//===-- ConstantsContext.h - Constants-related Context Interals -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines various helper methods and classes used by // LLVMContextImpl for creating and managing constants. // //===----------------------------------------------------------------------===// #ifndef LLVM_CONSTANTSCONTEXT_H #define LLVM_CONSTANTSCONTEXT_H #include "llvm/Instructions.h" #include "llvm/Operator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/System/Mutex.h" #include "llvm/System/RWMutex.h" #include namespace llvm { template struct ConstantTraits; /// UnaryConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement unary constant exprs. class UnaryConstantExpr : public ConstantExpr { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) : ConstantExpr(Ty, Opcode, &Op<0>(), 1) { Op<0>() = C; } DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// BinaryConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement binary constant exprs. class BinaryConstantExpr : public ConstantExpr { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags) : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { Op<0>() = C1; Op<1>() = C2; SubclassOptionalData = Flags; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// SelectConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement select constant exprs. class SelectConstantExpr : public ConstantExpr { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: // allocate space for exactly three operands void *operator new(size_t s) { return User::operator new(s, 3); } SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) { Op<0>() = C1; Op<1>() = C2; Op<2>() = C3; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// ExtractElementConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// extractelement constant exprs. class ExtractElementConstantExpr : public ConstantExpr { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } ExtractElementConstantExpr(Constant *C1, Constant *C2) : ConstantExpr(cast(C1->getType())->getElementType(), Instruction::ExtractElement, &Op<0>(), 2) { Op<0>() = C1; Op<1>() = C2; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// InsertElementConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// insertelement constant exprs. class InsertElementConstantExpr : public ConstantExpr { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: // allocate space for exactly three operands void *operator new(size_t s) { return User::operator new(s, 3); } InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) : ConstantExpr(C1->getType(), Instruction::InsertElement, &Op<0>(), 3) { Op<0>() = C1; Op<1>() = C2; Op<2>() = C3; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// ShuffleVectorConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// shufflevector constant exprs. class ShuffleVectorConstantExpr : public ConstantExpr { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: // allocate space for exactly three operands void *operator new(size_t s) { return User::operator new(s, 3); } ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) : ConstantExpr(VectorType::get( cast(C1->getType())->getElementType(), cast(C3->getType())->getNumElements()), Instruction::ShuffleVector, &Op<0>(), 3) { Op<0>() = C1; Op<1>() = C2; Op<2>() = C3; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// ExtractValueConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// extractvalue constant exprs. class ExtractValueConstantExpr : public ConstantExpr { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } ExtractValueConstantExpr(Constant *Agg, const SmallVector &IdxList, const Type *DestTy) : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1), Indices(IdxList) { Op<0>() = Agg; } /// Indices - These identify which value to extract. const SmallVector Indices; /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// InsertValueConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// insertvalue constant exprs. class InsertValueConstantExpr : public ConstantExpr { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 2); } InsertValueConstantExpr(Constant *Agg, Constant *Val, const SmallVector &IdxList, const Type *DestTy) : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2), Indices(IdxList) { Op<0>() = Agg; Op<1>() = Val; } /// Indices - These identify the position for the insertion. const SmallVector Indices; /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is /// used behind the scenes to implement getelementpr constant exprs. class GetElementPtrConstantExpr : public ConstantExpr { GetElementPtrConstantExpr(Constant *C, const std::vector &IdxList, const Type *DestTy); public: static GetElementPtrConstantExpr *Create(Constant *C, const std::vector&IdxList, const Type *DestTy, unsigned Flags) { GetElementPtrConstantExpr *Result = new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy); Result->SubclassOptionalData = Flags; return Result; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; // CompareConstantExpr - This class is private to Constants.cpp, and is used // behind the scenes to implement ICmp and FCmp constant expressions. This is // needed in order to store the predicate value for these