//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// @file /// This file contains the declarations for the subclasses of Constant, /// which represent the different flavors of constant values that live in LLVM. /// Note that Constants are immutable (once created they never change) and are /// fully shared by structural equivalence. This means that two structurally /// equivalent constants will always have the same address. Constant's are /// created on demand as needed and never deleted: thus clients don't have to /// worry about the lifetime of the objects. // //===----------------------------------------------------------------------===// #ifndef LLVM_CONSTANTS_H #define LLVM_CONSTANTS_H #include "llvm/Constant.h" #include "llvm/OperandTraits.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/ArrayRef.h" namespace llvm { class ArrayType; class IntegerType; class StructType; class PointerType; class VectorType; class SequentialType; template struct ConstantCreator; template struct ConvertConstantType; //===----------------------------------------------------------------------===// /// This is the shared class of boolean and integer constants. This class /// represents both boolean and integral constants. /// @brief Class for constant integers. class ConstantInt : public Constant { virtual void anchor(); void *operator new(size_t, unsigned); // DO NOT IMPLEMENT ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT ConstantInt(IntegerType *Ty, const APInt& V); APInt Val; protected: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } public: static ConstantInt *getTrue(LLVMContext &Context); static ConstantInt *getFalse(LLVMContext &Context); static Constant *getTrue(Type *Ty); static Constant *getFalse(Type *Ty); /// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantInt for the given value. static Constant *get(Type *Ty, uint64_t V, bool isSigned = false); /// Return a ConstantInt with the specified integer value for the specified /// type. If the type is wider than 64 bits, the value will be zero-extended /// to fit the type, unless isSigned is true, in which case the value will /// be interpreted as a 64-bit signed integer and sign-extended to fit /// the type. /// @brief Get a ConstantInt for a specific value. static ConstantInt *get(IntegerType *Ty, uint64_t V, bool isSigned = false); /// Return a ConstantInt with the specified value for the specified type. The /// value V will be canonicalized to a an unsigned APInt. Accessing it with /// either getSExtValue() or getZExtValue() will yield a correctly sized and /// signed value for the type Ty. /// @brief Get a ConstantInt for a specific signed value. static ConstantInt *getSigned(IntegerType *Ty, int64_t V); static Constant *getSigned(Type *Ty, int64_t V); /// Return a ConstantInt with the specified value and an implied Type. The /// type is the integer type that corresponds to the bit width of the value. static ConstantInt *get(LLVMContext &Context, const APInt &V); /// Return a ConstantInt constructed from the string strStart with the given /// radix. static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t radix); /// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantInt for the given value. static Constant *get(Type* Ty, const APInt& V); /// Return the constant as an APInt value reference. This allows clients to /// obtain a copy of the value, with all its precision in tact. /// @brief Return the constant's value. inline const APInt &getValue() const { return Val; } /// getBitWidth - Return the bitwidth of this constant. unsigned getBitWidth() const { return Val.getBitWidth(); } /// Return the constant as a 64-bit unsigned integer value after it /// has been zero extended as appropriate for the type of this constant. Note /// that this method can assert if the value does not fit in 64 bits. /// @deprecated /// @brief Return the zero extended value. inline uint64_t getZExtValue() const { return Val.getZExtValue(); } /// Return the constant as a 64-bit integer value after it has been sign /// extended as appropriate for the type of this constant. Note that /// this method can assert if the value does not fit in 64 bits. /// @deprecated /// @brief Return the sign extended value. inline int64_t getSExtValue() const { return Val.getSExtValue(); } /// A helper method that can be used to determine if the constant contained /// within is equal to a constant. This only works for very small values, /// because this is all that can be represented with all types. /// @brief Determine if this constant's value is same as an unsigned char. bool equalsInt(uint64_t V) const { return Val == V; } /// getType - Specialize the getType() method to always return an IntegerType, /// which reduces the amount of casting needed in parts of the compiler. /// inline IntegerType *getType() const { return reinterpret_cast(Value::getType()); } /// This static method returns true if the type Ty is big enough to /// represent the value V. This can be used to avoid having the get