//===-- X86AsmPrinter.cpp - Convert X86 LLVM code to Intel assembly -------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to Intel and AT&T format assembly // language. This printer is the output mechanism used by `llc' and `lli // -print-machineinstrs' on X86. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86TargetMachine.h" #include "llvm/Module.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Mangler.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" using namespace llvm; namespace { Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); enum AsmWriterFlavor { att, intel }; cl::opt AsmWriterFlavor("x86-asm-syntax", cl::desc("Choose style of code to emit from X86 backend:"), cl::values( clEnumVal(att, " Emit AT&T-style assembly"), clEnumVal(intel, " Emit Intel-style assembly"), clEnumValEnd), cl::init(att)); struct X86SharedAsmPrinter : public AsmPrinter { X86SharedAsmPrinter(std::ostream &O, TargetMachine &TM) : AsmPrinter(O, TM) { } void printConstantPool(MachineConstantPool *MCP); bool doFinalization(Module &M); }; } static bool isScale(const MachineOperand &MO) { return MO.isImmediate() && (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || MO.getImmedValue() == 4 || MO.getImmedValue() == 8); } static bool isMem(const MachineInstr *MI, unsigned Op) { if (MI->getOperand(Op).isFrameIndex()) return true; if (MI->getOperand(Op).isConstantPoolIndex()) return true; return Op+4 <= MI->getNumOperands() && MI->getOperand(Op ).isRegister() && isScale(MI->getOperand(Op+1)) && MI->getOperand(Op+2).isRegister() && (MI->getOperand(Op+3).isImmediate() || MI->getOperand(Op+3).isGlobalAddress()); } // SwitchSection - Switch to the specified section of the executable if we are // not already in it! // static void SwitchSection(std::ostream &OS, std::string &CurSection, const char *NewSection) { if (CurSection != NewSection) { CurSection = NewSection; if (!CurSection.empty()) OS << "\t" << NewSection << "\n"; } } /// printConstantPool - Print to the current output stream assembly /// representations of the constants in the constant pool MCP. This is /// used to print out constants which have been "spilled to memory" by /// the code generator. /// void X86SharedAsmPrinter::printConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); const TargetData &TD = TM.getTargetData(); if (CP.empty()) return; for (unsigned i = 0, e = CP.size(); i != e; ++i) { O << "\t.section .rodata\n"; emitAlignment(TD.getTypeAlignmentShift(CP[i]->getType())); O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t" << CommentString << *CP[i] << "\n"; emitGlobalConstant(CP[i]); } } bool X86SharedAsmPrinter::doFinalization(Module &M) { const TargetData &TD = TM.getTargetData(); std::string CurSection; // Print out module-level global variables here. for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) if (I->hasInitializer()) { // External global require no code O << "\n\n"; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD.getTypeSize(C->getType()); unsigned Align = TD.getTypeAlignmentShift(C->getType()); if (C->isNullValue() && (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || I->hasWeakLinkage() /* FIXME: Verify correct */)) { SwitchSection(O, CurSection, ".data"); if (I->hasInternalLinkage()) O << "\t.local " << name << "\n"; O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()) << "," << (1 << Align); O << "\t\t# "; WriteAsOperand(O, I, true, true, &M); O << "\n"; } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. // Nonnull linkonce -> weak O << "\t.weak " << name << "\n"; SwitchSection(O, CurSection, ""); O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << "\n"; // FALL THROUGH case GlobalValue::InternalLinkage: if (C->isNullValue()) SwitchSection(O, CurSection, ".bss"); else SwitchSection(O, CurSection, ".data"); break; } emitAlignment(Align); O << "\t.type " << name << ",@object\n"; O << "\t.size " << name << "," << Size << "\n"; O << name << ":\t\t\t\t# "; WriteAsOperand(O, I, true, true, &M); O << " = "; WriteAsOperand(O, C, false, false, &M); O << "\n"; emitGlobalConstant(C); } } AsmPrinter::doFinalization(M); return false; // success } namespace { struct X86IntelAsmPrinter : public X86SharedAsmPrinter { X86IntelAsmPrinter(std::ostream &O, TargetMachine &TM) : X86SharedAsmPrinter(O, TM) { } virtual const char *getPassName() const { return "X86 Intel-Style Assembly Printer"; } /// printInstruction - This method is automatically generated by tablegen /// from the instruction set description. This method returns true if the /// machine instruction was sufficiently described to print it, otherwise it /// returns false. bool printInstruction(const MachineInstr *MI); // This method is used by the tablegen'erated instruction printer. void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT){ const MachineOperand &MO = MI->getOperand(OpNo); if (MO.getType() == MachineOperand::MO_MachineRegister) { assert(MRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physref??"); // Bug Workaround: See note in Printer::doInitialization about %. O << "%" << TM.getRegisterInfo()->get(MO.getReg()).Name; } else { printOp(MO); } } void printCallOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT) { printOp(MI->getOperand(OpNo), true); // Don't print "OFFSET". } void printMemoryOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT) { switch (VT) { default: assert(0 && "Unknown arg size!"); case MVT::i8: O << "BYTE PTR "; break; case MVT::i16: O << "WORD PTR "; break; case MVT::i32: case MVT::f32: O << "DWORD PTR "; break; case MVT::i64: case MVT::f64: O << "QWORD PTR "; break; case MVT::f80: O << "XWORD PTR "; break; } printMemReference(MI, OpNo); } void printMachineInstruction(const MachineInstr *MI); void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false); void printMemReference(const MachineInstr *MI, unsigned Op); bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); }; } // end of anonymous namespace // Include the auto-generated portion of the assembly writer. #include "X86GenIntelAsmWriter.inc" /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool X86IntelAsmPrinter::runOnMachineFunction(MachineFunction &MF) { setupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function printConstantPool(MF.getConstantPool()); // Print out labels for the function. O << "\t.text\n"; emitAlignment(4); O << "\t.globl\t" << CurrentFnName << "\n"; O << "\t.type\t" << CurrentFnName << ", @function\n"; O << CurrentFnName << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block if there are any predecessors. if (I->pred_begin() != I->pred_end()) O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t" << CommentString << " " << I->getBasicBlock()->getName() << "\n"; for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } // We didn't modify anything. return false; } void X86IntelAsmPrinter::printOp(const MachineOperand &MO, bool elideOffsetKeyword /* = false */) { const MRegisterInfo &RI = *TM.getRegisterInfo(); switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: if (Value *V = MO.getVRegValueOrNull()) { O << "<" << V->getName() << ">"; return; } // FALLTHROUGH case MachineOperand::MO_MachineRegister: if (MRegisterInfo::isPhysicalRegister(MO.getReg())) // Bug Workaround: See note in Printer::doInitialization about %. O << "%" << RI.get(MO.getReg()).Name; else O << "%reg" << MO.getReg(); return; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: O << (int)MO.getImmedValue(); return; case MachineOperand::MO_MachineBasicBlock: { MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction()) << "_" << MBBOp->getNumber () << "\t# " << MBBOp->getBasicBlock ()->getName (); return; } case MachineOperand::MO_PCRelativeDisp: std::cerr << "Shouldn't use addPCDisp() when building X86 MachineInstrs"; abort (); return; case MachineOperand::MO_GlobalAddress: { if (!elideOffsetKeyword) O << "OFFSET "; O << Mang->getValueName(MO.getGlobal()); int Offset = MO.getOffset(); if (Offset > 0) O << " + " << Offset; else if (Offset < 0) O << " - " << -Offset; return; } case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); return; default: O << ""; return; } } void X86IntelAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op){ assert(isMem(MI, Op) && "Invalid memory reference!"); const MachineOperand &BaseReg = MI->getOperand(Op); int ScaleVal = MI->getOperand(Op+1).getImmedValue(); const MachineOperand &IndexReg = MI->getOperand(Op+2); const MachineOperand &DispSpec = MI->getOperand(Op+3); if (BaseReg.isFrameIndex()) { O << "[frame slot #" << BaseReg.getFrameIndex(); if (DispSpec.getImmedValue()) O << " + " << DispSpec.getImmedValue(); O << "]"; return; } else if (BaseReg.isConstantPoolIndex()) { O << "[.CPI" << CurrentFnName << "_" << BaseReg.getConstantPoolIndex(); if (IndexReg.getReg()) { O << " + "; if (ScaleVal != 1) O << ScaleVal << "*"; printOp(IndexReg); } if (DispSpec.getImmedValue()) O << " + " << DispSpec.getImmedValue(); O << "]"; return; } O << "["; bool NeedPlus = false; if (BaseReg.getReg()) { printOp(BaseReg, true); NeedPlus = true; } if (IndexReg.getReg()) { if (NeedPlus) O << " + "; if (ScaleVal != 1) O << ScaleVal << "*"; printOp(IndexReg); NeedPlus = true; } if (DispSpec.isGlobalAddress()) { if (NeedPlus) O << " + "; printOp(DispSpec, true); } else { int DispVal = DispSpec.getImmedValue(); if (DispVal) { if (NeedPlus) if (DispVal > 0) O << " + "; else { O << " - "; DispVal = -DispVal; } O << DispVal; } } O << "]"; } /// printMachineInstruction -- Print out a single X86 LLVM instruction /// MI in Intel syntax to the current output stream. /// void X86IntelAsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; // Call the autogenerated instruction printer routines. printInstruction(MI); } bool X86IntelAsmPrinter::doInitialization(Module &M) { AsmPrinter::doInitialization(M); // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly. // // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an // instruction as a reference to the register named sp, and if you try to // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased // before being looked up in the symbol table. This creates spurious // `undefined symbol' errors when linking. Workaround: Do not use `noprefix' // mode, and decorate all register names with percent signs. O << "\t.intel_syntax\n"; return false; } namespace { struct X86ATTAsmPrinter : public X86SharedAsmPrinter { X86ATTAsmPrinter(std::ostream &O, TargetMachine &TM) : X86SharedAsmPrinter(O, TM) { } virtual const char *getPassName() const { return "X86 AT&T-Style Assembly Printer"; } /// printInstruction - This method is automatically generated by tablegen /// from the instruction set description. This method returns true if the /// machine instruction was sufficiently described to print it, otherwise it /// returns false. bool printInstruction(const MachineInstr *MI); // This method is used by the tablegen'erated instruction printer. void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT){ printOp(MI->getOperand(OpNo)); } void printCallOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT) { printOp(MI->getOperand(OpNo), true); // Don't print '$' prefix. } void printMemoryOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT) { printMemReference(MI, OpNo); } void printMachineInstruction(const MachineInstr *MI); void printOp(const MachineOperand &MO, bool isCallOperand = false); void printMemReference(const MachineInstr *MI, unsigned Op); bool runOnMachineFunction(MachineFunction &F); }; } // end of anonymous namespace // Include the auto-generated portion of the assembly writer. #include "X86GenATTAsmWriter.inc" /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool X86ATTAsmPrinter::runOnMachineFunction(MachineFunction &MF) { setupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function printConstantPool(MF.getConstantPool()); // Print out labels for the function. O << "\t.text\n"; emitAlignment(4); O << "\t.globl\t" << CurrentFnName << "\n"; O << "\t.type\t" << CurrentFnName << ", @function\n"; O << CurrentFnName << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I->pred_begin() != I->pred_end()) O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t" << CommentString << " " << I->getBasicBlock()->getName() << "\n"; for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } // We didn't modify anything. return false; } void X86ATTAsmPrinter::printOp(const MachineOperand &MO, bool isCallOp) { const MRegisterInfo &RI = *TM.getRegisterInfo(); switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: case MachineOperand::MO_MachineRegister: assert(MRegisterInfo::isPhysicalRegister(MO.getReg()) && "Virtual registers should not make it this far!"); O << '%'; for (const char *Name = RI.get(MO.getReg()).Name; *Name; ++Name) O << (char)tolower(*Name); return; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: O << '$' << (int)MO.getImmedValue(); return; case MachineOperand::MO_MachineBasicBlock: { MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction()) << "_" << MBBOp->getNumber () << "\t# " << MBBOp->getBasicBlock ()->getName (); return; } case MachineOperand::MO_PCRelativeDisp: std::cerr << "Shouldn't use addPCDisp() when building X86 MachineInstrs"; abort (); return; case MachineOperand::MO_GlobalAddress: { if (!isCallOp) O << '$'; O << Mang->getValueName(MO.getGlobal()); int Offset = MO.getOffset(); if (Offset > 0) O << "+" << Offset; else if (Offset < 0) O << Offset; return; } case MachineOperand::MO_ExternalSymbol: if (!isCallOp) O << '$'; O << MO.getSymbolName(); return; default: O << ""; return; } } void X86ATTAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op){ assert(isMem(MI, Op) && "Invalid memory reference!"); const MachineOperand &BaseReg = MI->getOperand(Op); int ScaleVal = MI->getOperand(Op+1).getImmedValue(); const MachineOperand &IndexReg = MI->getOperand(Op+2); const MachineOperand &DispSpec = MI->getOperand(Op+3); if (BaseReg.isFrameIndex()) { O << "[frame slot #" << BaseReg.getFrameIndex(); if (DispSpec.getImmedValue()) O << " + " << DispSpec.getImmedValue(); O << "]"; return; } else if (BaseReg.isConstantPoolIndex()) { O << ".CPI" << CurrentFnName << "_" << BaseReg.getConstantPoolIndex(); if (DispSpec.getImmedValue()) O << "+" << DispSpec.getImmedValue(); if (IndexReg.getReg()) { O << "(,"; printOp(IndexReg); if (ScaleVal != 1) O << "," << ScaleVal; O << ")"; } return; } if (DispSpec.isGlobalAddress()) { printOp(DispSpec, true); } else { int DispVal = DispSpec.getImmedValue(); if (DispVal) O << DispVal; } if (IndexReg.getReg() || BaseReg.getReg()) { O << "("; if (BaseReg.getReg()) printOp(BaseReg); if (IndexReg.getReg()) { O << ","; printOp(IndexReg); if (ScaleVal != 1) O << "," << ScaleVal; } O << ")"; } } /// printMachineInstruction -- Print out a single X86 LLVM instruction /// MI in Intel syntax to the current output stream. /// void X86ATTAsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; // Call the autogenerated instruction printer routines. printInstruction(MI); } /// createX86CodePrinterPass - Returns a pass that prints the X86 assembly code /// for a MachineFunction to the given output stream, using the given target /// machine description. /// FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){ switch (AsmWriterFlavor) { default: assert(0 && "Unknown asm flavor!"); case intel: return new X86IntelAsmPrinter(o, tm); case att: return new X86ATTAsmPrinter(o, tm); } }