//===-- LiveIntervals.cpp - Live Interval Analysis ------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass which is used // by the Linear Scan Register allocator. This pass linearizes the // basic blocks of the function in DFS order and uses the // LiveVariables pass to conservatively compute live intervals for // each virtual and physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "liveintervals" #include "LiveIntervals.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CFG.h" #include "Support/CommandLine.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/STLExtras.h" #include "VirtRegMap.h" #include #include #include using namespace llvm; namespace { RegisterAnalysis X("liveintervals", "Live Interval Analysis"); Statistic<> numIntervals ("liveintervals", "Number of original intervals"); Statistic<> numIntervalsAfter ("liveintervals", "Number of intervals after coalescing"); Statistic<> numJoins ("liveintervals", "Number of interval joins performed"); Statistic<> numPeep ("liveintervals", "Number of identity moves eliminated after coalescing"); Statistic<> numFolded ("liveintervals", "Number of loads/stores folded into instructions"); cl::opt join("join-liveintervals", cl::desc("Join compatible live intervals"), cl::init(true)); }; void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addRequired(); AU.addPreservedID(PHIEliminationID); AU.addRequiredID(PHIEliminationID); AU.addRequiredID(TwoAddressInstructionPassID); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } void LiveIntervals::releaseMemory() { mbbi2mbbMap_.clear(); mi2iMap_.clear(); i2miMap_.clear(); r2iMap_.clear(); r2rMap_.clear(); intervals_.clear(); } /// runOnMachineFunction - Register allocate the whole function /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; tm_ = &fn.getTarget(); mri_ = tm_->getRegisterInfo(); lv_ = &getAnalysis(); // number MachineInstrs unsigned miIndex = 0; for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end(); mbb != mbbEnd; ++mbb) { const std::pair& entry = lv_->getMachineBasicBlockInfo(mbb); bool inserted = mbbi2mbbMap_.insert(std::make_pair(entry.second, entry.first)).second; assert(inserted && "multiple index -> MachineBasicBlock"); for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); mi != miEnd; ++mi) { inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second; assert(inserted && "multiple MachineInstr -> index mappings"); i2miMap_.push_back(mi); miIndex += InstrSlots::NUM; } } computeIntervals(); numIntervals += intervals_.size(); // join intervals if requested if (join) joinIntervals(); numIntervalsAfter += intervals_.size(); // perform a final pass over the instructions and compute spill // weights, coalesce virtual registers and remove identity moves const LoopInfo& loopInfo = getAnalysis(); const TargetInstrInfo& tii = tm_->getInstrInfo(); for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { MachineBasicBlock* mbb = mbbi; unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock()); for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); mii != mie; ) { for (unsigned i = 0; i < mii->getNumOperands(); ++i) { const MachineOperand& mop = mii->getOperand(i); if (mop.isRegister() && mop.getReg()) { // replace register with representative register unsigned reg = rep(mop.getReg()); mii->SetMachineOperandReg(i, reg); if (MRegisterInfo::isVirtualRegister(reg)) { Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg); assert(r2iit != r2iMap_.end()); r2iit->second->weight += pow(10.0F, loopDepth); } } } // if the move is now an identity move delete it unsigned srcReg, dstReg; if (tii.isMoveInstr(*mii, srcReg, dstReg) && srcReg == dstReg) { // remove index -> MachineInstr and // MachineInstr -> index mappings Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii); if (mi2i != mi2iMap_.end()) { i2miMap_[mi2i->second/InstrSlots::NUM] = 0; mi2iMap_.erase(mi2i); } mii = mbbi->erase(mii); ++numPeep; } else ++mii; } } intervals_.sort(StartPointComp()); DEBUG(std::cerr << "********** INTERVALS **********\n"); DEBUG(std::copy(intervals_.begin(), intervals_.end(), std::ostream_iterator(std::cerr, "\n"))); DEBUG(std::cerr << "********** MACHINEINSTRS **********\n"); DEBUG( for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { std::cerr << mbbi->getBasicBlock()->getName() << ":\n"; for (MachineBasicBlock::iterator mii = mbbi->begin(), mie = mbbi->end(); mii != mie; ++mii) { std::cerr << getInstructionIndex(mii) << '\t'; mii->print(std::cerr, *tm_); } }); return true; } void LiveIntervals::updateSpilledInterval(Interval& li, VirtRegMap& vrm, int slot) { assert(li.weight != std::numeric_limits::infinity() && "attempt to spill already spilled interval!"); Interval::Ranges oldRanges; swap(oldRanges, li.ranges); DEBUG(std::cerr << "\t\t\t\tupdating interval: " << li); for (Interval::Ranges::iterator i = oldRanges.begin(), e = oldRanges.end(); i != e; ++i) { unsigned index = getBaseIndex(i->first); unsigned end = getBaseIndex(i->second-1) + InstrSlots::NUM; for (; index < end; index += InstrSlots::NUM) { // skip deleted instructions while (!getInstructionFromIndex(index)) index += InstrSlots::NUM; MachineBasicBlock::iterator mi = getInstructionFromIndex(index); for_operand: for (unsigned i = 0; i < mi->getNumOperands(); ++i) { MachineOperand& mop = mi->getOperand(i); if (mop.isRegister() && mop.getReg() == li.reg) { if (MachineInstr* fmi = mri_->foldMemoryOperand(mi, i, slot)) { lv_->instructionChanged(mi, fmi); vrm.virtFolded(li.reg, mi, fmi); mi2iMap_.erase(mi); i2miMap_[index/InstrSlots::NUM] = fmi; mi2iMap_[fmi] = index; MachineBasicBlock& mbb = *mi->getParent(); mi = mbb.insert(mbb.erase(mi), fmi); ++numFolded; goto for_operand; } else { // This is tricky. We need to add information in // the interval about the spill code so we have to // use our extra load/store slots. // // If we have a use we are going to have a load so // we start the interval from the load slot // onwards. Otherwise we start from the def slot. unsigned start = (mop.isUse() ? getLoadIndex(index) : getDefIndex(index)); // If we have a def we are going to have a store // right after it so we end the interval after the // use of the next instruction. Otherwise we end // after the use of this instruction. unsigned end = 1 + (mop.isDef() ? getUseIndex(index+InstrSlots::NUM) : getUseIndex(index)); li.addRange(start, end); } } } } } // the new spill weight is now infinity as it cannot be spilled again li.weight = std::numeric_limits::infinity(); DEBUG(std::cerr << '\n'); DEBUG(std::cerr << "\t\t\t\tupdated interval: " << li << '\n'); } void LiveIntervals::printRegName(unsigned reg) const { if (MRegisterInfo::isPhysicalRegister(reg)) std::cerr << mri_->getName(reg); else std::cerr << "%reg" << reg; } void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb, MachineBasicBlock::iterator mi, unsigned reg) { DEBUG(std::cerr << "\t\tregister: "; printRegName(reg)); LiveVariables::VarInfo& vi = lv_->getVarInfo(reg); Interval* interval = 0; Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg); if (r2iit == r2iMap_.end() || r2iit->first != reg) { // add new interval intervals_.push_back(Interval(reg)); // update interval index for this register r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end())); interval = &intervals_.back(); // iterate over all of the blocks that the variable is // completely live in, adding them to the live // interval. obviously we only need to do this once. for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) { if (vi.AliveBlocks[i]) { MachineBasicBlock* mbb = lv_->getIndexMachineBasicBlock(i); if (!mbb->empty()) { interval->addRange( getInstructionIndex(&mbb->front()), getInstructionIndex(&mbb->back()) + InstrSlots::NUM); } } } } else { interval = &*r2iit->second; } unsigned baseIndex = getInstructionIndex(mi); bool killedInDefiningBasicBlock = false; for (int i = 0, e = vi.Kills.size(); i != e; ++i) { MachineBasicBlock* killerBlock = vi.Kills[i].first; MachineInstr* killerInstr = vi.Kills[i].second; unsigned start = (mbb == killerBlock ? getDefIndex(baseIndex) : getInstructionIndex(&killerBlock->front())); unsigned end = (killerInstr == mi ? // dead start + 1 : // killed getUseIndex(getInstructionIndex(killerInstr))+1); // we do not want to add invalid ranges. these can happen when // a variable has its latest use and is redefined later on in // the same basic block (common with variables introduced by // PHI elimination) if (start < end) { killedInDefiningBasicBlock |= mbb == killerBlock; interval->addRange(start, end); } } if (!killedInDefiningBasicBlock) { unsigned end = getInstructionIndex(&mbb->back()) + InstrSlots::NUM; interval->addRange(getDefIndex(baseIndex), end); } DEBUG(std::cerr << '\n'); } void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb, MachineBasicBlock::iterator mi, unsigned reg) { DEBUG(std::cerr << "\t\tregister: "; printRegName(reg)); typedef LiveVariables::killed_iterator KillIter; MachineBasicBlock::iterator e = mbb->end(); unsigned baseIndex = getInstructionIndex(mi); unsigned start = getDefIndex(baseIndex); unsigned end = start; // a variable can be dead by the instruction defining it for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi); ki != ke; ++ki) { if (reg == ki->second) { DEBUG(std::cerr << " dead"); end = getDefIndex(start) + 1; goto exit; } } // a variable can only be killed by subsequent instructions do { ++mi; baseIndex += InstrSlots::NUM; for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi); ki != ke; ++ki) { if (reg == ki->second) { DEBUG(std::cerr << " killed"); end = getUseIndex(baseIndex) + 1; goto exit; } } } while (mi != e); exit: assert(start < end && "did not find end of interval?"); Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg); if (r2iit != r2iMap_.end() && r2iit->first == reg) { r2iit->second->addRange(start, end); } else { intervals_.push_back(Interval(reg)); // update interval index for this register r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end())); intervals_.back().addRange(start, end); } DEBUG(std::cerr << '\n'); } void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb, MachineBasicBlock::iterator mi, unsigned reg) { if (MRegisterInfo::isPhysicalRegister(reg)) { if (lv_->getAllocatablePhysicalRegisters()[reg]) { handlePhysicalRegisterDef(mbb, mi, reg); for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as) handlePhysicalRegisterDef(mbb, mi, *as); } } else { handleVirtualRegisterDef(mbb, mi, reg); } } unsigned LiveIntervals::getInstructionIndex(MachineInstr* instr) const { Mi2IndexMap::const_iterator it = mi2iMap_.find(instr); return (it == mi2iMap_.end() ? std::numeric_limits::max() : it->second); } MachineInstr* LiveIntervals::getInstructionFromIndex(unsigned index) const { index /= InstrSlots::NUM; // convert index to vector index assert(index < i2miMap_.size() && "index does not correspond to an instruction"); return i2miMap_[index]; } /// computeIntervals - computes the live intervals for virtual /// registers. for some ordering of the machine instructions [1,N] a /// live interval is an interval [i, j) where 1 <= i <= j < N for /// which a variable is live void LiveIntervals::computeIntervals() { DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n"); DEBUG(std::cerr << "********** Function: " << mf_->getFunction()->getName() << '\n'); for (MbbIndex2MbbMap::iterator it = mbbi2mbbMap_.begin(), itEnd = mbbi2mbbMap_.end(); it != itEnd; ++it) { MachineBasicBlock* mbb = it->second; DEBUG(std::cerr << mbb->getBasicBlock()->getName() << ":\n"); for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); mi != miEnd; ++mi) { const TargetInstrDescriptor& tid = tm_->getInstrInfo().get(mi->getOpcode()); DEBUG(std::cerr << getInstructionIndex(mi) << "\t"; mi->print(std::cerr, *tm_)); // handle implicit defs for (const unsigned* id = tid.ImplicitDefs; *id; ++id) handleRegisterDef(mbb, mi, *id); // handle explicit defs for (int i = mi->getNumOperands() - 1; i >= 0; --i) { MachineOperand& mop = mi->getOperand(i); // handle register defs - build intervals if (mop.isRegister() && mop.getReg() && mop.isDef()) handleRegisterDef(mbb, mi, mop.getReg()); } } } } unsigned LiveIntervals::rep(unsigned reg) { Reg2RegMap::iterator it = r2rMap_.find(reg); if (it != r2rMap_.end()) return it->second = rep(it->second); return reg; } void LiveIntervals::joinIntervals() { DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n"); const TargetInstrInfo& tii = tm_->getInstrInfo(); for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { MachineBasicBlock* mbb = mbbi; DEBUG(std::cerr << mbb->getBasicBlock()->getName() << ":\n"); for (MachineBasicBlock::iterator mi = mbb->begin(), mie = mbb->end(); mi != mie; ++mi) { const TargetInstrDescriptor& tid = tm_->getInstrInfo().get(mi->getOpcode()); DEBUG(std::cerr << getInstructionIndex(mi) << '\t'; mi->print(std::cerr, *tm_);); // we only join virtual registers with allocatable // physical registers since we do not have liveness information // on not allocatable physical registers unsigned regA, regB; if (tii.isMoveInstr(*mi, regA, regB) && (MRegisterInfo::isVirtualRegister(regA) || lv_->getAllocatablePhysicalRegisters()[regA]) && (MRegisterInfo::isVirtualRegister(regB) || lv_->getAllocatablePhysicalRegisters()[regB])) { // get representative registers regA = rep(regA); regB = rep(regB); // if they are already joined we continue if (regA == regB) continue; Reg2IntervalMap::iterator r2iA = r2iMap_.find(regA); assert(r2iA != r2iMap_.end()); Reg2IntervalMap::iterator r2iB = r2iMap_.find(regB); assert(r2iB != r2iMap_.end()); Intervals::iterator intA = r2iA->second; Intervals::iterator intB = r2iB->second; // both A and B are virtual registers if (MRegisterInfo::isVirtualRegister(intA->reg) && MRegisterInfo::isVirtualRegister(intB->reg)) { const TargetRegisterClass *rcA, *rcB; rcA = mf_->getSSARegMap()->getRegClass(intA->reg); rcB = mf_->getSSARegMap()->getRegClass(intB->reg); assert(rcA == rcB && "registers must be of the same class"); // if their intervals do not overlap we join them if (!intB->overlaps(*intA)) { intA->join(*intB); r2iB->second = r2iA->second; r2rMap_.insert(std::make_pair(intB->reg, intA->reg)); intervals_.erase(intB); } } else if (MRegisterInfo::isPhysicalRegister(intA->reg) ^ MRegisterInfo::isPhysicalRegister(intB->reg)) { if (MRegisterInfo::isPhysicalRegister(intB->reg)) { std::swap(regA, regB); std::swap(intA, intB); std::swap(r2iA, r2iB); } assert(MRegisterInfo::isPhysicalRegister(intA->reg) && MRegisterInfo::isVirtualRegister(intB->reg) && "A must be physical and B must be virtual"); if (!intA->overlaps(*intB) && !overlapsAliases(*intA, *intB)) { intA->join(*intB); r2iB->second = r2iA->second; r2rMap_.insert(std::make_pair(intB->reg, intA->reg)); intervals_.erase(intB); } } } } } } bool LiveIntervals::overlapsAliases(const Interval& lhs, const Interval& rhs) const { assert(MRegisterInfo::isPhysicalRegister(lhs.reg) && "first interval must describe a physical register"); for (const unsigned* as = mri_->getAliasSet(lhs.reg); *as; ++as) { Reg2IntervalMap::const_iterator r2i = r2iMap_.find(*as); assert(r2i != r2iMap_.end() && "alias does not have interval?"); if (rhs.overlaps(*r2i->second)) return true; } return false; } LiveIntervals::Interval::Interval(unsigned r) : reg(r), weight((MRegisterInfo::isPhysicalRegister(r) ? std::numeric_limits::infinity() : 0.0F)) { } bool LiveIntervals::Interval::spilled() const { return (weight == std::numeric_limits::infinity() && MRegisterInfo::isVirtualRegister(reg)); } // An example for liveAt(): // // this = [1,4), liveAt(0) will return false. The instruction defining // this spans slots [0,3]. The interval belongs to an spilled // definition of the variable it represents. This is because slot 1 is // used (def slot) and spans up to slot 3 (store slot). // bool LiveIntervals::Interval::liveAt(unsigned index) const { Range dummy(index, index+1); Ranges::const_iterator r = std::upper_bound(ranges.begin(), ranges.end(), dummy); if (r == ranges.begin()) return false; --r; return index >= r->first && index < r->second; } // An example for overlaps(): // // 0: A = ... // 4: B = ... // 8: C = A + B ;; last use of A // // The live intervals should look like: // // A = [3, 11) // B = [7, x) // C = [11, y) // // A->overlaps(C) should return false since we want to be able to join // A and C. bool LiveIntervals::Interval::overlaps(const Interval& other) const { Ranges::const_iterator i = ranges.begin(); Ranges::const_iterator ie = ranges.end(); Ranges::const_iterator j = other.ranges.begin(); Ranges::const_iterator je = other.ranges.end(); if (i->first < j->first) { i = std::upper_bound(i, ie, *j); if (i != ranges.begin()) --i; } else if (j->first < i->first) { j = std::upper_bound(j, je, *i); if (j != other.ranges.begin()) --j; } while (i != ie && j != je) { if (i->first == j->first) { return true; } else { if (i->first > j->first) { swap(i, j); swap(ie, je); } assert(i->first < j->first); if (i->second > j->first) { return true; } else { ++i; } } } return false; } void LiveIntervals::Interval::addRange(unsigned start, unsigned end) { assert(start < end && "Invalid range to add!"); DEBUG(std::cerr << " +[" << start << ',' << end << ")"); //assert(start < end && "invalid range?"); Range range = std::make_pair(start, end); Ranges::iterator it = ranges.insert(std::upper_bound(ranges.begin(), ranges.end(), range), range); it = mergeRangesForward(it); it = mergeRangesBackward(it); } void LiveIntervals::Interval::join(const LiveIntervals::Interval& other) { DEBUG(std::cerr << "\t\tjoining " << *this << " with " << other << '\n'); Ranges::iterator cur = ranges.begin(); for (Ranges::const_iterator i = other.ranges.begin(), e = other.ranges.end(); i != e; ++i) { cur = ranges.insert(std::upper_bound(cur, ranges.end(), *i), *i); cur = mergeRangesForward(cur); cur = mergeRangesBackward(cur); } weight += other.weight; ++numJoins; } LiveIntervals::Interval::Ranges::iterator LiveIntervals::Interval::mergeRangesForward(Ranges::iterator it) { Ranges::iterator n; while ((n = next(it)) != ranges.end()) { if (n->first > it->second) break; it->second = std::max(it->second, n->second); n = ranges.erase(n); } return it; } LiveIntervals::Interval::Ranges::iterator LiveIntervals::Interval::mergeRangesBackward(Ranges::iterator it) { while (it != ranges.begin()) { Ranges::iterator p = prior(it); if (it->first > p->second) break; it->first = std::min(it->first, p->first); it->second = std::max(it->second, p->second); it = ranges.erase(p); } return it; } std::ostream& llvm::operator<<(std::ostream& os, const LiveIntervals::Interval& li) { os << "%reg" << li.reg << ',' << li.weight << " = "; if (li.empty()) return os << "EMPTY"; for (LiveIntervals::Interval::Ranges::const_iterator i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) { os << "[" << i->first << "," << i->second << ")"; } return os; }