method /// assert when V is larger than Ty can represent. Note that there are two /// versions of this method, one for unsigned and one for signed integers. /// Although ConstantInt canonicalizes everything to an unsigned integer, /// the signed version avoids callers having to convert a signed quantity /// to the appropriate unsigned type before calling the method. /// @returns true if V is a valid value for type Ty /// @brief Determine if the value is in range for the given type. static bool isValueValidForType(Type *Ty, uint64_t V); static bool isValueValidForType(Type *Ty, int64_t V); bool isNegative() const { return Val.isNegative(); } /// This is just a convenience method to make client code smaller for a /// common code. It also correctly performs the comparison without the /// potential for an assertion from getZExtValue(). bool isZero() const { return Val == 0; } /// This is just a convenience method to make client code smaller for a /// common case. It also correctly performs the comparison without the /// potential for an assertion from getZExtValue(). /// @brief Determine if the value is one. bool isOne() const { return Val == 1; } /// This function will return true iff every bit in this constant is set /// to true. /// @returns true iff this constant's bits are all set to true. /// @brief Determine if the value is all ones. bool isMinusOne() const { return Val.isAllOnesValue(); } /// This function will return true iff this constant represents the largest /// value that may be represented by the constant's type. /// @returns true iff this is the largest value that may be represented /// by this type. /// @brief Determine if the value is maximal. bool isMaxValue(bool isSigned) const { if (isSigned) return Val.isMaxSignedValue(); else return Val.isMaxValue(); } /// This function will return true iff this constant represents the smallest /// value that may be represented by this constant's type. /// @returns true if this is the smallest value that may be represented by /// this type. /// @brief Determine if the value is minimal. bool isMinValue(bool isSigned) const { if (isSigned) return Val.isMinSignedValue(); else return Val.isMinValue(); } /// This function will return true iff this constant represents a value with /// active bits bigger than 64 bits or a value greater than the given uint64_t /// value. /// @returns true iff this constant is greater or equal to the given number. /// @brief Determine if the value is greater or equal to the given number. bool uge(uint64_t Num) const { return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num; } /// getLimitedValue - If the value is smaller than the specified limit, /// return it, otherwise return the limit value. This causes the value /// to saturate to the limit. /// @returns the min of the value of the constant and the specified value /// @brief Get the constant's value with a saturation limit uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { return Val.getLimitedValue(Limit); } /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const ConstantInt *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantIntVal; } }; //===----------------------------------------------------------------------===// /// ConstantFP - Floating Point Values [float, double] /// class ConstantFP : public Constant { APFloat Val; virtual void anchor(); void *operator new(size_t, unsigned);// DO NOT IMPLEMENT ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT friend class LLVMContextImpl; protected: ConstantFP(Type *Ty, const APFloat& V); protected: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } public: /// Floating point negation must be implemented with f(x) = -0.0 - x. This /// method returns the negative zero constant for floating point or vector /// floating point types; for all other types, it returns the null value. static Constant *getZeroValueForNegation(Type *Ty); /// get() - This returns a ConstantFP, or a vector containing a splat of a /// ConstantFP, for the specified value in the specified type. This should /// only be used for simple constant values like 2.0/1.0 etc, that are /// known-valid both as host double and as the target format. static Constant *get(Type* Ty, double V); static Constant *get(Type* Ty, StringRef Str); static ConstantFP *get(LLVMContext &Context, const APFloat &V); static ConstantFP *getNegativeZero(Type* Ty); static ConstantFP *getInfinity(Type *Ty, bool Negative = false); /// isValueValidForType - return true if Ty is big enough to represent V. static bool isValueValidForType(Type *Ty, const APFloat &V); inline const APFloat &getValueAPF() const { return Val; } /// isZero - Return true if the value is positive or negative zero. bool isZero() const { return Val.isZero(); } /// isNegative - Return true if the sign bit is set. bool isNegative() const { return Val.isNegative(); } /// isNaN - Return true if the value is a NaN. bool isNaN() const { return Val.isNaN(); } /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. The version with