used to emit machine instruction encodings by our // machine code emitter. class ImmType val> { bits<2> Value = val; } def NoImm : ImmType<0>; def Imm8 : ImmType<1>; def Imm16 : ImmType<2>; def Imm32 : ImmType<3>; // FPFormat - This specifies what form this FP instruction has. This is used by // the Floating-Point stackifier pass. class FPFormat val> { bits<3> Value = val; } def NotFP : FPFormat<0>; def ZeroArgFP : FPFormat<1>; def OneArgFP : FPFormat<2>; def OneArgFPRW : FPFormat<3>; def TwoArgFP : FPFormat<4>; def CompareFP : FPFormat<5>; def CondMovFP : FPFormat<6>; def SpecialFP : FPFormat<7>; class X86Inst opcod, Format f, ImmType i, dag ops, string AsmStr> : Instruction { let Namespace = "X86"; bits<8> Opcode = opcod; Format Form = f; bits<5> FormBits = Form.Value; ImmType ImmT = i; bits<2> ImmTypeBits = ImmT.Value; dag OperandList = ops; string AsmString = AsmStr; // // Attributes specific to X86 instructions... // bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix? bits<4> Prefix = 0; // Which prefix byte does this inst have? FPFormat FPForm; // What flavor of FP instruction is this? bits<3> FPFormBits = 0; } class Imp uses, list defs> { list Uses = uses; list Defs = defs; } // Prefix byte classes which are used to indicate to the ad-hoc machine code // emitter that various prefix bytes are required. class OpSize { bit hasOpSizePrefix = 1; } class TB { bits<4> Prefix = 1; } class REP { bits<4> Prefix = 2; } class D8 { bits<4> Prefix = 3; } class D9 { bits<4> Prefix = 4; } class DA { bits<4> Prefix = 5; } class DB { bits<4> Prefix = 6; } class DC { bits<4> Prefix = 7; } class DD { bits<4> Prefix = 8; } class DE { bits<4> Prefix = 9; } class DF { bits<4> Prefix = 10; } class XD { bits<4> Prefix = 11; } class XS { bits<4> Prefix = 12; } //===----------------------------------------------------------------------===// // Pattern fragments... // // X86 specific condition code. These correspond to CondCode in // X86ISelLowering.h. They must be kept in synch. def X86_COND_A : PatLeaf<(i8 0)>; def X86_COND_AE : PatLeaf<(i8 1)>; def X86_COND_B : PatLeaf<(i8 2)>; def X86_COND_BE : PatLeaf<(i8 3)>; def X86_COND_E : PatLeaf<(i8 4)>; def X86_COND_G : PatLeaf<(i8 5)>; def X86_COND_GE : PatLeaf<(i8 6)>; def X86_COND_L : PatLeaf<(i8 7)>; def X86_COND_LE : PatLeaf<(i8 8)>; def X86_COND_NE : PatLeaf<(i8 9)>; def X86_COND_NO : PatLeaf<(i8 10)>; def X86_COND_NP : PatLeaf<(i8 11)>; def X86_COND_NS : PatLeaf<(i8 12)>; def X86_COND_O : PatLeaf<(i8 13)>; def X86_COND_P : PatLeaf<(i8 14)>; def X86_COND_S : PatLeaf<(i8 15)>; def i16immSExt8 : PatLeaf<(i16 imm), [{ // i16immSExt8 predicate - True if the 16-bit immediate fits in a 8-bit // sign extended field. return (int)N->getValue() == (signed char)N->getValue(); }]>; def i32immSExt8 : PatLeaf<(i32 imm), [{ // i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit // sign extended field. return (int)N->getValue() == (signed char)N->getValue(); }]>; def i16immZExt8 : PatLeaf<(i16 imm), [{ // i16immZExt8 predicate - True if the 16-bit immediate fits in a 8-bit zero // extended field. return (unsigned)N->getValue() == (unsigned char)N->getValue(); }]>; def fp32imm0 : PatLeaf<(f32 fpimm), [{ return N->isExactlyValue(+0.0); }]>; def fp64imm0 : PatLeaf<(f64 fpimm), [{ return N->isExactlyValue(+0.0); }]>; def fp64immneg0 : PatLeaf<(f64 fpimm), [{ return N->isExactlyValue(-0.0); }]>; def fp64imm1 : PatLeaf<(f64 fpimm), [{ return N->isExactlyValue(+1.0); }]>; def fp64immneg1 : PatLeaf<(f64 fpimm), [{ return N->isExactlyValue(-1.0); }]>; // Helper fragments for loads. def loadi8 : PatFrag<(ops node:$ptr), (i8 (load node:$ptr))>; def loadi16 : PatFrag<(ops node:$ptr), (i16 (load node:$ptr))>; def loadi32 : PatFrag<(ops node:$ptr), (i32 (load node:$ptr))>; def loadf32 : PatFrag<(ops node:$ptr), (f32 (load node:$ptr))>; def loadf64 : PatFrag<(ops node:$ptr), (f64 (load node:$ptr))>; def sextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (sextload node:$ptr, i1))>; def sextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (sextload node:$ptr, i1))>; def sextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextload node:$ptr, i8))>; def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextload node:$ptr, i8))>; def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextload node:$ptr, i16))>; def zextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextload node:$ptr, i1))>; def zextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextload node:$ptr, i1))>; def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextload node:$ptr, i8))>; def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextload node:$ptr, i8))>; def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextload node:$ptr, i16))>; def extloadi8i1 : PatFrag<(ops node:$ptr), (i8 (extload node:$ptr, i1))>; def extloadf64f32 : PatFrag<(ops node:$ptr), (f64 (extload node:$ptr, f32))>; //===----------------------------------------------------------------------===// // Instruction templates... class I o, Format f, dag ops, string asm, list pattern> : X86Inst { let Pattern = pattern; } class Ii8 o, Format f, dag ops, string asm, list pattern> : X86Inst { let Pattern = pattern; } class Ii16 o, Format f, dag ops, string asm, list pattern> : X86Inst { let Pattern = pattern; } class Ii32 o, Format f, dag ops, string asm, list pattern> : X86Inst { let Pattern = pattern; } //===----------------------------------------------------------------------===// // Instruction list... // // Pseudo-instructions: def PHI : I<0, Pseudo, (ops variable_ops), "PHINODE", []>; // PHI node. def ADJCALLSTACKDOWN : I<0, Pseudo, (ops i32imm:$amt), "#ADJCALLSTACKDOWN", [(X86callseq_start imm:$amt)]>; def ADJCALLSTACKUP : I<0, Pseudo, (ops i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP", [(X86callseq_end imm:$amt1, imm:$amt2)]>; def IMPLICIT_USE : I<0, Pseudo, (ops variable_ops), "#IMPLICIT_USE", []>; def IMPLICIT_DEF : I<0, Pseudo, (ops variable_ops), "#IMPLICIT_DEF", []>; def IMPLICIT_DEF_R8 : I<0, Pseudo, (ops R8:$dst), "#IMPLICIT_DEF $dst", [(set R8:$dst, (undef))]>; def IMPLICIT_DEF_R16 : I<0, Pseudo, (ops R16:$dst), "#IMPLICIT_DEF $dst", [(set R16:$dst, (undef))]>; def IMPLICIT_DEF_R32 : I<0, Pseudo, (ops R32:$dst), "#IMPLICIT_DEF $dst", [(set R32:$dst, (undef))]>; def IMPLICIT_DEF_FR32 : I<0, Pseudo, (ops FR32:$dst), "#IMPLICIT_DEF $dst", [(set FR32:$dst, (undef))]>, Requires<[HasSSE2]>; def IMPLICIT_DEF_FR64 : I<0, Pseudo, (ops FR64:$dst), "#IMPLICIT_DEF $dst", [(set FR64:$dst, (undef))]>, Requires<[HasSSE2]>; // CMOV* - Used to implement the SSE SELECT DAG operation. Expanded by the // scheduler into a branch sequence. let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler. def CMOV_FR32 : I<0, Pseudo, (ops FR32:$dst, FR32:$t, FR32:$f, i8imm:$cond), "#CMOV PSEUDO!", [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond, STATUS))]>; def CMOV_FR64 : I<0, Pseudo, (ops FR64:$dst, FR64:$t, FR64:$f, i8imm:$cond), "#CMOV PSEUDO!", [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond, STATUS))]>; } let isTerminator = 1 in let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in def FP_REG_KILL : I<0, Pseudo, (ops), "#FP_REG_KILL", []>; // Nop def NOOP : I<0x90, RawFrm, (ops), "nop", []>; //===----------------------------------------------------------------------===// // Control Flow Instructions... // // Return instructions. let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, noResults = 1 in { def RET : I<0xC3, RawFrm, (ops), "ret", [(X86retflag 0)]>; def RETI : Ii16<0xC2, RawFrm, (ops i16imm:$amt), "ret $amt", [(X86retflag imm:$amt)]>; } // All branches are RawFrm, Void, Branch, and Terminators let isBranch = 1, isTerminator = 1, noResults = 1 in class IBr opcode, dag ops, string asm, list pattern> : I; // Conditional branches let isBarrier = 1 in def JMP : IBr<0xE9, (ops brtarget:$dst), "jmp $dst", [(br bb:$dst)]>; def JE : IBr<0x84, (ops brtarget:$dst), "je $dst", [(X86brcond bb:$dst, X86_COND_E, STATUS)]>, Imp<[STATUS],[]>, TB; def JNE : IBr<0x85, (ops brtarget:$dst), "jne $dst", [(X86brcond bb:$dst, X86_COND_NE, STATUS)]>, Imp<[STATUS],[]>, TB; def JL : IBr<0x8C, (ops brtarget:$dst), "jl $dst", [(X86brcond bb:$dst, X86_COND_L, STATUS)]>, Imp<[STATUS],[]>, TB; def JLE : IBr<0x8E, (ops brtarget:$dst), "jle $dst", [(X86brcond bb:$dst, X86_COND_LE, STATUS)]>, Imp<[STATUS],[]>, TB; def JG : IBr<0x8F, (ops brtarget:$dst), "jg $dst", [(X86brcond bb:$dst, X86_COND_G, STATUS)]>, Imp<[STATUS],[]>, TB; def JGE : IBr<0x8D, (ops brtarget:$dst), "jge $dst", [(X86brcond bb:$dst, X86_COND_GE, STATUS)]>, Imp<[STATUS],[]>, TB; def JB : IBr<0x82, (ops brtarget:$dst), "jb $dst", [(X86brcond bb:$dst, X86_COND_B, STATUS)]>, Imp<[STATUS],[]>, TB; def JBE : IBr<0x86, (ops brtarget:$dst), "jbe $dst", [(X86brcond bb:$dst, X86_COND_BE, STATUS)]>, Imp<[STATUS],[]>, TB; def JA : IBr<0x87, (ops brtarget:$dst), "ja $dst", [(X86brcond bb:$dst, X86_COND_A, STATUS)]>, Imp<[STATUS],[]>, TB; def JAE : IBr<0x83, (ops brtarget:$dst), "jae $dst", [(X86brcond bb:$dst, X86_COND_AE, STATUS)]>, Imp<[STATUS],[]>, TB; def JS : IBr<0x88, (ops brtarget:$dst), "js $dst", [(X86brcond bb:$dst, X86_COND_S, STATUS)]>, Imp<[STATUS],[]>, TB; def JNS : IBr<0x89, (ops brtarget:$dst), "jns $dst", [(X86brcond bb:$dst, X86_COND_NS, STATUS)]>, Imp<[STATUS],[]>, TB; def JP : IBr<0x8A, (ops brtarget:$dst), "jp $dst", [(X86brcond bb:$dst, X86_COND_P, STATUS)]>, Imp<[STATUS],[]>, TB; def JNP : IBr<0x8B, (ops brtarget:$dst), "jnp $dst", [(X86brcond bb:$dst, X86_COND_NP, STATUS)]>, Imp<[STATUS],[]>, TB; def JO : IBr<0x80, (ops brtarget:$dst), "jo $dst", [(X86brcond bb:$dst, X86_COND_O, STATUS)]>, Imp<[STATUS],[]>, TB; def JNO : IBr<0x81, (ops brtarget:$dst), "jno $dst", [(X86brcond bb:$dst, X86_COND_NO, STATUS)]>, Imp<[STATUS],[]>, TB; //===----------------------------------------------------------------------===// // Call Instructions... // let isCall = 1, noResults = 1 in // All calls clobber the non-callee saved registers... let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7] in { def CALLpcrel32 : I<0xE8, RawFrm, (ops calltarget:$dst), "call $dst", []>; def CALL32r : I<0xFF, MRM2r, (ops R32:$dst), "call {*}$dst", [(X86call R32:$dst)]>; def CALL32m : I<0xFF, MRM2m, (ops i32mem:$dst), "call {*}$dst", [(X86call (loadi32 addr:$dst))]>; } // Tail call stuff. let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, noResults = 1 in def TAILJMPd : IBr<0xE9, (ops calltarget:$dst), "jmp $dst # TAIL CALL", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, noResults = 1 in def TAILJMPr : I<0xFF, MRM4r, (ops R32:$dst), "jmp {*}$dst # TAIL CALL", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, noResults = 1 in def TAILJMPm : I<0xFF, MRM4m, (ops i32mem:$dst), "jmp {*}$dst # TAIL CALL", []>; // ADJSTACKPTRri - This is a standard ADD32ri instruction, identical in every // way, except that it is marked as being a terminator. This causes the epilog // inserter to insert reloads of callee saved registers BEFORE this. We need // this until we have a more accurate way of tracking where the stack pointer is // within a function. let isTerminator = 1, isTwoAddress = 1 in def ADJSTACKPTRri : Ii32<0x81, MRM0r, (ops R32:$dst, R32:$src1, i32imm:$src2), "add{l} {$src2, $dst|$dst, $src2}", []>; //===----------------------------------------------------------------------===// // Miscellaneous Instructions... // def LEAVE : I<0xC9, RawFrm, (ops), "leave", []>, Imp<[EBP,ESP],[EBP,ESP]>; def POP32r : I<0x58, AddRegFrm, (ops R32:$reg), "pop{l} $reg", []>, Imp<[ESP],[ESP]>; let isTwoAddress = 1 in // R32 = bswap R32 def BSWAP32r : I<0xC8, AddRegFrm, (ops R32:$dst, R32:$src), "bswap{l} $dst", []>, TB; def XCHG8rr : I<0x86, MRMDestReg, // xchg R8, R8 (ops R8:$src1, R8:$src2), "xchg{b} {$src2|$src1}, {$src1|$src2}", []>; def XCHG16rr : I<0x87, MRMDestReg, // xchg R16, R16 (ops R16:$src1, R16:$src2), "xchg{w} {$src2|$src1}, {$src1|$src2}", []>, OpSize; def XCHG32rr : I<0x87, MRMDestReg, // xchg R32, R32 (ops R32:$src1, R32:$src2), "xchg{l} {$src2|$src1}, {$src1|$src2}", []>; def XCHG8mr : I<0x86, MRMDestMem, (ops i8mem:$src1, R8:$src2), "xchg{b} {$src2|$src1}, {$src1|$src2}", []>; def XCHG16mr : I<0x87, MRMDestMem, (ops i16mem:$src1, R16:$src2), "xchg{w} {$src2|$src1}, {$src1|$src2}", []>, OpSize; def XCHG32mr : I<0x87, MRMDestMem, (ops i32mem:$src1, R32:$src2), "xchg{l} {$src2|$src1}, {$src1|$src2}", []>; def XCHG8rm : I<0x86, MRMSrcMem, (ops R8:$src1, i8mem:$src2), "xchg{b} {$src2|$src1}, {$src1|$src2}", []>; def XCHG16rm : I<0x87, MRMSrcMem, (ops R16:$src1, i16mem:$src2), "xchg{w} {$src2|$src1}, {$src1|$src2}", []>, OpSize; def XCHG32rm : I<0x87, MRMSrcMem, (ops R32:$src1, i32mem:$src2), "xchg{l} {$src2|$src1}, {$src1|$src2}", []>; def LEA16r : I<0x8D, MRMSrcMem, (ops R16:$dst, i32mem:$src), "lea{w} {$src|$dst}, {$dst|$src}", []>, OpSize; def LEA32r : I<0x8D, MRMSrcMem, (ops R32:$dst, i32mem:$src), "lea{l} {$src|$dst}, {$dst|$src}", [(set R32:$dst, leaaddr:$src)]>; def REP_MOVSB : I<0xA4, RawFrm, (ops), "{rep;movsb|rep movsb}", []>, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP; def REP_MOVSW : I<0xA5, RawFrm, (ops), "{rep;movsw|rep movsw}", []>, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP, OpSize; def REP_MOVSD : I<0xA5, RawFrm, (ops), "{rep;movsd|rep movsd}", []>, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP; def REP_STOSB : I<0xAA, RawFrm, (ops), "{rep;stosb|rep stosb}", []>, Imp<[AL,ECX,EDI], [ECX,EDI]>, REP; def REP_STOSW : I<0xAB, RawFrm, (ops), "{rep;stosw|rep stosw}", []>, Imp<[AX,ECX,EDI], [ECX,EDI]>, REP, OpSize; def REP_STOSD : I<0xAB, RawFrm, (ops), "{rep;stosl|rep stosd}", []>, Imp<[EAX,ECX,EDI], [ECX,EDI]>, REP; //===----------------------------------------------------------------------===// // Input/Output Instructions... // def IN8rr : I<0xEC, RawFrm, (ops), "in{b} {%dx, %al|%AL, %DX}", [(set AL, (readport DX))]>, Imp<[DX], [AL]>; def IN16rr : I<0xED, RawFrm, (ops), "in{w} {%dx, %ax|%AX, %DX}", [(set AX, (readport DX))]>, Imp<[DX], [AX]>, OpSize; def IN32rr : I<0xED, RawFrm, (ops), "in{l} {%dx, %eax|%EAX, %DX}", [(set EAX, (readport DX))]>, Imp<[DX],[EAX]>; def IN8ri : Ii8<0xE4, RawFrm, (ops i16i8imm:$port), "in{b} {$port, %al|%AL, $port}", [(set AL, (readport i16immZExt8:$port))]>, Imp<[], [AL]>; def IN16ri : Ii8<0xE5, RawFrm, (ops i16i8imm:$port), "in{w} {$port, %ax|%AX, $port}", [(set AX, (readport i16immZExt8:$port))]>, Imp<[], [AX]>, OpSize; def IN32ri : Ii8<0xE5, RawFrm, (ops i16i8imm:$port), "in{l} {$port, %eax|%EAX, $port}", [(set EAX, (readport i16immZExt8:$port))]>, Imp<[],[EAX]>; def OUT8rr : I<0xEE, RawFrm, (ops), "out{b} {%al, %dx|%DX, %AL}", [(writeport AL, DX)]>, Imp<[DX, AL], []>; def OUT16rr : I<0xEF, RawFrm, (ops), "out{w} {%ax, %dx|%DX, %AX}", [(writeport AX, DX)]>, Imp<[DX, AX], []>, OpSize; def OUT32rr : I<0xEF, RawFrm, (ops), "out{l} {%eax, %dx|%DX, %EAX}", [(writeport EAX, DX)]>, Imp<[DX, EAX], []>; def OUT8ir : Ii8<0xE6, RawFrm, (ops i16i8imm:$port), "out{b} {%al, $port|$port, %AL}", [(writeport AL, i16immZExt8:$port)]>, Imp<[AL], []>; def OUT16ir : Ii8<0xE7, RawFrm, (ops i16i8imm:$port), "out{w} {%ax, $port|$port, %AX}", [(writeport AX, i16immZExt8:$port)]>, Imp<[AX], []>, OpSize; def OUT32ir : Ii8<0xE7, RawFrm, (ops i16i8imm:$port), "out{l} {%eax, $port|$port, %EAX}", [(writeport EAX, i16immZExt8:$port)]>, Imp<[EAX], []>; //===----------------------------------------------------------------------===// // Move Instructions... // def MOV8rr : I<0x88, MRMDestReg, (ops R8 :$dst, R8 :$src), "mov{b} {$src, $dst|$dst, $src}", []>; def MOV16rr : I<0x89, MRMDestReg, (ops R16:$dst, R16:$src), "mov{w} {$src, $dst|$dst, $src}", []>, OpSize; def MOV32rr : I<0x89, MRMDestReg, (ops R32:$dst, R32:$src), "mov{l} {$src, $dst|$dst, $src}", []>; def MOV8ri : Ii8 <0xB0, AddRegFrm, (ops R8 :$dst, i8imm :$src), "mov{b} {$src, $dst|$dst, $src}", [(set R8:$dst, imm:$src)]>; def MOV16ri : Ii16<0xB8, AddRegFrm, (ops R16:$dst, i16imm:$src), "mov{w} {$src, $dst|$dst, $src}", [(set R16:$dst, imm:$src)]>, OpSize; def MOV32ri : Ii32<0xB8, AddRegFrm, (ops R32:$dst, i32imm:$src), "mov{l} {$src, $dst|$dst, $src}", [(set R32:$dst, imm:$src)]>; def MOV8mi : Ii8 <0xC6, MRM0m, (ops i8mem :$dst, i8imm :$src), "mov{b} {$src, $dst|$dst, $src}", [(store (i8 imm:$src), addr:$dst)]>; def MOV16mi : Ii16<0xC7, MRM0m, (ops i16mem:$dst, i16imm:$src), "mov{w} {$src, $dst|$dst, $src}", [(store (i16 imm:$src), addr:$dst)]>, OpSize; def MOV32mi : Ii32<0xC7, MRM0m, (ops i32mem:$dst, i32imm:$src), "mov{l} {$src, $dst|$dst, $src}", [(store (i32 imm:$src), addr:$dst)]>; def MOV8rm : I<0x8A, MRMSrcMem, (ops R8 :$dst, i8mem :$src), "mov{b} {$src, $dst|$dst, $src}", [(set R8:$dst, (load addr:$src))]>; def MOV16rm : I<0x8B, MRMSrcMem, (ops R16:$dst, i16mem:$src), "mov{w} {$src, $dst|$dst, $src}", [(set R16:$dst, (load addr:$src))]>, OpSize; def MOV32rm : I<0x8B, MRMSrcMem, (ops R32:$dst, i32mem:$src), "mov{l} {$src, $dst|$dst, $src}", [(set R32:$dst, (load addr:$src))]>; def MOV8mr : I<0x88, MRMDestMem, (ops i8mem :$dst, R8 :$src), "mov{b} {$src, $dst|$dst, $src}", [(store R8:$src, addr:$dst)]>; def MOV16mr : I<0x89, MRMDestMem, (ops i16mem:$dst, R16:$src), "mov{w} {$src, $dst|$dst, $src}", [(store R16:$src, addr:$dst)]>, OpSize; def MOV32mr : I<0x89, MRMDestMem, (ops i32mem:$dst, R32:$src), "mov{l} {$src, $dst|$dst, $src}", [(store R32:$src, addr:$dst)]>; //===----------------------------------------------------------------------===// // Fixed-Register Multiplication and Division Instructions... // // Extra precision multiplication def MUL8r : I<0xF6, MRM4r, (ops R8:$src), "mul{b} $src", []>, Imp<[AL],[AX]>; // AL,AH = AL*R8 def MUL16r : I<0xF7, MRM4r, (ops R16:$src), "mul{w} $src", []>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16 def MUL32r : I<0xF7, MRM4r, (ops R32:$src), "mul{l} $src", []>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32 def MUL8m : I<0xF6, MRM4m, (ops i8mem :$src), "mul{b} $src", []>, Imp<[AL],[AX]>; // AL,AH = AL*[mem8] def MUL16m : I<0xF7, MRM4m, (ops i16mem:$src), "mul{w} $src", []>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*[mem16] def MUL32m : I<0xF7, MRM4m, (ops i32mem:$src), "mul{l} $src", []>, Imp<[EAX],[EAX,EDX]>;// EAX,EDX = EAX*[mem32] def IMUL8r : I<0xF6, MRM5r, (ops R8:$src), "imul{b} $src", []>, Imp<[AL],[AX]>; // AL,AH = AL*R8 def IMUL16r : I<0xF7, MRM5r, (ops R16:$src), "imul{w} $src", []>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16 def IMUL32r : I<0xF7, MRM5r, (ops R32:$src), "imul{l} $src", []>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32 def IMUL8m : I<0xF6, MRM5m, (ops i8mem :$src), "imul{b} $src", []>, Imp<[AL],[AX]>; // AL,AH = AL*[mem8] def IMUL16m : I<0xF7, MRM5m, (ops i16mem:$src), "imul{w} $src", []>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*[mem16] def IMUL32m : I<0xF7, MRM5m, (ops i32mem:$src), "imul{l} $src", []>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*[mem32] // unsigned division/remainder def DIV8r : I<0xF6, MRM6r, (ops R8:$src), // AX/r8 = AL,AH "div{b} $src", []>, Imp<[AX],[AX]>; def DIV16r : I<0xF7, MRM6r, (ops R16:$src), // DX:AX/r16 = AX,DX "div{w} $src", []>, Imp<[AX,DX],[AX,DX]>, OpSize; def DIV32r : I<0xF7, MRM6r, (ops R32:$src), // EDX:EAX/r32 = EAX,EDX "div{l} $src", []>, Imp<[EAX,EDX],[EAX,EDX]>; def DIV8m : I<0xF6, MRM6m, (ops i8mem:$src), // AX/[mem8] = AL,AH "div{b} $src", []>, Imp<[AX],[AX]>; def DIV16m : I<0xF7, MRM6m, (ops i16mem:$src), // DX:AX/[mem16] = AX,DX "div{w} $src", []>, Imp<[AX,DX],[AX,DX]>, OpSize; def DIV32m : I<0xF7, MRM6m, (ops i32mem:$src), // EDX:EAX/[mem32] = EAX,EDX "div{l} $src", []>, Imp<[EAX,EDX],[EAX,EDX]>; // Signed division/remainder. def IDIV8r : I<0xF6, MRM7r, (ops R8:$src), // AX/r8 = AL,AH "idiv{b} $src", []>, Imp<[AX],[AX]>; def IDIV16r: I<0xF7, MRM7r, (ops R16:$src), // DX:AX/r16 = AX,DX "idiv{w} $src", []>, Imp<[AX,DX],[AX,DX]>, OpSize; def IDIV32r: I<0xF7, MRM7r, (ops R32:$src), // EDX:EAX/r32 = EAX,EDX "idiv{l} $src", []>, Imp<[EAX,EDX],[EAX,EDX]>; def IDIV8m : I<0xF6, MRM7m, (ops i8mem:$src), // AX/[mem8] = AL,AH "idiv{b} $src", []>, Imp<[AX],[AX]>; def IDIV16m: I<0xF7, MRM7m, (ops i16mem:$src), // DX:AX/[mem16] = AX,DX "idiv{w} $src", []>, Imp<[AX,DX],[AX,DX]>, OpSize; def IDIV32m: I<0xF7, MRM7m, (ops i32mem:$src), // EDX:EAX/[mem32] = EAX,EDX "idiv{l} $src", []>, Imp<[EAX,EDX],[EAX,EDX]>; // Sign-extenders for division. def CBW : I<0x98, RawFrm, (ops), "{cbtw|cbw}", []>, Imp<[AL],[AH]>; // AX = signext(AL) def CWD : I<0x99, RawFrm, (ops), "{cwtd|cwd}", []>, Imp<[AX],[DX]>; // DX:AX = signext(AX) def CDQ : I<0x99, RawFrm, (ops), "{cltd|cdq}", []>, Imp<[EAX],[EDX]>; // EDX:EAX = signext(EAX) //===----------------------------------------------------------------------===// // Two address Instructions... // let isTwoAddress = 1 in { // Conditional moves def CMOVB16rr : I<0x42, MRMSrcReg, // if , Imp<[STATUS],[]>, TB, OpSize; def CMOVB16rm : I<0x42, MRMSrcMem, // if , Imp<[STATUS],[]>, TB, OpSize; def CMOVB32rr : I<0x42, MRMSrcReg, // if , Imp<[STATUS],[]>, TB; def CMOVB32rm : I<0x42, MRMSrcMem, // if , Imp<[STATUS],[]>, TB; def CMOVAE16rr: I<0x43, MRMSrcReg, // if >=u, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovae {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_AE, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVAE16rm: I<0x43, MRMSrcMem, // if >=u, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovae {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_AE, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVAE32rr: I<0x43, MRMSrcReg, // if >=u, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovae {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_AE, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVAE32rm: I<0x43, MRMSrcMem, // if >=u, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovae {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_AE, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVE16rr : I<0x44, MRMSrcReg, // if ==, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmove {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_E, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVE16rm : I<0x44, MRMSrcMem, // if ==, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmove {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_E, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVE32rr : I<0x44, MRMSrcReg, // if ==, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmove {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_E, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVE32rm : I<0x44, MRMSrcMem, // if ==, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmove {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_E, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVNE16rr: I<0x45, MRMSrcReg, // if !=, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovne {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_NE, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVNE16rm: I<0x45, MRMSrcMem, // if !=, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovne {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_NE, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVNE32rr: I<0x45, MRMSrcReg, // if !=, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovne {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_NE, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVNE32rm: I<0x45, MRMSrcMem, // if !=, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovne {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_NE, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVBE16rr: I<0x46, MRMSrcReg, // if <=u, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovbe {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_BE, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVBE16rm: I<0x46, MRMSrcMem, // if <=u, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovbe {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_BE, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVBE32rr: I<0x46, MRMSrcReg, // if <=u, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovbe {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_BE, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVBE32rm: I<0x46, MRMSrcMem, // if <=u, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovbe {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_BE, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVA16rr : I<0x47, MRMSrcReg, // if >u, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmova {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_A, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVA16rm : I<0x47, MRMSrcMem, // if >u, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmova {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_A, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVA32rr : I<0x47, MRMSrcReg, // if >u, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmova {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_A, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVA32rm : I<0x47, MRMSrcMem, // if >u, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmova {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_A, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVL16rr : I<0x4C, MRMSrcReg, // if , Imp<[STATUS],[]>, TB, OpSize; def CMOVL16rm : I<0x4C, MRMSrcMem, // if , Imp<[STATUS],[]>, TB, OpSize; def CMOVL32rr : I<0x4C, MRMSrcReg, // if , Imp<[STATUS],[]>, TB; def CMOVL32rm : I<0x4C, MRMSrcMem, // if , Imp<[STATUS],[]>, TB; def CMOVGE16rr: I<0x4D, MRMSrcReg, // if >=s, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovge {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_GE, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVGE16rm: I<0x4D, MRMSrcMem, // if >=s, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovge {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_GE, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVGE32rr: I<0x4D, MRMSrcReg, // if >=s, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovge {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_GE, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVGE32rm: I<0x4D, MRMSrcMem, // if >=s, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovge {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_GE, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVLE16rr: I<0x4E, MRMSrcReg, // if <=s, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovle {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_LE, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVLE16rm: I<0x4E, MRMSrcMem, // if <=s, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovle {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_LE, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVLE32rr: I<0x4E, MRMSrcReg, // if <=s, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovle {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_LE, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVLE32rm: I<0x4E, MRMSrcMem, // if <=s, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovle {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_LE, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVG16rr : I<0x4F, MRMSrcReg, // if >s, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovg {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_G, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVG16rm : I<0x4F, MRMSrcMem, // if >s, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovg {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_G, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVG32rr : I<0x4F, MRMSrcReg, // if >s, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovg {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_G, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVG32rm : I<0x4F, MRMSrcMem, // if >s, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovg {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_G, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVS16rr : I<0x48, MRMSrcReg, // if signed, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovs {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_S, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVS16rm : I<0x48, MRMSrcMem, // if signed, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovs {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_S, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVS32rr : I<0x48, MRMSrcReg, // if signed, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovs {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_S, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVS32rm : I<0x48, MRMSrcMem, // if signed, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovs {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_S, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVNS16rr: I<0x49, MRMSrcReg, // if !signed, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovns {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_NS, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVNS16rm: I<0x49, MRMSrcMem, // if !signed, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovns {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_NS, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVNS32rr: I<0x49, MRMSrcReg, // if !signed, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovns {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_NS, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVNS32rm: I<0x49, MRMSrcMem, // if !signed, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovns {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_NS, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVP16rr : I<0x4A, MRMSrcReg, // if parity, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovp {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_P, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVP16rm : I<0x4A, MRMSrcMem, // if parity, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovp {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_P, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVP32rr : I<0x4A, MRMSrcReg, // if parity, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovp {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_P, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVP32rm : I<0x4A, MRMSrcMem, // if parity, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovp {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_P, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVNP16rr : I<0x4B, MRMSrcReg, // if !parity, R16 = R16 (ops R16:$dst, R16:$src1, R16:$src2), "cmovnp {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, R16:$src2, X86_COND_NP, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVNP16rm : I<0x4B, MRMSrcMem, // if !parity, R16 = [mem16] (ops R16:$dst, R16:$src1, i16mem:$src2), "cmovnp {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2), X86_COND_NP, STATUS))]>, Imp<[STATUS],[]>, TB, OpSize; def CMOVNP32rr : I<0x4B, MRMSrcReg, // if !parity, R32 = R32 (ops R32:$dst, R32:$src1, R32:$src2), "cmovnp {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, X86_COND_NP, STATUS))]>, Imp<[STATUS],[]>, TB; def CMOVNP32rm : I<0x4B, MRMSrcMem, // if !parity, R32 = [mem32] (ops R32:$dst, R32:$src1, i32mem:$src2), "cmovnp {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2), X86_COND_NP, STATUS))]>, Imp<[STATUS],[]>, TB; // unary instructions def NEG8r : I<0xF6, MRM3r, (ops R8 :$dst, R8 :$src), "neg{b} $dst", [(set R8:$dst, (ineg R8:$src))]>; def NEG16r : I<0xF7, MRM3r, (ops R16:$dst, R16:$src), "neg{w} $dst", [(set R16:$dst, (ineg R16:$src))]>, OpSize; def NEG32r : I<0xF7, MRM3r, (ops R32:$dst, R32:$src), "neg{l} $dst", [(set R32:$dst, (ineg R32:$src))]>; let isTwoAddress = 0 in { def NEG8m : I<0xF6, MRM3m, (ops i8mem :$dst), "neg{b} $dst", [(store (ineg (loadi8 addr:$dst)), addr:$dst)]>; def NEG16m : I<0xF7, MRM3m, (ops i16mem:$dst), "neg{w} $dst", [(store (ineg (loadi16 addr:$dst)), addr:$dst)]>, OpSize; def NEG32m : I<0xF7, MRM3m, (ops i32mem:$dst), "neg{l} $dst", [(store (ineg (loadi32 addr:$dst)), addr:$dst)]>; } def NOT8r : I<0xF6, MRM2r, (ops R8 :$dst, R8 :$src), "not{b} $dst", [(set R8:$dst, (not R8:$src))]>; def NOT16r : I<0xF7, MRM2r, (ops R16:$dst, R16:$src), "not{w} $dst", [(set R16:$dst, (not R16:$src))]>, OpSize; def NOT32r : I<0xF7, MRM2r, (ops R32:$dst, R32:$src), "not{l} $dst", [(set R32:$dst, (not R32:$src))]>; let isTwoAddress = 0 in { def NOT8m : I<0xF6, MRM2m, (ops i8mem :$dst), "not{b} $dst", [(store (not (loadi8 addr:$dst)), addr:$dst)]>; def NOT16m : I<0xF7, MRM2m, (ops i16mem:$dst), "not{w} $dst", [(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize; def NOT32m : I<0xF7, MRM2m, (ops i32mem:$dst), "not{l} $dst", [(store (not (loadi32 addr:$dst)), addr:$dst)]>; } // TODO: inc/dec is slow for P4, but fast for Pentium-M. def INC8r : I<0xFE, MRM0r, (ops R8 :$dst, R8 :$src), "inc{b} $dst", [(set R8:$dst, (add R8:$src, 1))]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def INC16r : I<0xFF, MRM0r, (ops R16:$dst, R16:$src), "inc{w} $dst", [(set R16:$dst, (add R16:$src, 1))]>, OpSize; def INC32r : I<0xFF, MRM0r, (ops R32:$dst, R32:$src), "inc{l} $dst", [(set R32:$dst, (add R32:$src, 1))]>; } let isTwoAddress = 0 in { def INC8m : I<0xFE, MRM0m, (ops i8mem :$dst), "inc{b} $dst", [(store (add (loadi8 addr:$dst), 1), addr:$dst)]>; def INC16m : I<0xFF, MRM0m, (ops i16mem:$dst), "inc{w} $dst", [(store (add (loadi16 addr:$dst), 1), addr:$dst)]>, OpSize; def INC32m : I<0xFF, MRM0m, (ops i32mem:$dst), "inc{l} $dst", [(store (add (loadi32 addr:$dst), 1), addr:$dst)]>; } def DEC8r : I<0xFE, MRM1r, (ops R8 :$dst, R8 :$src), "dec{b} $dst", [(set R8:$dst, (add R8:$src, -1))]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def DEC16r : I<0xFF, MRM1r, (ops R16:$dst, R16:$src), "dec{w} $dst", [(set R16:$dst, (add R16:$src, -1))]>, OpSize; def DEC32r : I<0xFF, MRM1r, (ops R32:$dst, R32:$src), "dec{l} $dst", [(set R32:$dst, (add R32:$src, -1))]>; } let isTwoAddress = 0 in { def DEC8m : I<0xFE, MRM1m, (ops i8mem :$dst), "dec{b} $dst", [(store (add (loadi8 addr:$dst), -1), addr:$dst)]>; def DEC16m : I<0xFF, MRM1m, (ops i16mem:$dst), "dec{w} $dst", [(store (add (loadi16 addr:$dst), -1), addr:$dst)]>, OpSize; def DEC32m : I<0xFF, MRM1m, (ops i32mem:$dst), "dec{l} $dst", [(store (add (loadi32 addr:$dst), -1), addr:$dst)]>; } // Logical operators... let isCommutable = 1 in { // X = AND Y, Z --> X = AND Z, Y def AND8rr : I<0x20, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "and{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (and R8:$src1, R8:$src2))]>; def AND16rr : I<0x21, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "and{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (and R16:$src1, R16:$src2))]>, OpSize; def AND32rr : I<0x21, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "and{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (and R32:$src1, R32:$src2))]>; } def AND8rm : I<0x22, MRMSrcMem, (ops R8 :$dst, R8 :$src1, i8mem :$src2), "and{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (and R8:$src1, (load addr:$src2)))]>; def AND16rm : I<0x23, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "and{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (and R16:$src1, (load addr:$src2)))]>, OpSize; def AND32rm : I<0x23, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "and{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (and R32:$src1, (load addr:$src2)))]>; def AND8ri : Ii8<0x80, MRM4r, (ops R8 :$dst, R8 :$src1, i8imm :$src2), "and{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (and R8:$src1, imm:$src2))]>; def AND16ri : Ii16<0x81, MRM4r, (ops R16:$dst, R16:$src1, i16imm:$src2), "and{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (and R16:$src1, imm:$src2))]>, OpSize; def AND32ri : Ii32<0x81, MRM4r, (ops R32:$dst, R32:$src1, i32imm:$src2), "and{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (and R32:$src1, imm:$src2))]>; def AND16ri8 : Ii8<0x83, MRM4r, (ops R16:$dst, R16:$src1, i16i8imm:$src2), "and{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (and R16:$src1, i16immSExt8:$src2))]>, OpSize; def AND32ri8 : Ii8<0x83, MRM4r, (ops R32:$dst, R32:$src1, i32i8imm:$src2), "and{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (and R32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def AND8mr : I<0x20, MRMDestMem, (ops i8mem :$dst, R8 :$src), "and{b} {$src, $dst|$dst, $src}", [(store (and (load addr:$dst), R8:$src), addr:$dst)]>; def AND16mr : I<0x21, MRMDestMem, (ops i16mem:$dst, R16:$src), "and{w} {$src, $dst|$dst, $src}", [(store (and (load addr:$dst), R16:$src), addr:$dst)]>, OpSize; def AND32mr : I<0x21, MRMDestMem, (ops i32mem:$dst, R32:$src), "and{l} {$src, $dst|$dst, $src}", [(store (and (load addr:$dst), R32:$src), addr:$dst)]>; def AND8mi : Ii8<0x80, MRM4m, (ops i8mem :$dst, i8imm :$src), "and{b} {$src, $dst|$dst, $src}", [(store (and (loadi8 addr:$dst), imm:$src), addr:$dst)]>; def AND16mi : Ii16<0x81, MRM4m, (ops i16mem:$dst, i16imm:$src), "and{w} {$src, $dst|$dst, $src}", [(store (and (loadi16 addr:$dst), imm:$src), addr:$dst)]>, OpSize; def AND32mi : Ii32<0x81, MRM4m, (ops i32mem:$dst, i32imm:$src), "and{l} {$src, $dst|$dst, $src}", [(store (and (loadi32 addr:$dst), imm:$src), addr:$dst)]>; def AND16mi8 : Ii8<0x83, MRM4m, (ops i16mem:$dst, i16i8imm :$src), "and{w} {$src, $dst|$dst, $src}", [(store (and (load addr:$dst), i16immSExt8:$src), addr:$dst)]>, OpSize; def AND32mi8 : Ii8<0x83, MRM4m, (ops i32mem:$dst, i32i8imm :$src), "and{l} {$src, $dst|$dst, $src}", [(store (add (load addr:$dst), i32immSExt8:$src), addr:$dst)]>; } let isCommutable = 1 in { // X = OR Y, Z --> X = OR Z, Y def OR8rr : I<0x08, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "or{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (or R8:$src1, R8:$src2))]>; def OR16rr : I<0x09, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "or{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (or R16:$src1, R16:$src2))]>, OpSize; def OR32rr : I<0x09, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "or{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (or R32:$src1, R32:$src2))]>; } def OR8rm : I<0x0A, MRMSrcMem , (ops R8 :$dst, R8 :$src1, i8mem :$src2), "or{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (or R8:$src1, (load addr:$src2)))]>; def OR16rm : I<0x0B, MRMSrcMem , (ops R16:$dst, R16:$src1, i16mem:$src2), "or{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (or R16:$src1, (load addr:$src2)))]>, OpSize; def OR32rm : I<0x0B, MRMSrcMem , (ops R32:$dst, R32:$src1, i32mem:$src2), "or{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (or R32:$src1, (load addr:$src2)))]>; def OR8ri : Ii8 <0x80, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "or{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (or R8:$src1, imm:$src2))]>; def OR16ri : Ii16<0x81, MRM1r, (ops R16:$dst, R16:$src1, i16imm:$src2), "or{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (or R16:$src1, imm:$src2))]>, OpSize; def OR32ri : Ii32<0x81, MRM1r, (ops R32:$dst, R32:$src1, i32imm:$src2), "or{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (or R32:$src1, imm:$src2))]>; def OR16ri8 : Ii8<0x83, MRM1r, (ops R16:$dst, R16:$src1, i16i8imm:$src2), "or{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (or R16:$src1, i16immSExt8:$src2))]>, OpSize; def OR32ri8 : Ii8<0x83, MRM1r, (ops R32:$dst, R32:$src1, i32i8imm:$src2), "or{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (or R32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def OR8mr : I<0x08, MRMDestMem, (ops i8mem:$dst, R8:$src), "or{b} {$src, $dst|$dst, $src}", [(store (or (load addr:$dst), R8:$src), addr:$dst)]>; def OR16mr : I<0x09, MRMDestMem, (ops i16mem:$dst, R16:$src), "or{w} {$src, $dst|$dst, $src}", [(store (or (load addr:$dst), R16:$src), addr:$dst)]>, OpSize; def OR32mr : I<0x09, MRMDestMem, (ops i32mem:$dst, R32:$src), "or{l} {$src, $dst|$dst, $src}", [(store (or (load addr:$dst), R32:$src), addr:$dst)]>; def OR8mi : Ii8<0x80, MRM1m, (ops i8mem :$dst, i8imm:$src), "or{b} {$src, $dst|$dst, $src}", [(store (or (loadi8 addr:$dst), imm:$src), addr:$dst)]>; def OR16mi : Ii16<0x81, MRM1m, (ops i16mem:$dst, i16imm:$src), "or{w} {$src, $dst|$dst, $src}", [(store (or (loadi16 addr:$dst), imm:$src), addr:$dst)]>, OpSize; def OR32mi : Ii32<0x81, MRM1m, (ops i32mem:$dst, i32imm:$src), "or{l} {$src, $dst|$dst, $src}", [(store (or (loadi32 addr:$dst), imm:$src), addr:$dst)]>; def OR16mi8 : Ii8<0x83, MRM1m, (ops i16mem:$dst, i16i8imm:$src), "or{w} {$src, $dst|$dst, $src}", [(store (or (load addr:$dst), i16immSExt8:$src), addr:$dst)]>, OpSize; def OR32mi8 : Ii8<0x83, MRM1m, (ops i32mem:$dst, i32i8imm:$src), "or{l} {$src, $dst|$dst, $src}", [(store (or (load addr:$dst), i32immSExt8:$src), addr:$dst)]>; } let isCommutable = 1 in { // X = XOR Y, Z --> X = XOR Z, Y def XOR8rr : I<0x30, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "xor{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (xor R8:$src1, R8:$src2))]>; def XOR16rr : I<0x31, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "xor{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (xor R16:$src1, R16:$src2))]>, OpSize; def XOR32rr : I<0x31, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "xor{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (xor R32:$src1, R32:$src2))]>; } def XOR8rm : I<0x32, MRMSrcMem , (ops R8 :$dst, R8:$src1, i8mem :$src2), "xor{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (xor R8:$src1, (load addr:$src2)))]>; def XOR16rm : I<0x33, MRMSrcMem , (ops R16:$dst, R16:$src1, i16mem:$src2), "xor{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (xor R16:$src1, (load addr:$src2)))]>, OpSize; def XOR32rm : I<0x33, MRMSrcMem , (ops R32:$dst, R32:$src1, i32mem:$src2), "xor{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (xor R32:$src1, (load addr:$src2)))]>; def XOR8ri : Ii8<0x80, MRM6r, (ops R8:$dst, R8:$src1, i8imm:$src2), "xor{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (xor R8:$src1, imm:$src2))]>; def XOR16ri : Ii16<0x81, MRM6r, (ops R16:$dst, R16:$src1, i16imm:$src2), "xor{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (xor R16:$src1, imm:$src2))]>, OpSize; def XOR32ri : Ii32<0x81, MRM6r, (ops R32:$dst, R32:$src1, i32imm:$src2), "xor{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (xor R32:$src1, imm:$src2))]>; def XOR16ri8 : Ii8<0x83, MRM6r, (ops R16:$dst, R16:$src1, i16i8imm:$src2), "xor{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (xor R16:$src1, i16immSExt8:$src2))]>, OpSize; def XOR32ri8 : Ii8<0x83, MRM6r, (ops R32:$dst, R32:$src1, i32i8imm:$src2), "xor{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (xor R32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def XOR8mr : I<0x30, MRMDestMem, (ops i8mem :$dst, R8 :$src), "xor{b} {$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), R8:$src), addr:$dst)]>; def XOR16mr : I<0x31, MRMDestMem, (ops i16mem:$dst, R16:$src), "xor{w} {$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), R16:$src), addr:$dst)]>, OpSize; def XOR32mr : I<0x31, MRMDestMem, (ops i32mem:$dst, R32:$src), "xor{l} {$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), R32:$src), addr:$dst)]>; def XOR8mi : Ii8<0x80, MRM6m, (ops i8mem :$dst, i8imm :$src), "xor{b} {$src, $dst|$dst, $src}", [(store (xor (loadi8 addr:$dst), imm:$src), addr:$dst)]>; def XOR16mi : Ii16<0x81, MRM6m, (ops i16mem:$dst, i16imm:$src), "xor{w} {$src, $dst|$dst, $src}", [(store (xor (loadi16 addr:$dst), imm:$src), addr:$dst)]>, OpSize; def XOR32mi : Ii32<0x81, MRM6m, (ops i32mem:$dst, i32imm:$src), "xor{l} {$src, $dst|$dst, $src}", [(store (xor (loadi32 addr:$dst), imm:$src), addr:$dst)]>; def XOR16mi8 : Ii8<0x83, MRM6m, (ops i16mem:$dst, i16i8imm :$src), "xor{w} {$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), i16immSExt8:$src), addr:$dst)]>, OpSize; def XOR32mi8 : Ii8<0x83, MRM6m, (ops i32mem:$dst, i32i8imm :$src), "xor{l} {$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), i32immSExt8:$src), addr:$dst)]>; } // Shift instructions def SHL8rCL : I<0xD2, MRM4r, (ops R8 :$dst, R8 :$src), "shl{b} {%cl, $dst|$dst, %CL}", [(set R8:$dst, (shl R8:$src, CL))]>, Imp<[CL],[]>; def SHL16rCL : I<0xD3, MRM4r, (ops R16:$dst, R16:$src), "shl{w} {%cl, $dst|$dst, %CL}", [(set R16:$dst, (shl R16:$src, CL))]>, Imp<[CL],[]>, OpSize; def SHL32rCL : I<0xD3, MRM4r, (ops R32:$dst, R32:$src), "shl{l} {%cl, $dst|$dst, %CL}", [(set R32:$dst, (shl R32:$src, CL))]>, Imp<[CL],[]>; def SHL8ri : Ii8<0xC0, MRM4r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "shl{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (shl R8:$src1, (i8 imm:$src2)))]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def SHL16ri : Ii8<0xC1, MRM4r, (ops R16:$dst, R16:$src1, i8imm:$src2), "shl{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (shl R16:$src1, (i8 imm:$src2)))]>, OpSize; def SHL32ri : Ii8<0xC1, MRM4r, (ops R32:$dst, R32:$src1, i8imm:$src2), "shl{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (shl R32:$src1, (i8 imm:$src2)))]>; } let isTwoAddress = 0 in { def SHL8mCL : I<0xD2, MRM4m, (ops i8mem :$dst), "shl{b} {%cl, $dst|$dst, %CL}", [(store (shl (loadi8 addr:$dst), CL), addr:$dst)]>, Imp<[CL],[]>; def SHL16mCL : I<0xD3, MRM4m, (ops i16mem:$dst), "shl{w} {%cl, $dst|$dst, %CL}", [(store (shl (loadi16 addr:$dst), CL), addr:$dst)]>, Imp<[CL],[]>, OpSize; def SHL32mCL : I<0xD3, MRM4m, (ops i32mem:$dst), "shl{l} {%cl, $dst|$dst, %CL}", [(store (shl (loadi32 addr:$dst), CL), addr:$dst)]>, Imp<[CL],[]>; def SHL8mi : Ii8<0xC0, MRM4m, (ops i8mem :$dst, i8imm:$src), "shl{b} {$src, $dst|$dst, $src}", [(store (shl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SHL16mi : Ii8<0xC1, MRM4m, (ops i16mem:$dst, i8imm:$src), "shl{w} {$src, $dst|$dst, $src}", [(store (shl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def SHL32mi : Ii8<0xC1, MRM4m, (ops i32mem:$dst, i8imm:$src), "shl{l} {$src, $dst|$dst, $src}", [(store (shl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; } def SHR8rCL : I<0xD2, MRM5r, (ops R8 :$dst, R8 :$src), "shr{b} {%cl, $dst|$dst, %CL}", [(set R8:$dst, (srl R8:$src, CL))]>, Imp<[CL],[]>; def SHR16rCL : I<0xD3, MRM5r, (ops R16:$dst, R16:$src), "shr{w} {%cl, $dst|$dst, %CL}", [(set R16:$dst, (srl R16:$src, CL))]>, Imp<[CL],[]>, OpSize; def SHR32rCL : I<0xD3, MRM5r, (ops R32:$dst, R32:$src), "shr{l} {%cl, $dst|$dst, %CL}", [(set R32:$dst, (srl R32:$src, CL))]>, Imp<[CL],[]>; def SHR8ri : Ii8<0xC0, MRM5r, (ops R8:$dst, R8:$src1, i8imm:$src2), "shr{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (srl R8:$src1, (i8 imm:$src2)))]>; def SHR16ri : Ii8<0xC1, MRM5r, (ops R16:$dst, R16:$src1, i8imm:$src2), "shr{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (srl R16:$src1, (i8 imm:$src2)))]>, OpSize; def SHR32ri : Ii8<0xC1, MRM5r, (ops R32:$dst, R32:$src1, i8imm:$src2), "shr{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (srl R32:$src1, (i8 imm:$src2)))]>; let isTwoAddress = 0 in { def SHR8mCL : I<0xD2, MRM5m, (ops i8mem :$dst), "shr{b} {%cl, $dst|$dst, %CL}", [(store (srl (loadi8 addr:$dst), CL), addr:$dst)]>, Imp<[CL],[]>; def SHR16mCL : I<0xD3, MRM5m, (ops i16mem:$dst), "shr{w} {%cl, $dst|$dst, %CL}", [(store (srl (loadi16 addr:$dst), CL), addr:$dst)]>, Imp<[CL],[]>, OpSize; def SHR32mCL : I<0xD3, MRM5m, (ops i32mem:$dst), "shr{l} {%cl, $dst|$dst, %CL}", [(store (srl (loadi32 addr:$dst), CL), addr:$dst)]>, Imp<[CL],[]>; def SHR8mi : Ii8<0xC0, MRM5m, (ops i8mem :$dst, i8imm:$src), "shr{b} {$src, $dst|$dst, $src}", [(store (srl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SHR16mi : Ii8<0xC1, MRM5m, (ops i16mem:$dst, i8imm:$src), "shr{w} {$src, $dst|$dst, $src}", [(store (srl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def SHR32mi : Ii8<0xC1, MRM5m, (ops i32mem:$dst, i8imm:$src), "shr{l} {$src, $dst|$dst, $src}", [(store (srl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; } def SAR8rCL : I<0xD2, MRM7r, (ops R8 :$dst, R8 :$src), "sar{b} {%cl, $dst|$dst, %CL}", [(set R8:$dst, (sra R8:$src, CL))]>, Imp<[CL],[]>; def SAR16rCL : I<0xD3, MRM7r, (ops R16:$dst, R16:$src), "sar{w} {%cl, $dst|$dst, %CL}", [(set R16:$dst, (sra R16:$src, CL))]>, Imp<[CL],[]>, OpSize; def SAR32rCL : I<0xD3, MRM7r, (ops R32:$dst, R32:$src), "sar{l} {%cl, $dst|$dst, %CL}", [(set R32:$dst, (sra R32:$src, CL))]>, Imp<[CL],[]>; def SAR8ri : Ii8<0xC0, MRM7r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "sar{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (sra R8:$src1, (i8 imm:$src2)))]>; def SAR16ri : Ii8<0xC1, MRM7r, (ops R16:$dst, R16:$src1, i8imm:$src2), "sar{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (sra R16:$src1, (i8 imm:$src2)))]>, OpSize; def SAR32ri : Ii8<0xC1, MRM7r, (ops R32:$dst, R32:$src1, i8imm:$src2), "sar{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (sra R32:$src1, (i8 imm:$src2)))]>; let isTwoAddress = 0 in { def SAR8mCL : I<0xD2, MRM7m, (ops i8mem :$dst), "sar{b} {%cl, $dst|$dst, %CL}", [(store (sra (loadi8 addr:$dst), CL), addr:$dst)]>, Imp<[CL],[]>; def SAR16mCL : I<0xD3, MRM7m, (ops i16mem:$dst), "sar{w} {%cl, $dst|$dst, %CL}", [(store (sra (loadi16 addr:$dst), CL), addr:$dst)]>, Imp<[CL],[]>, OpSize; def SAR32mCL : I<0xD3, MRM7m, (ops i32mem:$dst), "sar{l} {%cl, $dst|$dst, %CL}", [(store (sra (loadi32 addr:$dst), CL), addr:$dst)]>, Imp<[CL],[]>; def SAR8mi : Ii8<0xC0, MRM7m, (ops i8mem :$dst, i8imm:$src), "sar{b} {$src, $dst|$dst, $src}", [(store (sra (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SAR16mi : Ii8<0xC1, MRM7m, (ops i16mem:$dst, i8imm:$src), "sar{w} {$src, $dst|$dst, $src}", [(store (sra (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def SAR32mi : Ii8<0xC1, MRM7m, (ops i32mem:$dst, i8imm:$src), "sar{l} {$src, $dst|$dst, $src}", [(store (sra (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; } // Rotate instructions // FIXME: provide shorter instructions when imm8 == 1 def ROL8rCL : I<0xD2, MRM0r, (ops R8 :$dst, R8 :$src), "rol{b} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>; def ROL16rCL : I<0xD3, MRM0r, (ops R16:$dst, R16:$src), "rol{w} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>, OpSize; def ROL32rCL : I<0xD3, MRM0r, (ops R32:$dst, R32:$src), "rol{l} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>; def ROL8ri : Ii8<0xC0, MRM0r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "rol{b} {$src2, $dst|$dst, $src2}", []>; def ROL16ri : Ii8<0xC1, MRM0r, (ops R16:$dst, R16:$src1, i8imm:$src2), "rol{w} {$src2, $dst|$dst, $src2}", []>, OpSize; def ROL32ri : Ii8<0xC1, MRM0r, (ops R32:$dst, R32:$src1, i8imm:$src2), "rol{l} {$src2, $dst|$dst, $src2}", []>; let isTwoAddress = 0 in { def ROL8mCL : I<0xD2, MRM0m, (ops i8mem :$dst), "rol{b} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>; def ROL16mCL : I<0xD3, MRM0m, (ops i16mem:$dst), "rol{w} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>, OpSize; def ROL32mCL : I<0xD3, MRM0m, (ops i32mem:$dst), "rol{l} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>; def ROL8mi : Ii8<0xC0, MRM0m, (ops i8mem :$dst, i8imm:$src), "rol{b} {$src, $dst|$dst, $src}", []>; def ROL16mi : Ii8<0xC1, MRM0m, (ops i16mem:$dst, i8imm:$src), "rol{w} {$src, $dst|$dst, $src}", []>, OpSize; def ROL32mi : Ii8<0xC1, MRM0m, (ops i32mem:$dst, i8imm:$src), "rol{l} {$src, $dst|$dst, $src}", []>; } def ROR8rCL : I<0xD2, MRM1r, (ops R8 :$dst, R8 :$src), "ror{b} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>; def ROR16rCL : I<0xD3, MRM1r, (ops R16:$dst, R16:$src), "ror{w} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>, OpSize; def ROR32rCL : I<0xD3, MRM1r, (ops R32:$dst, R32:$src), "ror{l} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>; def ROR8ri : Ii8<0xC0, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2), "ror{b} {$src2, $dst|$dst, $src2}", []>; def ROR16ri : Ii8<0xC1, MRM1r, (ops R16:$dst, R16:$src1, i8imm:$src2), "ror{w} {$src2, $dst|$dst, $src2}", []>, OpSize; def ROR32ri : Ii8<0xC1, MRM1r, (ops R32:$dst, R32:$src1, i8imm:$src2), "ror{l} {$src2, $dst|$dst, $src2}", []>; let isTwoAddress = 0 in { def ROR8mCL : I<0xD2, MRM1m, (ops i8mem :$dst), "ror{b} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>; def ROR16mCL : I<0xD3, MRM1m, (ops i16mem:$dst), "ror{w} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>, OpSize; def ROR32mCL : I<0xD3, MRM1m, (ops i32mem:$dst), "ror{l} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>; def ROR8mi : Ii8<0xC0, MRM1m, (ops i8mem :$dst, i8imm:$src), "ror{b} {$src, $dst|$dst, $src}", []>; def ROR16mi : Ii8<0xC1, MRM1m, (ops i16mem:$dst, i8imm:$src), "ror{w} {$src, $dst|$dst, $src}", []>, OpSize; def ROR32mi : Ii8<0xC1, MRM1m, (ops i32mem:$dst, i8imm:$src), "ror{l} {$src, $dst|$dst, $src}", []>; } // Double shift instructions (generalizations of rotate) def SHLD32rrCL : I<0xA5, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "shld{l} {%cl, $src2, $dst|$dst, $src2, %CL}", [(set R32:$dst, (X86shld R32:$src1, R32:$src2, CL))]>, Imp<[CL],[]>, TB; def SHRD32rrCL : I<0xAD, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "shrd{l} {%cl, $src2, $dst|$dst, $src2, %CL}", [(set R32:$dst, (X86shrd R32:$src1, R32:$src2, CL))]>, Imp<[CL],[]>, TB; def SHLD16rrCL : I<0xA5, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "shld{w} {%cl, $src2, $dst|$dst, $src2, %CL}", [(set R16:$dst, (X86shld R16:$src1, R16:$src2, CL))]>, Imp<[CL],[]>, TB, OpSize; def SHRD16rrCL : I<0xAD, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "shrd{w} {%cl, $src2, $dst|$dst, $src2, %CL}", [(set R16:$dst, (X86shrd R16:$src1, R16:$src2, CL))]>, Imp<[CL],[]>, TB, OpSize; let isCommutable = 1 in { // These instructions commute to each other. def SHLD32rri8 : Ii8<0xA4, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2, i8imm:$src3), "shld{l} {$src3, $src2, $dst|$dst, $src2, $src3}", [(set R32:$dst, (X86shld R32:$src1, R32:$src2, (i8 imm:$src3)))]>, TB; def SHRD32rri8 : Ii8<0xAC, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2, i8imm:$src3), "shrd{l} {$src3, $src2, $dst|$dst, $src2, $src3}", [(set R32:$dst, (X86shrd R32:$src1, R32:$src2, (i8 imm:$src3)))]>, TB; def SHLD16rri8 : Ii8<0xA4, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2, i8imm:$src3), "shld{w} {$src3, $src2, $dst|$dst, $src2, $src3}", [(set R16:$dst, (X86shld R16:$src1, R16:$src2, (i8 imm:$src3)))]>, TB, OpSize; def SHRD16rri8 : Ii8<0xAC, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2, i8imm:$src3), "shrd{w} {$src3, $src2, $dst|$dst, $src2, $src3}", [(set