instructions. struct CompareConstantExpr : public ConstantExpr { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } unsigned short predicate; CompareConstantExpr(const Type *ty, Instruction::OtherOps opc, unsigned short pred, Constant* LHS, Constant* RHS) : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) { Op<0>() = LHS; Op<1>() = RHS; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; template <> struct OperandTraits : public FixedNumOperandTraits<1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) template <> struct OperandTraits : public FixedNumOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) template <> struct OperandTraits : public FixedNumOperandTraits<3> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) template <> struct OperandTraits : public FixedNumOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) template <> struct OperandTraits : public FixedNumOperandTraits<3> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) template <> struct OperandTraits : public FixedNumOperandTraits<3> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) template <> struct OperandTraits : public FixedNumOperandTraits<1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) template <> struct OperandTraits : public FixedNumOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) template <> struct OperandTraits : public VariadicOperandTraits<1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) template <> struct OperandTraits : public FixedNumOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) struct ExprMapKeyType { typedef SmallVector IndexList; ExprMapKeyType(unsigned opc, const std::vector &ops, unsigned short flags = 0, unsigned short optionalflags = 0, const IndexList &inds = IndexList()) : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags), operands(ops), indices(inds) {} uint8_t opcode; uint8_t subclassoptionaldata; uint16_t subclassdata; std::vector operands; IndexList indices; bool operator==(const ExprMapKeyType& that) const { return this->opcode == that.opcode && this->subclassdata == that.subclassdata && this->subclassoptionaldata == that.subclassoptionaldata && this->operands == that.operands && this->indices == that.indices; } bool operator<(const ExprMapKeyType & that) const { if (this->opcode != that.opcode) return this->opcode < that.opcode; if (this->operands != that.operands) return this->operands < that.operands; if (this->subclassdata != that.subclassdata) return this->subclassdata < that.subclassdata; if (this->subclassoptionaldata != that.subclassoptionaldata) return this->subclassoptionaldata < that.subclassoptionaldata; if (this->indices != that.indices) return this->indices < that.indices; return false; } bool operator!=(const ExprMapKeyType& that) const { return !(*this == that); } }; // The number of operands for each ConstantCreator::create method is // determined by the ConstantTraits template. // ConstantCreator - A class that is used to create constants by // ValueMap*. This class should be partially specialized if there is // something strange that needs to be done to interface to the ctor for the // constant. // template struct ConstantTraits< std::vector > { static unsigned uses(const std::vector& v) { return v.size(); } }; template struct ConstantCreator { static ConstantClass *create(const TypeClass *Ty, const ValType &V) { return new(ConstantTraits::uses(V)) ConstantClass(Ty, V); } }; template struct ConvertConstantType { static void convert(ConstantClass *OldC, const TypeClass *NewTy) { llvm_unreachable("This type cannot be converted!"); } }; template<> struct ConstantCreator { static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, unsigned short pred = 0) { if (Instruction::isCast(V.opcode)) return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); if ((V.opcode >= Instruction::BinaryOpsBegin && V.opcode < Instruction::BinaryOpsEnd)) return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1], V.subclassoptionaldata); if (V.opcode == Instruction::Select) return new SelectConstantExpr(V.operands[0], V.operands[1], V.operands[2]); if (V.opcode == Instruction::ExtractElement) return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); if (V.opcode == Instruction::InsertElement) return new InsertElementConstantExpr(V.operands[0], V.operands[1], V.operands[2]); if (V.opcode == Instruction::ShuffleVector) return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], V.operands[2]); if (V.opcode == Instruction::InsertValue) return new InsertValueConstantExpr(V.operands[0], V.operands[1], V.indices, Ty); if (V.opcode == Instruction::ExtractValue) return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); if (V.opcode == Instruction::GetElementPtr) { std::vector IdxList(V.operands.begin()+1, V.operands.end()); return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty, V.subclassoptionaldata); } // The compare instructions are weird. We have to encode the predicate // value and it is combined with the instruction opcode by multiplying // the opcode by one hundred. We must decode this to get the predicate. if (V.opcode == Instruction::ICmp) return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata, V.operands[0], V.operands[1]); if (V.opcode == Instruction::FCmp) return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata, V.operands[0], V.operands[1]); llvm_unreachable("Invalid ConstantExpr!"); return 0; } }; template<> struct ConvertConstantType { static void convert(ConstantExpr *OldC, const Type *NewTy) { Constant *New; switch (OldC->getOpcode()) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), NewTy); break; case Instruction::Select: New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), OldC->getOperand(1), OldC->getOperand(2)); break; default: assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && OldC->getOpcode() < Instruction::BinaryOpsEnd); New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), OldC->getOperand(1)); break; case Instruction::GetElementPtr: // Make everyone now use a constant of the new type... std::vector Idx(OldC->op_begin()+1, OldC->op_end()); New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), &Idx[0], Idx.size()); break; } assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; // ConstantAggregateZero does not take extra "value" argument... template struct ConstantCreator { static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ return new ConstantAggregateZero(Ty); } }; template<> struct ConvertConstantType { static void convert(ConstantVector *OldC, const VectorType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); Constant *New = ConstantVector::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; template<> struct ConvertConstantType { static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { // Make everyone now use a constant of the new type... Constant *New = ConstantAggregateZero::get(NewTy); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; template<> struct ConvertConstantType { static void convert(ConstantArray *OldC, const ArrayType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); Constant *New = ConstantArray::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; template<> struct ConvertConstantType { static void convert(ConstantStruct *OldC, const StructType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); Constant *New = ConstantStruct::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; // ConstantPointerNull does not take extra "value" argument... template struct ConstantCreator { static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ return new ConstantPointerNull(Ty); } }; template<> struct ConvertConstantType { static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) { // Make everyone now use a constant of the new type... Constant *New = ConstantPointerNull::get(NewTy); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; // UndefValue does not take extra "value" argument... template struct ConstantCreator { static UndefValue *create(const Type *Ty, const ValType &V) { return new UndefValue(Ty); } }; template<> struct ConvertConstantType { static void convert(UndefValue *OldC, const Type *NewTy) { // Make everyone now use a constant of the new type. Constant *New = UndefValue::get(NewTy); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; template class ValueMap : public AbstractTypeUser { public: typedef std::pair MapKey; typedef std::map MapTy; typedef std::map InverseMapTy; typedef std::map AbstractTypeMapTy; private: /// Map - This is the main map from the element descriptor to the Constants. /// This is the primary way we avoid creating two of the same shape /// constant. MapTy Map; /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping /// from the constants to their element in Map. This is important for /// removal of constants from the array, which would otherwise have to scan /// through the map with very large keys. InverseMapTy InverseMap; /// AbstractTypeMap - Map for abstract type constants. /// AbstractTypeMapTy AbstractTypeMap; /// ValueMapLock - Mutex for this map. sys::SmartMutex ValueMapLock; public: // NOTE: This function is not locked. It is the caller's responsibility // to enforce proper synchronization. typename MapTy::iterator map_begin() { return Map.begin(); } typename MapTy::iterator map_end() { return Map.end(); } void freeConstants() { for (typename MapTy::iterator I=Map.begin(), E=Map.end(); I != E; ++I) { if (I->second->use_empty()) delete I->second; } } /// InsertOrGetItem - Return an iterator for the specified element. /// If the element exists in the map, the returned iterator points to the /// entry and Exists=true. If not, the iterator points to the newly /// inserted entry and returns Exists=false. Newly inserted entries have /// I->second == 0, and should be filled in. /// NOTE: This function is not locked. It is the caller's responsibility // to enforce proper synchronization. typename MapTy::iterator InsertOrGetItem(std::pair &InsertVal, bool &Exists) { std::pair IP = Map.insert(InsertVal); Exists = !IP.second; return IP.first; } private: typename MapTy::iterator FindExistingElement(ConstantClass *CP) { if (HasLargeKey) { typename InverseMapTy::iterator IMI = InverseMap.find(CP); assert(IMI != InverseMap.end() && IMI->second != Map.end() && IMI->second->second == CP && "InverseMap corrupt!"); return IMI->second; } typename MapTy::iterator I = Map.find(MapKey(static_cast(CP->getRawType()), getValType(CP))); if (I == Map.end() || I->second != CP) { // FIXME: This should not use a linear scan. If this gets to be a // performance problem, someone should look at this. for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) /* empty */; } return I; } ConstantClass* Create(const TypeClass *Ty, const ValType &V, typename MapTy::iterator I) { ConstantClass* Result = ConstantCreator::create(Ty, V); assert(Result->getType() == Ty && "Type specified is not correct!"); I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); if (HasLargeKey) // Remember the reverse mapping if needed. InverseMap.insert(std::make_pair(Result, I)); // If the type of the constant is abstract, make sure that an entry // exists for it in the AbstractTypeMap. if (Ty->isAbstract()) { typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(Ty); if (TI == AbstractTypeMap.end()) { // Add ourselves to the ATU list of the type. cast(Ty)->addAbstractTypeUser(this); AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); } } return Result; } public: /// getOrCreate - Return the specified constant from the map, creating it if /// necessary. ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { sys::SmartScopedLock Lock(ValueMapLock); MapKey Lookup(Ty, V); ConstantClass* Result = 0; typename MapTy::iterator I = Map.find(Lookup); // Is it in the map? if (I != Map.end()) Result = static_cast(I->second); if (!Result) { // If no preexisting value, create one now... Result = Create(Ty, V, I); } return Result; } void remove(ConstantClass *CP) { sys::SmartScopedLock Lock(ValueMapLock); typename MapTy::iterator I = FindExistingElement(CP); assert(I != Map.end() && "Constant not found in constant table!"); assert(I->second == CP && "Didn't find correct element?"); if (HasLargeKey) // Remember the reverse mapping if needed. InverseMap.erase(CP); // Now that we found the entry, make sure this isn't the entry that // the AbstractTypeMap points to. const TypeClass *Ty = static_cast(I->first.first); if (Ty->isAbstract()) { assert(AbstractTypeMap.count(Ty) && "Abstract type not in AbstractTypeMap?"); typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; if (ATMEntryIt == I) { // Yes, we are removing the representative entry for this type. // See if there are any other entries of the same type. typename MapTy::iterator TmpIt = ATMEntryIt; // First check the entry before this one... if (TmpIt != Map.begin()) { --TmpIt; if (TmpIt->first.first != Ty) // Not the same type, move back... ++TmpIt; } // If we didn't find the same type, try to move forward... if (TmpIt == ATMEntryIt) { ++TmpIt; if (TmpIt == Map.end() || TmpIt->first.first != Ty) --TmpIt; // No entry afterwards with the same type } // If there is another entry in the map of the same abstract type, // update the AbstractTypeMap entry now. if (TmpIt != ATMEntryIt) { ATMEntryIt = TmpIt; } else { // Otherwise, we are removing the last instance of this type // from the table. Remove from the ATM, and from user list. cast(Ty)->removeAbstractTypeUser(this); AbstractTypeMap.erase(Ty); } } } Map.erase(I); } /// MoveConstantToNewSlot - If we are about to change C to be the element /// specified by I, update our internal data structures to reflect this /// fact. /// NOTE: This function is not locked. It is the responsibility of the /// caller to enforce proper synchronization if using this method. void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { // First, remove the old location of the specified constant in the map. typename MapTy::iterator OldI = FindExistingElement(C); assert(OldI != Map.end() && "Constant not found in constant table!"); assert(OldI->second == C && "Didn't find correct element?"); // If this constant is the representative element for its abstract type, // update the AbstractTypeMap so that the representative element is I. if (C->getType()->isAbstract()) { typename AbstractTypeMapTy::iterator ATI = AbstractTypeMap.find(C->getType()); assert(ATI != AbstractTypeMap.end() && "Abstract type not in AbstractTypeMap?"); if (ATI->second == OldI) ATI->second = I; } // Remove the old entry from the map. Map.erase(OldI); // Update the inverse map so that we know that this constant is now // located at descriptor I. if (HasLargeKey) { assert(I->second == C && "Bad inversemap entry!"); InverseMap[C] = I; } } void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { sys::SmartScopedLock Lock(ValueMapLock); typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(cast(OldTy)); assert(I != AbstractTypeMap.end() && "Abstract type not in AbstractTypeMap?"); // Convert a constant at a time until the last one is gone. The last one // leaving will remove() itself, causing the AbstractTypeMapEntry to be // eliminated eventually. do { ConvertConstantType::convert( static_cast(I->second->second), cast(NewTy)); I = AbstractTypeMap.find(cast(OldTy)); } while (I != AbstractTypeMap.end()); } // If the type became concrete without being refined to any other existing // type, we just remove ourselves from the ATU list. void typeBecameConcrete(const DerivedType *AbsTy) { AbsTy->removeAbstractTypeUser(this); } void dump() const { DEBUG(errs() << "Constant.cpp: ValueMap\n"); } }; } #endif