a double operand is retained /// because it's so convenient to write isExactlyValue(2.0), but please use /// it only for simple constants. bool isExactlyValue(const APFloat &V) const; bool isExactlyValue(double V) const { bool ignored; // convert is not supported on this type if (&Val.getSemantics() == &APFloat::PPCDoubleDouble) return false; APFloat FV(V); FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); return isExactlyValue(FV); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantFP *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantFPVal; } }; //===----------------------------------------------------------------------===// /// ConstantAggregateZero - All zero aggregate value /// class ConstantAggregateZero : public Constant { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT protected: explicit ConstantAggregateZero(Type *ty) : Constant(ty, ConstantAggregateZeroVal, 0, 0) {} protected: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } public: static ConstantAggregateZero *get(Type *Ty); virtual void destroyConstant(); /// getSequentialElement - If this CAZ has array or vector type, return a zero /// with the right element type. Constant *getSequentialElement(); /// getStructElement - If this CAZ has struct type, return a zero with the /// right element type for the specified element. Constant *getStructElement(unsigned Elt); /// getElementValue - Return a zero of the right value for the specified GEP /// index. Constant *getElementValue(Constant *C); /// getElementValue - Return a zero of the right value for the specified GEP /// index. Constant *getElementValue(unsigned Idx); /// Methods for support type inquiry through isa, cast, and dyn_cast: /// static bool classof(const ConstantAggregateZero *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantAggregateZeroVal; } }; //===----------------------------------------------------------------------===// /// ConstantArray - Constant Array Declarations /// class ConstantArray : public Constant { friend struct ConstantCreator >; ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT protected: ConstantArray(ArrayType *T, ArrayRef Val); public: // ConstantArray accessors static Constant *get(ArrayType *T, ArrayRef V); /// This method constructs a ConstantArray and initializes it with a text /// string. The default behavior (AddNull==true) causes a null terminator to /// be placed at the end of the array. This effectively increases the length /// of the array by one (you've been warned). However, in some situations /// this is not desired so if AddNull==false then the string is copied without /// null termination. // FIXME Remove this. static Constant *get(LLVMContext &Context, StringRef Initializer, bool AddNull = true); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); /// getType - Specialize the getType() method to always return an ArrayType, /// which reduces the amount of casting needed in parts of the compiler. /// inline ArrayType *getType() const { return reinterpret_cast(Value::getType()); } // FIXME: String methods will eventually be removed. /// isString - This method returns true if the array is an array of i8 and /// the elements of the array are all ConstantInt's. bool isString() const; /// isCString - This method returns true if the array is a string (see /// @verbatim /// isString) and it ends in a null byte \0 and does not contains any other /// @endverbatim /// null bytes except its terminator. bool isCString() const; /// getAsString - If this array is isString(), then this method converts the /// array to an std::string and returns it. Otherwise, it asserts out. /// std::string getAsString() const; /// getAsCString - If this array is isCString(), then this method converts the /// array (without the trailing null byte) to an std::string and returns it. /// Otherwise, it asserts out. /// std::string getAsCString() const; virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantArray *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantArrayVal; } }; template <> struct OperandTraits : public VariadicOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant) //===----------------------------------------------------------------------===// // ConstantStruct - Constant Struct Declarations // class ConstantStruct : public Constant { friend struct ConstantCreator >; ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT protected: ConstantStruct(StructType *T, ArrayRef Val); public: // ConstantStruct accessors static Constant *get(StructType *T, ArrayRef V); static Constant *get(StructType *T, ...) END_WITH_NULL; /// getAnon - Return an anonymous struct that has the specified /// elements. If the struct is possibly empty, then you must specify a /// context. static Constant *getAnon(ArrayRef V, bool Packed = false) { return get(getTypeForElements(V, Packed), V); } static Constant *getAnon(LLVMContext &Ctx, ArrayRef V, bool Packed = false) { return get(getTypeForElements(Ctx, V, Packed), V); } /// getTypeForElements - Return an