R16:$dst, (X86shrd R16:$src1, R16:$src2, (i8 imm:$src3)))]>, TB, OpSize; } let isTwoAddress = 0 in { def SHLD32mrCL : I<0xA5, MRMDestMem, (ops i32mem:$dst, R32:$src2), "shld{l} {%cl, $src2, $dst|$dst, $src2, %CL}", [(store (X86shld (loadi32 addr:$dst), R32:$src2, CL), addr:$dst)]>, Imp<[CL],[]>, TB; def SHRD32mrCL : I<0xAD, MRMDestMem, (ops i32mem:$dst, R32:$src2), "shrd{l} {%cl, $src2, $dst|$dst, $src2, %CL}", [(store (X86shrd (loadi32 addr:$dst), R32:$src2, CL), addr:$dst)]>, Imp<[CL],[]>, TB; def SHLD32mri8 : Ii8<0xA4, MRMDestMem, (ops i32mem:$dst, R32:$src2, i8imm:$src3), "shld{l} {$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shld (loadi32 addr:$dst), R32:$src2, (i8 imm:$src3)), addr:$dst)]>, TB; def SHRD32mri8 : Ii8<0xAC, MRMDestMem, (ops i32mem:$dst, R32:$src2, i8imm:$src3), "shrd{l} {$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shrd (loadi32 addr:$dst), R32:$src2, (i8 imm:$src3)), addr:$dst)]>, TB; def SHLD16mrCL : I<0xA5, MRMDestMem, (ops i16mem:$dst, R16:$src2), "shld{w} {%cl, $src2, $dst|$dst, $src2, %CL}", [(store (X86shld (loadi16 addr:$dst), R16:$src2, CL), addr:$dst)]>, Imp<[CL],[]>, TB, OpSize; def SHRD16mrCL : I<0xAD, MRMDestMem, (ops i16mem:$dst, R16:$src2), "shrd{w} {%cl, $src2, $dst|$dst, $src2, %CL}", [(store (X86shrd (loadi16 addr:$dst), R16:$src2, CL), addr:$dst)]>, Imp<[CL],[]>, TB, OpSize; def SHLD16mri8 : Ii8<0xA4, MRMDestMem, (ops i16mem:$dst, R16:$src2, i8imm:$src3), "shld{w} {$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shld (loadi16 addr:$dst), R16:$src2, (i8 imm:$src3)), addr:$dst)]>, TB, OpSize; def SHRD16mri8 : Ii8<0xAC, MRMDestMem, (ops i16mem:$dst, R16:$src2, i8imm:$src3), "shrd{w} {$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shrd (loadi16 addr:$dst), R16:$src2, (i8 imm:$src3)), addr:$dst)]>, TB, OpSize; } // Arithmetic. let isCommutable = 1 in { // X = ADD Y, Z --> X = ADD Z, Y def ADD8rr : I<0x00, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "add{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (add R8:$src1, R8:$src2))]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def ADD16rr : I<0x01, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "add{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (add R16:$src1, R16:$src2))]>, OpSize; def ADD32rr : I<0x01, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "add{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (add R32:$src1, R32:$src2))]>; } // end isConvertibleToThreeAddress } // end isCommutable def ADD8rm : I<0x02, MRMSrcMem, (ops R8 :$dst, R8 :$src1, i8mem :$src2), "add{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (add R8:$src1, (load addr:$src2)))]>; def ADD16rm : I<0x03, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "add{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (add R16:$src1, (load addr:$src2)))]>, OpSize; def ADD32rm : I<0x03, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "add{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (add R32:$src1, (load addr:$src2)))]>; def ADD8ri : Ii8<0x80, MRM0r, (ops R8:$dst, R8:$src1, i8imm:$src2), "add{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (add R8:$src1, imm:$src2))]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def ADD16ri : Ii16<0x81, MRM0r, (ops R16:$dst, R16:$src1, i16imm:$src2), "add{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (add R16:$src1, imm:$src2))]>, OpSize; def ADD32ri : Ii32<0x81, MRM0r, (ops R32:$dst, R32:$src1, i32imm:$src2), "add{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (add R32:$src1, imm:$src2))]>; } // FIXME: move ADD16ri8 above ADD16ri to optimize for space. def ADD16ri8 : Ii8<0x83, MRM0r, (ops R16:$dst, R16:$src1, i16i8imm:$src2), "add{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (add R16:$src1, i16immSExt8:$src2))]>, OpSize; def ADD32ri8 : Ii8<0x83, MRM0r, (ops R32:$dst, R32:$src1, i32i8imm:$src2), "add{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (add R32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def ADD8mr : I<0x00, MRMDestMem, (ops i8mem :$dst, R8 :$src2), "add{b} {$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), R8:$src2), addr:$dst)]>; def ADD16mr : I<0x01, MRMDestMem, (ops i16mem:$dst, R16:$src2), "add{w} {$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), R16:$src2), addr:$dst)]>, OpSize; def ADD32mr : I<0x01, MRMDestMem, (ops i32mem:$dst, R32:$src2), "add{l} {$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), R32:$src2), addr:$dst)]>; def ADD8mi : Ii8<0x80, MRM0m, (ops i8mem :$dst, i8imm :$src2), "add{b} {$src2, $dst|$dst, $src2}", [(store (add (loadi8 addr:$dst), imm:$src2), addr:$dst)]>; def ADD16mi : Ii16<0x81, MRM0m, (ops i16mem:$dst, i16imm:$src2), "add{w} {$src2, $dst|$dst, $src2}", [(store (add (loadi16 addr:$dst), imm:$src2), addr:$dst)]>, OpSize; def ADD32mi : Ii32<0x81, MRM0m, (ops i32mem:$dst, i32imm:$src2), "add{l} {$src2, $dst|$dst, $src2}", [(store (add (loadi32 addr:$dst), imm:$src2), addr:$dst)]>; def ADD16mi8 : Ii8<0x83, MRM0m, (ops i16mem:$dst, i16i8imm :$src2), "add{w} {$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>, OpSize; def ADD32mi8 : Ii8<0x83, MRM0m, (ops i32mem:$dst, i32i8imm :$src2), "add{l} {$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>; } let isCommutable = 1 in { // X = ADC Y, Z --> X = ADC Z, Y def ADC32rr : I<0x11, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "adc{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86adc R32:$src1, R32:$src2))]>; } def ADC32rm : I<0x13, MRMSrcMem , (ops R32:$dst, R32:$src1, i32mem:$src2), "adc{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86adc R32:$src1, (load addr:$src2)))]>; def ADC32ri : Ii32<0x81, MRM2r, (ops R32:$dst, R32:$src1, i32imm:$src2), "adc{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86adc R32:$src1, imm:$src2))]>; def ADC32ri8 : Ii8<0x83, MRM2r, (ops R32:$dst, R32:$src1, i32i8imm:$src2), "adc{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86adc R32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def ADC32mr : I<0x11, MRMDestMem, (ops i32mem:$dst, R32:$src2), "adc{l} {$src2, $dst|$dst, $src2}", [(store (X86adc (load addr:$dst), R32:$src2), addr:$dst)]>; def ADC32mi : Ii32<0x81, MRM2m, (ops i32mem:$dst, i32imm:$src2), "adc{l} {$src2, $dst|$dst, $src2}", [(store (X86adc (loadi32 addr:$dst), imm:$src2), addr:$dst)]>; def ADC32mi8 : Ii8<0x83, MRM2m, (ops i32mem:$dst, i32i8imm :$src2), "adc{l} {$src2, $dst|$dst, $src2}", [(store (X86adc (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>; } def SUB8rr : I<0x28, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2), "sub{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (sub R8:$src1, R8:$src2))]>; def SUB16rr : I<0x29, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2), "sub{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (sub R16:$src1, R16:$src2))]>, OpSize; def SUB32rr : I<0x29, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "sub{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (sub R32:$src1, R32:$src2))]>; def SUB8rm : I<0x2A, MRMSrcMem, (ops R8 :$dst, R8 :$src1, i8mem :$src2), "sub{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (sub R8:$src1, (load addr:$src2)))]>; def SUB16rm : I<0x2B, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "sub{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (sub R16:$src1, (load addr:$src2)))]>, OpSize; def SUB32rm : I<0x2B, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "sub{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (sub R32:$src1, (load addr:$src2)))]>; def SUB8ri : Ii8 <0x80, MRM5r, (ops R8:$dst, R8:$src1, i8imm:$src2), "sub{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (sub R8:$src1, imm:$src2))]>; def SUB16ri : Ii16<0x81, MRM5r, (ops R16:$dst, R16:$src1, i16imm:$src2), "sub{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (sub R16:$src1, imm:$src2))]>, OpSize; def SUB32ri : Ii32<0x81, MRM5r, (ops R32:$dst, R32:$src1, i32imm:$src2), "sub{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (sub R32:$src1, imm:$src2))]>; def SUB16ri8 : Ii8<0x83, MRM5r, (ops R16:$dst, R16:$src1, i16i8imm:$src2), "sub{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (sub R16:$src1, i16immSExt8:$src2))]>, OpSize; def SUB32ri8 : Ii8<0x83, MRM5r, (ops R32:$dst, R32:$src1, i32i8imm:$src2), "sub{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (sub R32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def SUB8mr : I<0x28, MRMDestMem, (ops i8mem :$dst, R8 :$src2), "sub{b} {$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), R8:$src2), addr:$dst)]>; def SUB16mr : I<0x29, MRMDestMem, (ops i16mem:$dst, R16:$src2), "sub{w} {$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), R16:$src2), addr:$dst)]>, OpSize; def SUB32mr : I<0x29, MRMDestMem, (ops i32mem:$dst, R32:$src2), "sub{l} {$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), R32:$src2), addr:$dst)]>; def SUB8mi : Ii8<0x80, MRM5m, (ops i8mem :$dst, i8imm:$src2), "sub{b} {$src2, $dst|$dst, $src2}", [(store (sub (loadi8 addr:$dst), imm:$src2), addr:$dst)]>; def SUB16mi : Ii16<0x81, MRM5m, (ops i16mem:$dst, i16imm:$src2), "sub{w} {$src2, $dst|$dst, $src2}", [(store (sub (loadi16 addr:$dst), imm:$src2), addr:$dst)]>, OpSize; def SUB32mi : Ii32<0x81, MRM5m, (ops i32mem:$dst, i32imm:$src2), "sub{l} {$src2, $dst|$dst, $src2}", [(store (sub (loadi32 addr:$dst), imm:$src2), addr:$dst)]>; def SUB16mi8 : Ii8<0x83, MRM5m, (ops i16mem:$dst, i16i8imm :$src2), "sub{w} {$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>, OpSize; def SUB32mi8 : Ii8<0x83, MRM5m, (ops i32mem:$dst, i32i8imm :$src2), "sub{l} {$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>; } def SBB32rr : I<0x19, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2), "sbb{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86sbb R32:$src1, R32:$src2))]>; let isTwoAddress = 0 in { def SBB32mr : I<0x19, MRMDestMem, (ops i32mem:$dst, R32:$src2), "sbb{l} {$src2, $dst|$dst, $src2}", [(store (X86sbb (load addr:$dst), R32:$src2), addr:$dst)]>; def SBB8mi : Ii32<0x80, MRM3m, (ops i8mem:$dst, i8imm:$src2), "sbb{b} {$src2, $dst|$dst, $src2}", [(store (X86sbb (loadi8 addr:$dst), imm:$src2), addr:$dst)]>; def SBB16mi : Ii32<0x81, MRM3m, (ops i16mem:$dst, i16imm:$src2), "sbb{w} {$src2, $dst|$dst, $src2}", [(store (X86sbb (loadi16 addr:$dst), imm:$src2), addr:$dst)]>, OpSize; def SBB32mi : Ii32<0x81, MRM3m, (ops i32mem:$dst, i32imm:$src2), "sbb{l} {$src2, $dst|$dst, $src2}", [(store (X86sbb (loadi32 addr:$dst), imm:$src2), addr:$dst)]>; def SBB16mi8 : Ii8<0x83, MRM3m, (ops i16mem:$dst, i16i8imm :$src2), "sbb{w} {$src2, $dst|$dst, $src2}", [(store (X86sbb (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>, OpSize; def SBB32mi8 : Ii8<0x83, MRM3m, (ops i32mem:$dst, i32i8imm :$src2), "sbb{l} {$src2, $dst|$dst, $src2}", [(store (X86sbb (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>; } def SBB8ri : Ii8<0x80, MRM3r, (ops R8:$dst, R8:$src1, i8imm:$src2), "sbb{b} {$src2, $dst|$dst, $src2}", [(set R8:$dst, (X86sbb R8:$src1, imm:$src2))]>; def SBB16ri : Ii16<0x81, MRM3r, (ops R16:$dst, R16:$src1, i16imm:$src2), "sbb{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86sbb R16:$src1, imm:$src2))]>, OpSize; def SBB32rm : I<0x1B, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "sbb{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86sbb R32:$src1, (load addr:$src2)))]>; def SBB32ri : Ii32<0x81, MRM3r, (ops R32:$dst, R32:$src1, i32imm:$src2), "sbb{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86sbb R32:$src1, imm:$src2))]>; def SBB16ri8 : Ii8<0x83, MRM3r, (ops R16:$dst, R16:$src1, i16i8imm:$src2), "sbb{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (X86sbb R16:$src1, i16immSExt8:$src2))]>, OpSize; def SBB32ri8 : Ii8<0x83, MRM3r, (ops R32:$dst, R32:$src1, i32i8imm:$src2), "sbb{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (X86sbb R32:$src1, i32immSExt8:$src2))]>; let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y def IMUL16rr : I<0xAF, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2), "imul{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (mul R16:$src1, R16:$src2))]>, TB, OpSize; def IMUL32rr : I<0xAF, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2), "imul{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (mul R32:$src1, R32:$src2))]>, TB; } def IMUL16rm : I<0xAF, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2), "imul{w} {$src2, $dst|$dst, $src2}", [(set R16:$dst, (mul R16:$src1, (load addr:$src2)))]>, TB, OpSize; def IMUL32rm : I<0xAF, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2), "imul{l} {$src2, $dst|$dst, $src2}", [(set R32:$dst, (mul R32:$src1, (load addr:$src2)))]>, TB; } // end Two Address instructions // Suprisingly enough, these are not two address instructions! def IMUL16rri : Ii16<0x69, MRMSrcReg, // R16 = R16*I16 (ops R16:$dst, R16:$src1, i16imm:$src2), "imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}", [(set R16:$dst, (mul R16:$src1, imm:$src2))]>, OpSize; def IMUL32rri : Ii32<0x69, MRMSrcReg, // R32 = R32*I32 (ops R32:$dst, R32:$src1, i32imm:$src2), "imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}", [(set R32:$dst, (mul R32:$src1, imm:$src2))]>; def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // R16 = R16*I8 (ops R16:$dst, R16:$src1, i16i8imm:$src2), "imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}", [(set R16:$dst, (mul R16:$src1, i16immSExt8:$src2))]>, OpSize; def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // R32 = R32*I8 (ops R32:$dst, R32:$src1, i32i8imm:$src2), "imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}", [(set R32:$dst, (mul R32:$src1, i32immSExt8:$src2))]>; def IMUL16rmi : Ii16<0x69, MRMSrcMem, // R16 = [mem16]*I16 (ops R16:$dst, i16mem:$src1, i16imm:$src2), "imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}", [(set R16:$dst, (mul (load addr:$src1), imm:$src2))]>, OpSize; def IMUL32rmi : Ii32<0x69, MRMSrcMem, // R32 = [mem32]*I32 (ops R32:$dst, i32mem:$src1, i32imm:$src2), "imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}", [(set R32:$dst, (mul (load addr:$src1), imm:$src2))]>; def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // R16 = [mem16]*I8 (ops R16:$dst, i16mem:$src1, i16i8imm :$src2), "imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}", [(set R16:$dst, (mul (load addr:$src1), i16immSExt8:$src2))]>, OpSize; def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // R32 = [mem32]*I8 (ops R32:$dst, i32mem:$src1, i32i8imm: $src2), "imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}", [(set R32:$dst, (mul (load addr:$src1), i32immSExt8:$src2))]>; //===----------------------------------------------------------------------===// // Test instructions are just like AND, except they don't generate a result. // let isCommutable = 1 in { // TEST X, Y --> TEST Y, X def TEST8rr : I<0x84, MRMDestReg, (ops R8:$src1, R8:$src2), "test{b} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test R8:$src1, R8:$src2))]>, Imp<[],[STATUS]>; def TEST16rr : I<0x85, MRMDestReg, (ops R16:$src1, R16:$src2), "test{w} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test R16:$src1, R16:$src2))]>, Imp<[],[STATUS]>, OpSize; def TEST32rr : I<0x85, MRMDestReg, (ops R32:$src1, R32:$src2), "test{l} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test R32:$src1, R32:$src2))]>, Imp<[],[STATUS]>; } def TEST8mr : I<0x84, MRMDestMem, (ops i8mem :$src1, R8 :$src2), "test{b} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test (loadi8 addr:$src1), R8:$src2))]>, Imp<[],[STATUS]>; def TEST16mr : I<0x85, MRMDestMem, (ops i16mem:$src1, R16:$src2), "test{w} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test (loadi16 addr:$src1), R16:$src2))]>, Imp<[],[STATUS]>, OpSize; def TEST32mr : I<0x85, MRMDestMem, (ops i32mem:$src1, R32:$src2), "test{l} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test (loadi32 addr:$src1), R32:$src2))]>, Imp<[],[STATUS]>; def TEST8rm : I<0x84, MRMSrcMem, (ops R8 :$src1, i8mem :$src2), "test{b} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test R8:$src1, (loadi8 addr:$src2)))]>, Imp<[],[STATUS]>; def TEST16rm : I<0x85, MRMSrcMem, (ops R16:$src1, i16mem:$src2), "test{w} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test R16:$src1, (loadi16 addr:$src2)))]>, Imp<[],[STATUS]>, OpSize; def TEST32rm : I<0x85, MRMSrcMem, (ops R32:$src1, i32mem:$src2), "test{l} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test R32:$src1, (loadi32 addr:$src2)))]>, Imp<[],[STATUS]>; def TEST8ri : Ii8 <0xF6, MRM0r, // flags = R8 & imm8 (ops R8:$src1, i8imm:$src2), "test{b} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test R8:$src1, imm:$src2))]>, Imp<[],[STATUS]>; def TEST16ri : Ii16<0xF7, MRM0r, // flags = R16 & imm16 (ops R16:$src1, i16imm:$src2), "test{w} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test R16:$src1, imm:$src2))]>, Imp<[],[STATUS]>, OpSize; def TEST32ri : Ii32<0xF7, MRM0r, // flags = R32 & imm32 (ops R32:$src1, i32imm:$src2), "test{l} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test R32:$src1, imm:$src2))]>, Imp<[],[STATUS]>; def TEST8mi : Ii8 <0xF6, MRM0m, // flags = [mem8] & imm8 (ops i8mem:$src1, i8imm:$src2), "test{b} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test (loadi8 addr:$src1), imm:$src2))]>, Imp<[],[STATUS]>; def TEST16mi : Ii16<0xF7, MRM0m, // flags = [mem16] & imm16 (ops i16mem:$src1, i16imm:$src2), "test{w} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test (loadi16 addr:$src1), imm:$src2))]>, Imp<[],[STATUS]>, OpSize; def TEST32mi : Ii32<0xF7, MRM0m, // flags = [mem32] & imm32 (ops i32mem:$src1, i32imm:$src2), "test{l} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86test (loadi32 addr:$src1), imm:$src2))]>, Imp<[],[STATUS]>; // Condition code ops, incl. set if equal/not equal/... def SAHF : I<0x9E, RawFrm, (ops), "sahf", []>, Imp<[AH],[]>; // flags = AH def LAHF : I<0x9F, RawFrm, (ops), "lahf", []>, Imp<[],[AH]>; // AH = flags def SETEr : I<0x94, MRM0r, (ops R8 :$dst), "sete $dst", [(set R8:$dst, (X86setcc X86_COND_E, STATUS))]>, TB; // R8 = == def SETEm : I<0x94, MRM0m, (ops i8mem:$dst), "sete $dst", [(store (X86setcc X86_COND_E, STATUS), addr:$dst)]>, TB; // [mem8] = == def SETNEr : I<0x95, MRM0r, (ops R8 :$dst), "setne $dst", [(set R8:$dst, (X86setcc X86_COND_NE, STATUS))]>, TB; // R8 = != def SETNEm : I<0x95, MRM0m, (ops i8mem:$dst), "setne $dst", [(store (X86setcc X86_COND_NE, STATUS), addr:$dst)]>, TB; // [mem8] = != def SETLr : I<0x9C, MRM0r, (ops R8 :$dst), "setl $dst", [(set R8:$dst, (X86setcc X86_COND_L, STATUS))]>, TB; // R8 = < signed def SETLm : I<0x9C, MRM0m, (ops i8mem:$dst), "setl $dst", [(store (X86setcc X86_COND_L, STATUS), addr:$dst)]>, TB; // [mem8] = < signed def SETGEr : I<0x9D, MRM0r, (ops R8 :$dst), "setge $dst", [(set R8:$dst, (X86setcc X86_COND_GE, STATUS))]>, TB; // R8 = >= signed def SETGEm : I<0x9D, MRM0m, (ops i8mem:$dst), "setge $dst", [(store (X86setcc X86_COND_GE, STATUS), addr:$dst)]>, TB; // [mem8] = >= signed def SETLEr : I<0x9E, MRM0r, (ops R8 :$dst), "setle $dst", [(set R8:$dst, (X86setcc X86_COND_LE, STATUS))]>, TB; // R8 = <= signed def SETLEm : I<0x9E, MRM0m, (ops i8mem:$dst), "setle $dst", [(store (X86setcc X86_COND_LE, STATUS), addr:$dst)]>, TB; // [mem8] = <= signed def SETGr : I<0x9F, MRM0r, (ops R8 :$dst), "setg $dst", [(set R8:$dst, (X86setcc X86_COND_G, STATUS))]>, TB; // R8 = > signed def SETGm : I<0x9F, MRM0m, (ops i8mem:$dst), "setg $dst", [(store (X86setcc X86_COND_G, STATUS), addr:$dst)]>, TB; // [mem8] = > signed def SETBr : I<0x92, MRM0r, (ops R8 :$dst), "setb $dst", [(set R8:$dst, (X86setcc X86_COND_B, STATUS))]>, TB; // R8 = < unsign def SETBm : I<0x92, MRM0m, (ops i8mem:$dst), "setb $dst", [(store (X86setcc X86_COND_B, STATUS), addr:$dst)]>, TB; // [mem8] = < unsign def SETAEr : I<0x93, MRM0r, (ops R8 :$dst), "setae $dst", [(set R8:$dst, (X86setcc X86_COND_AE, STATUS))]>, TB; // R8 = >= unsign def SETAEm : I<0x93, MRM0m, (ops i8mem:$dst), "setae $dst", [(store (X86setcc X86_COND_AE, STATUS), addr:$dst)]>, TB; // [mem8] = >= unsign def SETBEr : I<0x96, MRM0r, (ops R8 :$dst), "setbe $dst", [(set R8:$dst, (X86setcc X86_COND_BE, STATUS))]>, TB; // R8 = <= unsign def SETBEm : I<0x96, MRM0m, (ops i8mem:$dst), "setbe $dst", [(store (X86setcc X86_COND_BE, STATUS), addr:$dst)]>, TB; // [mem8] = <= unsign def SETAr : I<0x97, MRM0r, (ops R8 :$dst), "seta $dst", [(set R8:$dst, (X86setcc X86_COND_A, STATUS))]>, TB; // R8 = > signed def SETAm : I<0x97, MRM0m, (ops i8mem:$dst), "seta $dst", [(store (X86setcc X86_COND_A, STATUS), addr:$dst)]>, TB; // [mem8] = > signed def SETSr : I<0x98, MRM0r, (ops R8 :$dst), "sets $dst", [(set R8:$dst, (X86setcc X86_COND_S, STATUS))]>, TB; // R8 = def SETSm : I<0x98, MRM0m, (ops i8mem:$dst), "sets $dst", [(store (X86setcc X86_COND_S, STATUS), addr:$dst)]>, TB; // [mem8] = def SETNSr : I<0x99, MRM0r, (ops R8 :$dst), "setns $dst", [(set R8:$dst, (X86setcc X86_COND_NS, STATUS))]>, TB; // R8 = ! def SETNSm : I<0x99, MRM0m, (ops i8mem:$dst), "setns $dst", [(store (X86setcc X86_COND_NS, STATUS), addr:$dst)]>, TB; // [mem8] = ! def SETPr : I<0x9A, MRM0r, (ops R8 :$dst), "setp $dst", [(set R8:$dst, (X86setcc X86_COND_P, STATUS))]>, TB; // R8 = parity def SETPm : I<0x9A, MRM0m, (ops i8mem:$dst), "setp $dst", [(store (X86setcc X86_COND_P, STATUS), addr:$dst)]>, TB; // [mem8] = parity def SETNPr : I<0x9B, MRM0r, (ops R8 :$dst), "setnp $dst", [(set R8:$dst, (X86setcc X86_COND_NP, STATUS))]>, TB; // R8 = not parity def SETNPm : I<0x9B, MRM0m, (ops i8mem:$dst), "setnp $dst", [(store (X86setcc X86_COND_NP, STATUS), addr:$dst)]>, TB; // [mem8] = not parity // Integer comparisons def CMP8rr : I<0x38, MRMDestReg, (ops R8 :$src1, R8 :$src2), "cmp{b} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp R8:$src1, R8:$src2))]>, Imp<[],[STATUS]>; def CMP16rr : I<0x39, MRMDestReg, (ops R16:$src1, R16:$src2), "cmp{w} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp R16:$src1, R16:$src2))]>, Imp<[],[STATUS]>, OpSize; def CMP32rr : I<0x39, MRMDestReg, (ops R32:$src1, R32:$src2), "cmp{l} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp R32:$src1, R32:$src2))]>, Imp<[],[STATUS]>; def CMP8mr : I<0x38, MRMDestMem, (ops i8mem :$src1, R8 :$src2), "cmp{b} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp (loadi8 addr:$src1), R8:$src2))]>, Imp<[],[STATUS]>; def CMP16mr : I<0x39, MRMDestMem, (ops i16mem:$src1, R16:$src2), "cmp{w} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp (loadi16 addr:$src1), R16:$src2))]>, Imp<[],[STATUS]>, OpSize; def CMP32mr : I<0x39, MRMDestMem, (ops i32mem:$src1, R32:$src2), "cmp{l} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp (loadi32 addr:$src1), R32:$src2))]>, Imp<[],[STATUS]>; def CMP8rm : I<0x3A, MRMSrcMem, (ops R8 :$src1, i8mem :$src2), "cmp{b} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp R8:$src1, (loadi8 addr:$src2)))]>, Imp<[],[STATUS]>; def CMP16rm : I<0x3B, MRMSrcMem, (ops R16:$src1, i16mem:$src2), "cmp{w} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp R16:$src1, (loadi16 addr:$src2)))]>, Imp<[],[STATUS]>, OpSize; def CMP32rm : I<0x3B, MRMSrcMem, (ops R32:$src1, i32mem:$src2), "cmp{l} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp R32:$src1, (loadi32 addr:$src2)))]>, Imp<[],[STATUS]>; def CMP8ri : Ii8<0x80, MRM7r, (ops R8:$src1, i8imm:$src2), "cmp{b} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp R8:$src1, imm:$src2))]>, Imp<[],[STATUS]>; def CMP16ri : Ii16<0x81, MRM7r, (ops R16:$src1, i16imm:$src2), "cmp{w} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp R16:$src1, imm:$src2))]>, Imp<[],[STATUS]>, OpSize; def CMP32ri : Ii32<0x81, MRM7r, (ops R32:$src1, i32imm:$src2), "cmp{l} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp R32:$src1, imm:$src2))]>, Imp<[],[STATUS]>; def CMP8mi : Ii8 <0x80, MRM7m, (ops i8mem :$src1, i8imm :$src2), "cmp{b} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp (loadi8 addr:$src1), imm:$src2))]>, Imp<[],[STATUS]>; def CMP16mi : Ii16<0x81, MRM7m, (ops i16mem:$src1, i16imm:$src2), "cmp{w} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp (loadi16 addr:$src1), imm:$src2))]>, Imp<[],[STATUS]>, OpSize; def CMP32mi : Ii32<0x81, MRM7m, (ops i32mem:$src1, i32imm:$src2), "cmp{l} {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp (loadi32 addr:$src1), imm:$src2))]>, Imp<[],[STATUS]>; // Sign/Zero extenders def MOVSX16rr8 : I<0xBE, MRMSrcReg, (ops R16:$dst, R8 :$src), "movs{bw|x} {$src, $dst|$dst, $src}", [(set R16:$dst, (sext R8:$src))]>, TB, OpSize; def MOVSX16rm8 : I<0xBE, MRMSrcMem, (ops R16:$dst, i8mem :$src), "movs{bw|x} {$src, $dst|$dst, $src}", [(set R16:$dst, (sextloadi16i8 addr:$src))]>, TB, OpSize; def MOVSX32rr8 : I<0xBE, MRMSrcReg, (ops R32:$dst, R8 :$src), "movs{bl|x} {$src, $dst|$dst, $src}", [(set R32:$dst, (sext R8:$src))]>, TB; def MOVSX32rm8 : I<0xBE, MRMSrcMem, (ops R32:$dst, i8mem :$src), "movs{bl|x} {$src, $dst|$dst, $src}", [(set R32:$dst, (sextloadi32i8 addr:$src))]>, TB; def MOVSX32rr16: I<0xBF, MRMSrcReg, (ops R32:$dst, R16:$src), "movs{wl|x} {$src, $dst|$dst, $src}", [(set R32:$dst, (sext R16:$src))]>, TB; def MOVSX32rm16: I<0xBF, MRMSrcMem, (ops R32:$dst, i16mem:$src), "movs{wl|x} {$src, $dst|$dst, $src}", [(set R32:$dst, (sextloadi32i16 addr:$src))]>, TB; def MOVZX16rr8 : I<0xB6, MRMSrcReg, (ops R16:$dst, R8 :$src), "movz{bw|x} {$src, $dst|$dst, $src}", [(set R16:$dst, (zext R8:$src))]>, TB, OpSize; def MOVZX16rm8 : I<0xB6, MRMSrcMem, (ops R16:$dst, i8mem :$src), "movz{bw|x} {$src, $dst|$dst, $src}", [(set R16:$dst, (zextloadi16i8 addr:$src))]>, TB, OpSize; def MOVZX32rr8 : I<0xB6, MRMSrcReg, (ops R32:$dst, R8 :$src), "movz{bl|x} {$src, $dst|$dst, $src}", [(set R32:$dst, (zext R8:$src))]>, TB; def MOVZX32rm8 : I<0xB6, MRMSrcMem, (ops R32:$dst, i8mem :$src), "movz{bl|x} {$src, $dst|$dst, $src}", [(set R32:$dst, (zextloadi32i8 addr:$src))]>, TB; def MOVZX32rr16: I<0xB7, MRMSrcReg, (ops R32:$dst, R16:$src), "movz{wl|x} {$src, $dst|$dst, $src}", [(set R32:$dst, (zext R16:$src))]>, TB; def MOVZX32rm16: I<0xB7, MRMSrcMem, (ops R32:$dst, i16mem:$src), "movz{wl|x} {$src, $dst|$dst, $src}", [(set R32:$dst, (zextloadi32i16 addr:$src))]>, TB; //===----------------------------------------------------------------------===// // XMM Floating point support (requires SSE / SSE2) //===----------------------------------------------------------------------===// def MOVSSrr : I<0x10, MRMSrcReg, (ops FR32:$dst, FR32:$src), "movss {$src, $dst|$dst, $src}", []>, Requires<[HasSSE1]>, XS; def MOVSDrr : I<0x10, MRMSrcReg, (ops FR64:$dst, FR64:$src), "movsd {$src, $dst|$dst, $src}", []>, Requires<[HasSSE2]>, XD; def MOVSSrm : I<0x10, MRMSrcMem, (ops FR32:$dst, f32mem:$src), "movss {$src, $dst|$dst, $src}", [(set FR32:$dst, (loadf32 addr:$src))]>, Requires<[HasSSE1]>, XS; def MOVSSmr : I<0x11, MRMDestMem, (ops f32mem:$dst, FR32:$src), "movss {$src, $dst|$dst, $src}", [(store FR32:$src, addr:$dst)]>, Requires<[HasSSE1]>, XS; def MOVSDrm : I<0x10, MRMSrcMem, (ops FR64:$dst, f64mem:$src), "movsd {$src, $dst|$dst, $src}", [(set FR64:$dst, (loadf64 addr:$src))]>, Requires<[HasSSE2]>, XD; def MOVSDmr : I<0x11, MRMDestMem, (ops f64mem:$dst, FR64:$src), "movsd {$src, $dst|$dst, $src}", [(store FR64:$src, addr:$dst)]>, Requires<[HasSSE2]>, XD; def CVTTSD2SIrr: I<0x2C, MRMSrcReg, (ops R32:$dst, FR64:$src), "cvttsd2si {$src, $dst|$dst, $src}", [(set R32:$dst, (fp_to_sint FR64:$src))]>, Requires<[HasSSE2]>, XD; def CVTTSD2SIrm: I<0x2C, MRMSrcMem, (ops R32:$dst, f64mem:$src), "cvttsd2si {$src, $dst|$dst, $src}", [(set R32:$dst, (fp_to_sint (loadf64 addr:$src)))]>, Requires<[HasSSE2]>, XD; def CVTTSS2SIrr: I<0x2C, MRMSrcReg, (ops R32:$dst, FR32:$src), "cvttss2si {$src, $dst|$dst, $src}", [(set R32:$dst, (fp_to_sint FR32:$src))]>, Requires<[HasSSE1]>, XS; def CVTTSS2SIrm: I<0x2C, MRMSrcMem, (ops R32:$dst, f32mem:$src), "cvttss2si {$src, $dst|$dst, $src}", [(set R32:$dst, (fp_to_sint (loadf32 addr:$src)))]>, Requires<[HasSSE1]>, XS; def CVTSD2SSrr: I<0x5A, MRMSrcReg, (ops FR32:$dst, FR64:$src), "cvtsd2ss {$src, $dst|$dst, $src}", [(set FR32:$dst, (fround FR64:$src))]>, Requires<[HasSSE2]>, XS; def CVTSD2SSrm: I<0x5A, MRMSrcMem, (ops FR32:$dst, f64mem:$src), "cvtsd2ss {$src, $dst|$dst, $src}", [(set FR32:$dst, (fround (loadf64 addr:$src)))]>, Requires<[HasSSE2]>, XS; def CVTSS2SDrr: I<0x5A, MRMSrcReg, (ops FR64:$dst, FR32:$src), "cvtss2sd {$src, $dst|$dst, $src}", [(set FR64:$dst, (fextend FR32:$src))]>, Requires<[HasSSE2]>, XD; def CVTSS2SDrm: I<0x5A, MRMSrcMem, (ops FR64:$dst, f32mem:$src), "cvtss2sd {$src, $dst|$dst, $src}", [(set FR64:$dst, (fextend (loadf32 addr:$src)))]>, Requires<[HasSSE2]>, XD; def CVTSI2SSrr: I<0x2A, MRMSrcReg, (ops FR32:$dst, R32:$src), "cvtsi2ss {$src, $dst|$dst, $src}", [(set FR32:$dst, (sint_to_fp R32:$src))]>, Requires<[HasSSE2]>, XS; def CVTSI2SSrm: I<0x2A, MRMSrcMem, (ops FR32:$dst, i32mem:$src), "cvtsi2ss {$src, $dst|$dst, $src}", [(set FR32:$dst, (sint_to_fp (loadi32 addr:$src)))]>, Requires<[HasSSE2]>, XS; def CVTSI2SDrr: I<0x2A, MRMSrcReg, (ops FR64:$dst, R32:$src), "cvtsi2sd {$src, $dst|$dst, $src}", [(set FR64:$dst, (sint_to_fp R32:$src))]>, Requires<[HasSSE2]>, XD; def CVTSI2SDrm: I<0x2A, MRMSrcMem, (ops FR64:$dst, i32mem:$src), "cvtsi2sd {$src, $dst|$dst, $src}", [(set FR64:$dst, (sint_to_fp (loadi32 addr:$src)))]>, Requires<[HasSSE2]>, XD; def SQRTSSrm : I<0x51, MRMSrcMem, (ops FR32:$dst, f32mem:$src), "sqrtss {$src, $dst|$dst, $src}", [(set FR32:$dst, (fsqrt (loadf32 addr:$src)))]>, Requires<[HasSSE1]>, XS; def SQRTSSrr : I<0x51, MRMSrcReg, (ops FR32:$dst, FR32:$src), "sqrtss {$src, $dst|$dst, $src}", [(set FR32:$dst, (fsqrt FR32:$src))]>, Requires<[HasSSE1]>, XS; def SQRTSDrm : I<0x51, MRMSrcMem, (ops FR64:$dst, f64mem:$src), "sqrtsd {$src, $dst|$dst, $src}", [(set FR64:$dst, (fsqrt (loadf64 addr:$src)))]>, Requires<[HasSSE2]>, XD; def SQRTSDrr : I<0x51, MRMSrcReg, (ops FR64:$dst, FR64:$src), "sqrtsd {$src, $dst|$dst, $src}", [(set FR64:$dst, (fsqrt FR64:$src))]>, Requires<[HasSSE2]>, XD; def UCOMISDrr: I<0x2E, MRMSrcReg, (ops FR64:$src1, FR64:$src2), "ucomisd {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp FR64:$src1, FR64:$src2))]>, Requires<[HasSSE2]>, TB, OpSize; def UCOMISDrm: I<0x2E, MRMSrcMem, (ops FR64:$src1, f64mem:$src2), "ucomisd {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp FR64:$src1, (loadf64 addr:$src2)))]>, Imp<[],[STATUS]>, Requires<[HasSSE2]>, TB, OpSize; def UCOMISSrr: I<0x2E, MRMSrcReg, (ops FR32:$src1, FR32:$src2), "ucomiss {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp FR32:$src1, FR32:$src2))]>, Imp<[],[STATUS]>, Requires<[HasSSE1]>, TB; def UCOMISSrm: I<0x2E, MRMSrcMem, (ops FR32:$src1, f32mem:$src2), "ucomiss {$src2, $src1|$src1, $src2}", [(set STATUS, (X86cmp FR32:$src1, (loadf32 addr:$src2)))]>, Imp<[],[STATUS]>, Requires<[HasSSE1]>, TB; // Pseudo-instructions that map fld0 to xorps/xorpd for sse. // FIXME: remove when we can teach regalloc that xor reg, reg is ok. def FLD0SS : I<0x57, MRMSrcReg, (ops FR32:$dst), "xorps $dst, $dst", [(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1]>, TB; def FLD0SD : I<0x57, MRMSrcReg, (ops FR64:$dst), "xorpd $dst, $dst", [(set FR64:$dst, fp64imm0)]>, Requires<[HasSSE2]>, TB, OpSize; let isTwoAddress = 1 in { // SSE Scalar Arithmetic let isCommutable = 1 in { def ADDSSrr : I<0x58, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2), "addss {$src2, $dst|$dst, $src2}", [(set FR32:$dst, (fadd FR32:$src1, FR32:$src2))]>, Requires<[HasSSE1]>, XS; def ADDSDrr : I<0x58, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2), "addsd {$src2, $dst|$dst, $src2}", [(set FR64:$dst, (fadd FR64:$src1, FR64:$src2))]>, Requires<[HasSSE2]>, XD; def MULSSrr : I<0x59, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2), "mulss {$src2, $dst|$dst, $src2}", [(set FR32:$dst, (fmul FR32:$src1, FR32:$src2))]>, Requires<[HasSSE1]>, XS; def MULSDrr : I<0x59, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2), "mulsd {$src2, $dst|$dst, $src2}", [(set FR64:$dst, (fmul FR64:$src1, FR64:$src2))]>, Requires<[HasSSE2]>, XD; } def ADDSSrm : I<0x58, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src2), "addss {$src2, $dst|$dst, $src2}", [(set FR32:$dst, (fadd FR32:$src1, (loadf32 addr:$src2)))]>, Requires<[HasSSE1]>, XS; def ADDSDrm : I<0x58, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f64mem:$src2), "addsd {$src2, $dst|$dst, $src2}", [(set FR64:$dst, (fadd FR64:$src1, (loadf64 addr:$src2)))]>, Requires<[HasSSE2]>, XD; def MULSSrm : I<0x59, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src2), "mulss {$src2, $dst|$dst, $src2}", [(set FR32:$dst, (fmul FR32:$src1, (loadf32 addr:$src2)))]>, Requires<[HasSSE1]>, XS; def MULSDrm : I<0x59, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f64mem:$src2), "mulsd {$src2, $dst|$dst, $src2}", [(set FR64:$dst, (fmul FR64:$src1, (loadf64 addr:$src2)))]>, Requires<[HasSSE2]>, XD; def DIVSSrr : I<0x5E, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2), "divss {$src2, $dst|$dst, $src2}", [(set FR32:$dst, (fdiv FR32:$src1, FR32:$src2))]>, Requires<[HasSSE1]>, XS; def DIVSSrm : I<0x5E, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src2), "divss {$src2, $dst|$dst, $src2}", [(set FR32:$dst, (fdiv FR32:$src1, (loadf32 addr:$src2)))]>, Requires<[HasSSE1]>, XS; def DIVSDrr : I<0x5E, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2), "divsd {$src2, $dst|$dst, $src2}", [(set FR64:$dst, (fdiv FR64:$src1, FR64:$src2))]>, Requires<[HasSSE2]>, XD; def DIVSDrm : I<0x5E, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f64mem:$src2), "divsd {$src2, $dst|$dst, $src2}", [(set FR64:$dst, (fdiv FR64:$src1, (loadf64 addr:$src2)))]>, Requires<[HasSSE2]>, XD; def SUBSSrr : I<0x5C, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2), "subss {$src2, $dst|$dst, $src2}", [(set FR32:$dst, (fsub FR32:$src1, FR32:$src2))]>, Requires<[HasSSE1]>, XS; def SUBSSrm : I<0x5C, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src2), "subss {$src2, $dst|$dst, $src2}", [(set FR32:$dst, (fsub FR32:$src1, (loadf32 addr:$src2)))]>, Requires<[HasSSE1]>, XS; def SUBSDrr : I<0x5C, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2), "subsd {$src2, $dst|$dst, $src2}", [(set FR64:$dst, (fsub FR64:$src1, FR64:$src2))]>, Requires<[HasSSE2]>, XD; def SUBSDrm : I<0x5C, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f64mem:$src2), "subsd {$src2, $dst|$dst, $src2}", [(set FR64:$dst, (fsub FR64:$src1, (loadf64 addr:$src2)))]>, Requires<[HasSSE2]>, XD; // SSE Logical let isCommutable = 1 in { def ANDPSrr : I<0x54, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2), "andps {$src2, $dst|$dst, $src2}", []>, Requires<[HasSSE1]>, TB; def ANDPDrr : I<0x54, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2), "andpd {$src2, $dst|$dst, $src2}", []>, Requires<[HasSSE2]>, TB, OpSize; def ORPSrr : I<0x56, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2), "orps {$src2, $dst|$dst, $src2}", []>, Requires<[HasSSE1]>, TB; def ORPDrr : I<0x56, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2), "orpd {$src2, $dst|$dst, $src2}", []>, Requires<[HasSSE2]>, TB, OpSize; def XORPSrr : I<0x57, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2), "xorps {$src2, $dst|$dst, $src2}", []>, Requires<[HasSSE1]>, TB; def XORPDrr : I<0x57, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2), "xorpd {$src2, $dst|$dst, $src2}", []>, Requires<[HasSSE2]>, TB, OpSize; } def ANDNPSrr : I<0x55, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2), "andnps {$src2, $dst|$dst, $src2}", []>, Requires<[HasSSE1]>, TB; def ANDNPDrr : I<0x55, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2), "andnpd {$src2, $dst|$dst, $src2}", []>, Requires<[HasSSE2]>, TB, OpSize; def CMPSSrr : I<0xC2, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src, SSECC:$cc), "cmp${cc}ss {$src, $dst|$dst, $src}", []>, Requires<[HasSSE1]>, XS; def CMPSSrm : I<0xC2, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src, SSECC:$cc), "cmp${cc}ss {$src, $dst|$dst, $src}", []>, Requires<[HasSSE1]>, XS; def CMPSDrr : I<0xC2, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src, SSECC:$cc), "cmp${cc}sd {$src, $dst|$dst, $src}", []>, Requires<[HasSSE1]>, XD; def CMPSDrm : I<0xC2, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f64mem:$src, SSECC:$cc), "cmp${cc}sd {$src, $dst|$dst, $src}", []>, Requires<[HasSSE2]>, XD; } //===----------------------------------------------------------------------===// // Floating Point Stack Support //===----------------------------------------------------------------------===// // Floating point support. All FP Stack operations are represented with two // instructions here. The first instruction, generated by the instruction // selector, uses "RFP" registers: a traditional register file to reference // floating point values. These instructions are all psuedo instructions and // use the "Fp" prefix. The second instruction is defined with FPI, which is // the actual instruction emitted by the assembler. The FP stackifier pass // converts one to the other after register allocation occurs. // // Note that the FpI instruction should have instruction selection info (e.g. // a pattern) and the FPI instruction should have emission info (e.g. opcode // encoding and asm printing info). // FPI - Floating Point Instruction template. class FPI o, Format F, dag ops, string asm> : I {} // FpI_ - Floating Point Psuedo Instruction template. Not Predicated. class FpI_ pattern> : X86Inst<0, Pseudo, NoImm, ops, ""> { let FPForm = fp; let FPFormBits = FPForm.Value; let Pattern = pattern; } // Random Pseudo Instructions. def FpGETRESULT : FpI_<(ops RFP:$dst), SpecialFP, [(set RFP:$dst, X86fpget)]>; // FPR = ST(0) let noResults = 1 in def FpSETRESULT : FpI_<(ops RFP:$src), SpecialFP, [(X86fpset RFP:$src)]>, Imp<[], [ST0]>; // ST(0) = FPR // FpI - Floating Point Psuedo Instruction template. Predicated on FPStack. class FpI pattern> : FpI_, Requires<[FPStack]>; def FpMOV : FpI<(ops RFP:$dst, RFP:$src), SpecialFP, []>; // f1 = fmov f2 // Arithmetic // Add, Sub, Mul, Div. def FpADD : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP, [(set RFP:$dst, (fadd RFP:$src1, RFP:$src2))]>; def FpSUB : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP, [(set RFP:$dst, (fsub RFP:$src1, RFP:$src2))]>; def FpMUL : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP, [(set RFP:$dst, (fmul RFP:$src1, RFP:$src2))]>; def FpDIV : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP, [(set RFP:$dst, (fdiv RFP:$src1, RFP:$src2))]>; class FPST0rInst o, string asm> : FPI, D8; class FPrST0Inst o, string asm> : FPI, DC; class FPrST0PInst o, string asm> : FPI, DE; // Binary Ops with a memory source. def FpADD32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fadd RFP:$src1, (extloadf64f32 addr:$src2)))]>; // ST(0) = ST(0) + [mem32] def FpADD64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fadd RFP:$src1, (loadf64 addr:$src2)))]>; // ST(0) = ST(0) + [mem64] def FpMUL32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fmul RFP:$src1, (extloadf64f32 addr:$src2)))]>; // ST(0) = ST(0) * [mem32] def FpMUL64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fmul RFP:$src1, (loadf64 addr:$src2)))]>; // ST(0) = ST(0) * [mem64] def FpSUB32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fsub RFP:$src1, (extloadf64f32 addr:$src2)))]>; // ST(0) = ST(0) - [mem32] def FpSUB64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fsub RFP:$src1, (loadf64 addr:$src2)))]>; // ST(0) = ST(0) - [mem64] def FpSUBR32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fsub (extloadf64f32 addr:$src2), RFP:$src1))]>; // ST(0) = [mem32] - ST(0) def FpSUBR64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fsub (loadf64 addr:$src2), RFP:$src1))]>; // ST(0) = [mem64] - ST(0) def FpDIV32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fdiv RFP:$src1, (extloadf64f32 addr:$src2)))]>; // ST(0) = ST(0) / [mem32] def FpDIV64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fdiv RFP:$src1, (loadf64 addr:$src2)))]>; // ST(0) = ST(0) / [mem64] def FpDIVR32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fdiv (extloadf64f32 addr:$src2), RFP:$src1))]>; // ST(0) = [mem32] / ST(0) def FpDIVR64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW, [(set RFP:$dst, (fdiv (loadf64 addr:$src2), RFP:$src1))]>; // ST(0) = [mem64] / ST(0) def FADD32m : FPI<0xD8, MRM0m, (ops f32mem:$src), "fadd{s} $src">; def FADD64m : FPI<0xDC, MRM0m, (ops f64mem:$src), "fadd{l} $src">; def FMUL32m : FPI<0xD8, MRM1m, (ops f32mem:$src), "fmul{s} $src">; def FMUL64m : FPI<0xDC, MRM1m, (ops f64mem:$src), "fmul{l} $src">; def FSUB32m : FPI<0xD8, MRM4m, (ops f32mem:$src), "fsub{s} $src">; def FSUB64m : FPI<0xDC, MRM4m, (ops f64mem:$src), "fsub{l} $src">; def FSUBR32m : FPI<0xD8, MRM5m, (ops f32mem:$src), "fsubr{s} $src">; def FSUBR64m : FPI<0xDC, MRM5m, (ops f64mem:$src), "fsubr{l} $src">; def FDIV32m : FPI<0xD8, MRM6m, (ops