anonymous struct type to use for a constant /// with the specified set of elements. The list must not be empty. static StructType *getTypeForElements(ArrayRef V, bool Packed = false); /// getTypeForElements - This version of the method allows an empty list. static StructType *getTypeForElements(LLVMContext &Ctx, ArrayRef V, bool Packed = false); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); /// getType() specialization - Reduce amount of casting... /// inline StructType *getType() const { return reinterpret_cast(Value::getType()); } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantStruct *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantStructVal; } }; template <> struct OperandTraits : public VariadicOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant) //===----------------------------------------------------------------------===// /// ConstantVector - Constant Vector Declarations /// class ConstantVector : public Constant { friend struct ConstantCreator >; ConstantVector(const ConstantVector &); // DO NOT IMPLEMENT protected: ConstantVector(VectorType *T, ArrayRef Val); public: // ConstantVector accessors static Constant *get(ArrayRef V); /// getSplat - Return a ConstantVector with the specified constant in each /// element. static Constant *getSplat(unsigned NumElts, Constant *Elt); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); /// getType - Specialize the getType() method to always return a VectorType, /// which reduces the amount of casting needed in parts of the compiler. /// inline VectorType *getType() const { return reinterpret_cast(Value::getType()); } /// getSplatValue - If this is a splat constant, meaning that all of the /// elements have the same value, return that value. Otherwise return NULL. Constant *getSplatValue() const; virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantVector *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantVectorVal; } }; template <> struct OperandTraits : public VariadicOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant) //===----------------------------------------------------------------------===// /// ConstantPointerNull - a constant pointer value that points to null /// class ConstantPointerNull : public Constant { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT protected: explicit ConstantPointerNull(PointerType *T) : Constant(reinterpret_cast(T), Value::ConstantPointerNullVal, 0, 0) {} protected: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } public: /// get() - Static factory methods - Return objects of the specified value static ConstantPointerNull *get(PointerType *T); virtual void destroyConstant(); /// getType - Specialize the getType() method to always return an PointerType, /// which reduces the amount of casting needed in parts of the compiler. /// inline PointerType *getType() const { return reinterpret_cast(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantPointerNull *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantPointerNullVal; } }; //===----------------------------------------------------------------------===// /// ConstantDataSequential - A vector or array of data that contains no /// relocations, and whose element type is a simple 1/2/4/8-byte integer or /// float/double. This is the common base class of ConstantDataArray and /// ConstantDataVector. /// class ConstantDataSequential : public Constant { friend class LLVMContextImpl; /// DataElements - A pointer to the bytes underlying this constant (which is /// owned by the uniquing StringMap). const char *DataElements; /// Next - This forms a link list of ConstantDataSequential nodes that have /// the same value but different type. For example, 0,0,0,1 could be a 4 /// element array of i8, or a 1-element array of i32. They'll both end up in /// the same StringMap bucket, linked up. ConstantDataSequential *Next; void *operator new(size_t, unsigned); // DO NOT IMPLEMENT ConstantDataSequential(const ConstantDataSequential &); // DO NOT IMPLEMENT protected: explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) : Constant(ty, VT, 0, 0), DataElements(Data) {} ~ConstantDataSequential() { delete Next; } static Constant *getImpl(StringRef Bytes, Type *Ty); protected: // allocate space for exactly zero operands. void *operator new(size_t s) { return User::operator new(s, 0); } public: /// isElementTypeCompatible - Return true if a ConstantDataSequential can be /// formed with a vector or array of the specified element type. /// ConstantDataArray only works with normal float and int types that are /// stored densely in memory, not with things like i42 or x86_f80. static bool isElementTypeCompatible(const Type *Ty); /// getElementAsInteger - If this is a sequential container of integers (of /// any size), return the specified element in the low bits of a uint64_t. uint64_t getElementAsInteger(unsigned i) const; /// getElementAsAPFloat - If this is a sequential container of floating point /// type, return the specified element as an APFloat. APFloat