f32mem:$src), "fdiv{s} $src">; def FDIV64m : FPI<0xDC, MRM6m, (ops f64mem:$src), "fdiv{l} $src">; def FDIVR32m : FPI<0xD8, MRM7m, (ops f32mem:$src), "fdivr{s} $src">; def FDIVR64m : FPI<0xDC, MRM7m, (ops f64mem:$src), "fdivr{l} $src">; // FIXME: Implement these when we have a dag-dag isel! def FpIADD16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fadd RFP:$src1, (sint_to_fp (loadi16 addr:$src2))))]>; // ST(0) = ST(0) + [mem16int] def FpIADD32m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fadd RFP:$src1, (sint_to_fp (loadi32 addr:$src2))))]>; // ST(0) = ST(0) + [mem32int] def FpIMUL16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fmul RFP:$src1, (sint_to_fp (loadi16 addr:$src2))))]>; // ST(0) = ST(0) * [mem16int] def FpIMUL32m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fmul RFP:$src1, (sint_to_fp (loadi32 addr:$src2))))]>; // ST(0) = ST(0) * [mem32int] def FpISUB16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fsub RFP:$src1, (sint_to_fp (loadi16 addr:$src2))))]>; // ST(0) = ST(0) - [mem16int] def FpISUB32m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fsub RFP:$src1, (sint_to_fp (loadi32 addr:$src2))))]>; // ST(0) = ST(0) - [mem32int] def FpISUBR16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fsub (sint_to_fp (loadi16 addr:$src2)), RFP:$src1))]>; // ST(0) = [mem16int] - ST(0) def FpISUBR32m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fsub (sint_to_fp (loadi32 addr:$src2)), RFP:$src1))]>; // ST(0) = [mem32int] - ST(0) def FpIDIV16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fdiv RFP:$src1, (sint_to_fp (loadi16 addr:$src2))))]>; // ST(0) = ST(0) / [mem16int] def FpIDIV32m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fdiv RFP:$src1, (sint_to_fp (loadi32 addr:$src2))))]>; // ST(0) = ST(0) / [mem32int] def FpIDIVR16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fdiv (sint_to_fp (loadi16 addr:$src2)), RFP:$src1))]>; // ST(0) = [mem16int] / ST(0) def FpIDIVR32m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW, [(set RFP:$dst, (fdiv (sint_to_fp (loadi32 addr:$src2)), RFP:$src1))]>; // ST(0) = [mem32int] / ST(0) def FIADD16m : FPI<0xDE, MRM0m, (ops i16mem:$src), "fiadd{s} $src">; def FIADD32m : FPI<0xDA, MRM0m, (ops i32mem:$src), "fiadd{l} $src">; def FIMUL16m : FPI<0xDE, MRM1m, (ops i16mem:$src), "fimul{s} $src">; def FIMUL32m : FPI<0xDA, MRM1m, (ops i32mem:$src), "fimul{l} $src">; def FISUB16m : FPI<0xDE, MRM4m, (ops i16mem:$src), "fisub{s} $src">; def FISUB32m : FPI<0xDA, MRM4m, (ops i32mem:$src), "fisub{l} $src">; def FISUBR16m : FPI<0xDE, MRM5m, (ops i16mem:$src), "fisubr{s} $src">; def FISUBR32m : FPI<0xDA, MRM5m, (ops i32mem:$src), "fisubr{l} $src">; def FIDIV16m : FPI<0xDE, MRM6m, (ops i16mem:$src), "fidiv{s} $src">; def FIDIV32m : FPI<0xDA, MRM6m, (ops i32mem:$src), "fidiv{s} $src">; def FIDIVR16m : FPI<0xDE, MRM7m, (ops i16mem:$src), "fidivr{s} $src">; def FIDIVR32m : FPI<0xDA, MRM7m, (ops i32mem:$src), "fidivr{s} $src">; // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion // of some of the 'reverse' forms of the fsub and fdiv instructions. As such, // we have to put some 'r's in and take them out of weird places. def FADDST0r : FPST0rInst <0xC0, "fadd $op">; def FADDrST0 : FPrST0Inst <0xC0, "fadd {%ST(0), $op|$op, %ST(0)}">; def FADDPrST0 : FPrST0PInst<0xC0, "faddp $op">; def FSUBRST0r : FPST0rInst <0xE8, "fsubr $op">; def FSUBrST0 : FPrST0Inst <0xE8, "fsub{r} {%ST(0), $op|$op, %ST(0)}">; def FSUBPrST0 : FPrST0PInst<0xE8, "fsub{r}p $op">; def FSUBST0r : FPST0rInst <0xE0, "fsub $op">; def FSUBRrST0 : FPrST0Inst <0xE0, "fsub{|r} {%ST(0), $op|$op, %ST(0)}">; def FSUBRPrST0 : FPrST0PInst<0xE0, "fsub{|r}p $op">; def FMULST0r : FPST0rInst <0xC8, "fmul $op">; def FMULrST0 : FPrST0Inst <0xC8, "fmul {%ST(0), $op|$op, %ST(0)}">; def FMULPrST0 : FPrST0PInst<0xC8, "fmulp $op">; def FDIVRST0r : FPST0rInst <0xF8, "fdivr $op">; def FDIVrST0 : FPrST0Inst <0xF8, "fdiv{r} {%ST(0), $op|$op, %ST(0)}">; def FDIVPrST0 : FPrST0PInst<0xF8, "fdiv{r}p $op">; def FDIVST0r : FPST0rInst <0xF0, "fdiv $op">; def FDIVRrST0 : FPrST0Inst <0xF0, "fdiv{|r} {%ST(0), $op|$op, %ST(0)}">; def FDIVRPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p $op">; // Unary operations. def FpCHS : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW, [(set RFP:$dst, (fneg RFP:$src))]>; def FpABS : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW, [(set RFP:$dst, (fabs RFP:$src))]>; def FpSQRT : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW, [(set RFP:$dst, (fsqrt RFP:$src))]>; def FpSIN : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW, [(set RFP:$dst, (fsin RFP:$src))]>; def FpCOS : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW, [(set RFP:$dst, (fcos RFP:$src))]>; def FpTST : FpI<(ops RFP:$src), OneArgFP, []>; def FCHS : FPI<0xE0, RawFrm, (ops), "fchs">, D9; def FABS : FPI<0xE1, RawFrm, (ops), "fabs">, D9; def FSQRT : FPI<0xFA, RawFrm, (ops), "fsqrt">, D9; def FSIN : FPI<0xFE, RawFrm, (ops), "fsin">, D9; def FCOS : FPI<0xFF, RawFrm, (ops), "fcos">, D9; def FTST : FPI<0xE4, RawFrm, (ops), "ftst">, D9; // Floating point cmovs. let isTwoAddress = 1 in { def FpCMOVB : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP, [(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2, X86_COND_B, STATUS))]>; def FpCMOVBE : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP, [(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2, X86_COND_BE, STATUS))]>; def FpCMOVE : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP, [(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2, X86_COND_E, STATUS))]>; def FpCMOVP : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP, [(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2, X86_COND_P, STATUS))]>; def FpCMOVAE : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP, [(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2, X86_COND_AE, STATUS))]>; def FpCMOVA : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP, [(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2, X86_COND_A, STATUS))]>; def FpCMOVNE : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP, [(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2, X86_COND_NE, STATUS))]>; def FpCMOVNP : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP, [(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2, X86_COND_NP, STATUS))]>; } def FCMOVB : FPI<0xC0, AddRegFrm, (ops RST:$op), "fcmovb {$op, %ST(0)|%ST(0), $op}">, DA; def FCMOVBE : FPI<0xD0, AddRegFrm, (ops RST:$op), "fcmovbe {$op, %ST(0)|%ST(0), $op}">, DA; def FCMOVE : FPI<0xC8, AddRegFrm, (ops RST:$op), "fcmove {$op, %ST(0)|%ST(0), $op}">, DA; def FCMOVP : FPI<0xD8, AddRegFrm, (ops RST:$op), "fcmovu {$op, %ST(0)|%ST(0), $op}">, DA; def FCMOVAE : FPI<0xC0, AddRegFrm, (ops RST:$op), "fcmovae {$op, %ST(0)|%ST(0), $op}">, DB; def FCMOVA : FPI<0xD0, AddRegFrm, (ops RST:$op), "fcmova {$op, %ST(0)|%ST(0), $op}">, DB; def FCMOVNE : FPI<0xC8, AddRegFrm, (ops RST:$op), "fcmovne {$op, %ST(0)|%ST(0), $op}">, DB; def FCMOVNP : FPI<0xD8, AddRegFrm, (ops RST:$op), "fcmovnu {$op, %ST(0)|%ST(0), $op}">, DB; // Floating point loads & stores. def FpLD32m : FpI<(ops RFP:$dst, f32mem:$src), ZeroArgFP, [(set RFP:$dst, (extloadf64f32 addr:$src))]>; def FpLD64m : FpI<(ops RFP:$dst, f64mem:$src), ZeroArgFP, [(set RFP:$dst, (loadf64 addr:$src))]>; def FpILD16m : FpI<(ops RFP:$dst, i16mem:$src), ZeroArgFP, [(set RFP:$dst, (sint_to_fp (loadi16 addr:$src)))]>; def FpILD32m : FpI<(ops RFP:$dst, i32mem:$src), ZeroArgFP, [(set RFP:$dst, (sint_to_fp (loadi32 addr:$src)))]>; def FpILD64m : FpI<(ops RFP:$dst, i64mem:$src), ZeroArgFP, [(set RFP:$dst, (X86fild64m addr:$src))]>; def FpST32m : FpI<(ops f32mem:$op, RFP:$src), OneArgFP, [(truncstore RFP:$src, addr:$op, f32)]>; def FpST64m : FpI<(ops f64mem:$op, RFP:$src), OneArgFP, [(store RFP:$src, addr:$op)]>; def FpSTP32m : FpI<(ops f32mem:$op, RFP:$src), OneArgFP, []>; def FpSTP64m : FpI<(ops f64mem:$op, RFP:$src), OneArgFP, []>; def FpIST16m : FpI<(ops i16mem:$op, RFP:$src), OneArgFP, []>; def FpIST32m : FpI<(ops i32mem:$op, RFP:$src), OneArgFP, []>; def FpIST64m : FpI<(ops i64mem:$op, RFP:$src), OneArgFP, []>; def FLD32m : FPI<0xD9, MRM0m, (ops f32mem:$src), "fld{s} $src">; def FLD64m : FPI<0xDD, MRM0m, (ops f64mem:$src), "fld{l} $src">; def FILD16m : FPI<0xDF, MRM0m, (ops i16mem:$src), "fild{s} $src">; def FILD32m : FPI<0xDB, MRM0m, (ops i32mem:$src), "fild{l} $src">; def FILD64m : FPI<0xDF, MRM5m, (ops i64mem:$src), "fild{ll} $src">; def FST32m : FPI<0xD9, MRM2m, (ops f32mem:$dst), "fst{s} $dst">; def FST64m : FPI<0xDD, MRM2m, (ops f64mem:$dst), "fst{l} $dst">; def FSTP32m : FPI<0xD9, MRM3m, (ops f32mem:$dst), "fstp{s} $dst">; def FSTP64m : FPI<0xDD, MRM3m, (ops f64mem:$dst), "fstp{l} $dst">; def FIST16m : FPI<0xDF, MRM2m, (ops i16mem:$dst), "fist{s} $dst">; def FIST32m : FPI<0xDB, MRM2m, (ops i32mem:$dst), "fist{l} $dst">; def FISTP16m : FPI<0xDF, MRM3m, (ops i16mem:$dst), "fistp{s} $dst">; def FISTP32m : FPI<0xDB, MRM3m, (ops i32mem:$dst), "fistp{l} $dst">; def FISTP64m : FPI<0xDF, MRM7m, (ops i64mem:$dst), "fistp{ll} $dst">; // FP Stack manipulation instructions. def FLDrr : FPI<0xC0, AddRegFrm, (ops RST:$op), "fld $op">, D9; def FSTrr : FPI<0xD0, AddRegFrm, (ops RST:$op), "fst $op">, DD; def FSTPrr : FPI<0xD8, AddRegFrm, (ops RST:$op), "fstp $op">, DD; def FXCH : FPI<0xC8, AddRegFrm, (ops RST:$op), "fxch $op">, D9; // Floating point constant loads. def FpLD0 : FpI<(ops RFP:$dst), ZeroArgFP, [(set RFP:$dst, fp64imm0)]>; def FpLD1 : FpI<(ops RFP:$dst), ZeroArgFP, [(set RFP:$dst, fp64imm1)]>; def FLD0 : FPI<0xEE, RawFrm, (ops), "fldz">, D9; def FLD1 : FPI<0xE8, RawFrm, (ops), "fld1">, D9; // Floating point compares. def FpUCOMr : FpI<(ops RFP:$lhs, RFP:$rhs), CompareFP, []>; // FPSW = cmp ST(0) with ST(i) def FpUCOMIr : FpI<(ops RFP:$lhs, RFP:$rhs), CompareFP, [(set STATUS, (X86cmp RFP:$lhs, RFP:$rhs))]>, Imp<[],[STATUS]>; // CC = cmp ST(0) with ST(i) def FUCOMr : FPI<0xE0, AddRegFrm, // FPSW = cmp ST(0) with ST(i) (ops RST:$reg), "fucom $reg">, DD, Imp<[ST0],[]>; def FUCOMPr : FPI<0xE8, AddRegFrm, // FPSW = cmp ST(0) with ST(i), pop (ops RST:$reg), "fucomp $reg">, DD, Imp<[ST0],[]>; def FUCOMPPr : FPI<0xE9, RawFrm, // cmp ST(0) with ST(1), pop, pop (ops), "fucompp">, DA, Imp<[ST0],[]>; def FUCOMIr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i) (ops RST:$reg), "fucomi {$reg, %ST(0)|%ST(0), $reg}">, DB, Imp<[ST0],[]>; def FUCOMIPr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i), pop (ops RST:$reg), "fucomip {$reg, %ST(0)|%ST(0), $reg}">, DF, Imp<[ST0],[]>; // Floating point flag ops. def FNSTSW8r : I<0xE0, RawFrm, // AX = fp flags (ops), "fnstsw", []>, DF, Imp<[],[AX]>; def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world (ops i16mem:$dst), "fnstcw $dst", []>; def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] (ops i16mem:$dst), "fldcw $dst", []>; //===----------------------------------------------------------------------===// // Miscellaneous Instructions //===----------------------------------------------------------------------===// def RDTSC : I<0x31, RawFrm, (ops), "rdtsc", [(X86rdtsc)]>, TB, Imp<[],[EAX,EDX]>; //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // Calls def : Pat<(X86call tglobaladdr:$dst), (CALLpcrel32 tglobaladdr:$dst)>; def : Pat<(X86call texternalsym:$dst), (CALLpcrel32 texternalsym:$dst)>; // X86 specific add which produces a flag. def : Pat<(X86addflag R32:$src1, R32:$src2), (ADD32rr R32:$src1, R32:$src2)>; def : Pat<(X86addflag R32:$src1, (load addr:$src2)), (ADD32rm R32:$src1, addr:$src2)>; def : Pat<(X86addflag R32:$src1, imm:$src2), (ADD32ri R32:$src1, imm:$src2)>; def : Pat<(X86addflag R32:$src1, i32immSExt8:$src2), (ADD32ri8 R32:$src1, i32immSExt8:$src2)>; def : Pat<(X86subflag R32:$src1, R32:$src2), (SUB32rr R32:$src1, R32:$src2)>; def : Pat<(X86subflag R32:$src1, (load addr:$src2)), (SUB32rm R32:$src1, addr:$src2)>; def : Pat<(X86subflag R32:$src1, imm:$src2), (SUB32ri R32:$src1, imm:$src2)>; def : Pat<(X86subflag R32:$src1, i32immSExt8:$src2), (SUB32ri8 R32:$src1, i32immSExt8:$src2)>; // {s|z}extload bool -> {s|z}extload byte def : Pat<(sextloadi16i1 addr:$src), (MOVSX16rm8 addr:$src)>; def : Pat<(sextloadi32i1 addr:$src), (MOVSX32rm8 addr:$src)>; def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; // extload bool -> extload byte def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; // anyext -> zext def : Pat<(i16 (anyext R8 :$src)), (MOVZX16rr8 R8 :$src)>; def : Pat<(i32 (anyext R8 :$src)), (MOVZX32rr8 R8 :$src)>; def : Pat<(i32 (anyext R16:$src)), (MOVZX32rr16 R16:$src)>; // Required for RET of f32 / f64 values. def : Pat<(X86fld addr:$src, f32), (FpLD32m addr:$src)>; def : Pat<(X86fld addr:$src, f64), (FpLD64m addr:$src)>; // Required for CALL which return f32 / f64 values. def : Pat<(X86fst RFP:$src, addr:$op, f32), (FpST32m addr:$op, RFP:$src)>; def : Pat<(X86fst RFP:$src, addr:$op, f64), (FpST64m addr:$op, RFP:$src)>; // Floatin point constant -0.0 and -1.0 def : Pat<(f64 fp64immneg0), (FpCHS (FpLD0))>, Requires<[FPStack]>; def : Pat<(f64 fp64immneg1), (FpCHS (FpLD1))>, Requires<[FPStack]>; // RFP undef def : Pat<(f64 (undef)), (FpLD0)>, Requires<[FPStack]>; //===----------------------------------------------------------------------===// // Some peepholes //===----------------------------------------------------------------------===// // (shl x, 1) ==> (add x, x) def : Pat<(shl R8 :$src1, (i8 1)), (ADD8rr R8 :$src1, R8 :$src1)>; def : Pat<(shl R16:$src1, (i8 1)), (ADD16rr R16:$src1, R16:$src1)>; def : Pat<(shl R32:$src1, (i8 1)), (ADD32rr R32:$src1, R32:$src1)>;