getElementAsAPFloat(unsigned i) const; /// getElementAsFloat - If this is an sequential container of floats, return /// the specified element as a float. float getElementAsFloat(unsigned i) const; /// getElementAsDouble - If this is an sequential container of doubles, return /// the specified element as a float. double getElementAsDouble(unsigned i) const; /// getElementAsConstant - Return a Constant for a specified index's element. /// Note that this has to compute a new constant to return, so it isn't as /// efficient as getElementAsInteger/Float/Double. Constant *getElementAsConstant(unsigned i) const; /// getType - Specialize the getType() method to always return a /// SequentialType, which reduces the amount of casting needed in parts of the /// compiler. inline SequentialType *getType() const { return reinterpret_cast(Value::getType()); } /// getElementType - Return the element type of the array/vector. Type *getElementType() const; /// getNumElements - Return the number of elements in the array or vector. unsigned getNumElements() const; /// getElementByteSize - Return the size (in bytes) of each element in the /// array/vector. The size of the elements is known to be a multiple of one /// byte. uint64_t getElementByteSize() const; /// isString - This method returns true if this is an array of i8. bool isString() const; /// isCString - This method returns true if the array "isString", ends with a /// nul byte, and does not contains any other nul bytes. bool isCString() const; /// getAsString - If this array is isString(), then this method returns the /// array as a StringRef. Otherwise, it asserts out. /// StringRef getAsString() const { assert(isString() && "Not a string"); return getRawDataValues(); } /// getAsCString - If this array is isCString(), then this method returns the /// array (without the trailing null byte) as a StringRef. Otherwise, it /// asserts out. /// StringRef getAsCString() const { assert(isCString() && "Isn't a C string"); StringRef Str = getAsString(); return Str.substr(0, Str.size()-1); } /// getRawDataValues - Return the raw, underlying, bytes of this data. Note /// that this is an extremely tricky thing to work with, as it exposes the /// host endianness of the data elements. StringRef getRawDataValues() const; virtual void destroyConstant(); /// Methods for support type inquiry through isa, cast, and dyn_cast: /// static bool classof(const ConstantDataSequential *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantDataArrayVal || V->getValueID() == ConstantDataVectorVal; } private: const char *getElementPointer(unsigned Elt) const; }; //===----------------------------------------------------------------------===// /// ConstantDataArray - An array of data that contains no relocations, and whose /// element type is a simple 1/2/4/8-byte integer or float/double. /// class ConstantDataArray : public ConstantDataSequential { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT ConstantDataArray(const ConstantDataArray &); // DO NOT IMPLEMENT virtual void anchor(); friend class ConstantDataSequential; explicit ConstantDataArray(Type *ty, const char *Data) : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} protected: // allocate space for exactly zero operands. void *operator new(size_t s) { return User::operator new(s, 0); } public: /// get() constructors - Return a constant with array type with an element /// count and element type matching the ArrayRef passed in. Note that this /// can return a ConstantAggregateZero object. static Constant *get(LLVMContext &Context, ArrayRef Elts); static Constant *get(LLVMContext &Context, ArrayRef Elts); static Constant *get(LLVMContext &Context, ArrayRef Elts); static Constant *get(LLVMContext &Context, ArrayRef Elts); static Constant *get(LLVMContext &Context, ArrayRef Elts); static Constant *get(LLVMContext &Context, ArrayRef Elts); /// getString - This method constructs a CDS and initializes it with a text /// string. The default behavior (AddNull==true) causes a null terminator to /// be placed at the end of the array (increasing the length of the string by /// one more than the StringRef would normally indicate. Pass AddNull=false /// to disable this behavior. static Constant *getString(LLVMContext &Context, StringRef Initializer, bool AddNull = true); /// getType - Specialize the getType() method to always return an ArrayType, /// which reduces the amount of casting needed in parts of the compiler. /// inline ArrayType *getType() const { return reinterpret_cast(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: /// static bool classof(const ConstantDataArray *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantDataArrayVal; } }; //===----------------------------------------------------------------------===// /// ConstantDataVector - A vector of data that contains no relocations, and /// whose element type is a simple 1/2/4/8-byte integer or float/double. /// class ConstantDataVector : public ConstantDataSequential { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT ConstantDataVector(const ConstantDataVector &); // DO NOT IMPLEMENT virtual void anchor(); friend class ConstantDataSequential; explicit ConstantDataVector(Type *ty, const char *Data) : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {} protected: // allocate space for exactly zero operands. void *operator new(size_t s) { return User::operator new(s, 0); } public: /// get() constructors - Return a constant with vector type with an element /// count and element type matching the ArrayRef passed in. Note that this /// can return a ConstantAggregateZero object. static Constant *get(LLVMContext &Context, ArrayRef Elts); static Constant *get(LLVMContext &Context, ArrayRef Elts); static Constant *get(LLVMContext &Context, ArrayRef Elts); static Constant *get(LLVMContext &Context, ArrayRef Elts); static Constant *get(LLVMContext &Context, ArrayRef Elts); static Constant *get(LLVMContext &Context, ArrayRef Elts); /// getSplat - Return a ConstantVector with the specified constant in each /// element. The specified constant has to be a of a compatible type (i8/i16/ /// i32/i64/float/double) and must be a ConstantFP or ConstantInt. static Constant *getSplat(unsigned NumElts, Constant *Elt); /// getType - Specialize the getType() method to always return a VectorType, /// which reduces the amount of casting needed in parts of the compiler. /// inline VectorType *getType() const { return reinterpret_cast(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: /// static bool classof(const ConstantDataVector *) { return true; } static bool classof(const Value *V) { return V->getValueID() == ConstantDataVectorVal; } }; /// BlockAddress - The address of a basic block. /// class BlockAddress : public Constant { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT void *operator new(size_t s) { return User::operator new(s, 2); } BlockAddress(Function *F, BasicBlock *BB); public: /// get - Return a BlockAddress for the specified function and basic block. static BlockAddress *get(Function *F, BasicBlock *BB); /// get - Return a BlockAddress for the specified basic block. The basic /// block must be embedded into a function. static BlockAddress *get(BasicBlock *BB); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); Function *getFunction() const { return (Function*)Op<0>().get(); } BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const BlockAddress *) { return true; } static inline bool classof(const Value *V) { return V->getValueID() == BlockAddressVal; } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) //===----------------------------------------------------------------------===// /// ConstantExpr - a constant value that is initialized with an expression using /// other constant values. /// /// This class uses the standard Instruction opcodes to define the various /// constant expressions. The Opcode field for the ConstantExpr class is /// maintained in the Value::SubclassData field. class ConstantExpr : public Constant { friend struct ConstantCreator > >; friend struct ConvertConstantType; protected: ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) : Constant(ty, ConstantExprVal, Ops, NumOps) { // Operation type (an Instruction opcode) is stored as the SubclassData. setValueSubclassData(Opcode); } public: // Static methods to construct a ConstantExpr of different kinds. Note that // these methods may return a object that is not an instance of the // ConstantExpr class, because they will attempt to fold the constant // expression into something simpler if possible. /// getAlignOf constant expr - computes the alignment of a type in a target /// independent way (Note: the return type is an i64). static Constant *getAlignOf(Type *Ty); /// getSizeOf constant expr - computes the (alloc) size of a type (in /// address-units, not bits) in a target independent way (Note: the return /// type is an i64). /// static Constant *getSizeOf(Type *Ty); /// getOffsetOf constant expr - computes the offset of a struct field in a /// target independent way (Note: the return type is an i64). /// static Constant *getOffsetOf(StructType *STy, unsigned FieldNo); /// getOffsetOf constant expr - This is a generalized form of getOffsetOf, /// which supports any aggregate type, and any Constant index. /// static Constant *getOffsetOf(Type *Ty, Constant *FieldNo); static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false); static Constant *getFNeg(Constant *C); static Constant *getNot(Constant *C); static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getFAdd(Constant *C1, Constant *C2); static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getFSub(Constant *C1, Constant *C2); static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getFMul(Constant *C1, Constant *C2); static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false); static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false); static Constant *getFDiv(Constant *C1, Constant *C2); static Constant *getURem(Constant *C1, Constant *C2); static Constant *getSRem(Constant *C1, Constant *C2); static Constant *getFRem(Constant *C1, Constant *C2); static Constant *getAnd(Constant *C1, Constant *C2); static Constant *getOr(Constant *C1, Constant *C2); static Constant *getXor(Constant *C1, Constant *C2); static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false); static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false); static Constant *getTrunc (Constant *C, Type *Ty); static Constant *getSExt (Constant *C, Type *Ty); static Constant *getZExt (Constant *C, Type *Ty); static Constant *getFPTrunc (Constant *C, Type *Ty); static Constant *getFPExtend(Constant *C, Type *Ty); static Constant *getUIToFP (Constant *C, Type *Ty); static Constant *getSIToFP (Constant *C, Type *Ty); static Constant *getFPToUI (Constant *C, Type *Ty); static Constant *getFPToSI (Constant *C, Type *Ty); static Constant *getPtrToInt(Constant *C, Type *Ty); static Constant *getIntToPtr(Constant *C, Type *Ty); static Constant *getBitCast (Constant *C, Type *Ty); static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); } static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); } static Constant *getNSWAdd(Constant *C1, Constant *C2) { return getAdd(C1, C2, false, true); } static Constant *getNUWAdd(Constant *C1, Constant *C2) { return getAdd(C1, C2, true, false); } static Constant *getNSWSub(Constant *C1, Constant *C2) { return getSub(C1, C2, false, true); } static Constant *getNUWSub(Constant *C1, Constant *C2) { return getSub(C1, C2, true, false); } static Constant *getNSWMul(Constant *C1, Constant *C2) { return getMul(C1, C2, false, true); } static Constant *getNUWMul(Constant *C1, Constant *C2) { return getMul(C1, C2, true, false); } static Constant *getNSWShl(Constant *C1, Constant *C2) { return getShl(C1, C2, false, true); } static Constant *getNUWShl(Constant *C1, Constant *C2) { return getShl(C1, C2, true, false); } static Constant *getExactSDiv(Constant *C1, Constant *C2) { return getSDiv(C1, C2, true); } static Constant *getExactUDiv(Constant *C1, Constant *C2) { return getUDiv(C1, C2, true); } static Constant *getExactAShr(Constant *C1, Constant *C2) { return getAShr(C1, C2, true); } static Constant *getExactLShr(Constant *C1, Constant *C2) { return getLShr(C1, C2, true); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); // @brief Convenience function for getting one of the casting operations // using a CastOps opcode. static Constant *getCast( unsigned ops, ///< The opcode for the conversion Constant *C, ///< The constant to be converted Type *Ty ///< The type to which the constant is converted ); // @brief Create a ZExt or BitCast cast constant expression static Constant *getZExtOrBitCast( Constant *C, ///< The constant to zext or bitcast Type *Ty ///< The type to zext or bitcast C to ); // @brief Create a SExt or BitCast cast constant expression static Constant *getSExtOrBitCast( Constant *C, ///< The constant to sext or bitcast Type *Ty ///< The type to sext or bitcast C to ); // @brief Create a Trunc or BitCast cast constant expression static Constant *getTruncOrBitCast( Constant *C, ///< The constant to trunc or bitcast Type *Ty ///< The type to trunc or bitcast C to ); /// @brief Create a BitCast or a PtrToInt cast constant expression static Constant *getPointerCast( Constant *C, ///< The pointer value to be casted (operand 0) Type *Ty ///< The type to which cast should be made ); /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts static Constant *getIntegerCast( Constant *C, ///< The integer constant to be casted Type *Ty, ///< The integer type to cast to bool isSigned ///< Whether C should be treated as signed or not ); /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts static Constant *getFPCast( Constant *C, ///< The integer constant to be casted Type *Ty ///< The integer type to cast to ); /// @brief Return true if this is a convert constant expression bool isCast() const; /// @brief Return true if this is a compare constant expression bool isCompare() const; /// @brief Return true if this is an insertvalue or extractvalue expression, /// and the getIndices() method may be used. bool hasIndices() const; /// @brief Return true if this is a getelementptr expression and all /// the index operands are compile-time known integers within the /// corresponding notional static array extents. Note that this is /// not equivalant to, a subset of, or a superset of the "inbounds" /// property. bool isGEPWithNoNotionalOverIndexing() const; /// Select constant expr /// static Constant *getSelect(Constant *C, Constant *V1, Constant *V2); /// get - Return a binary or shift operator constant expression, /// folding if possible. /// static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags = 0); /// @brief Return an ICmp or FCmp comparison operator constant expression. static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2); /// get* - Return some common constants without having to /// specify the full Instruction::OPCODE identifier. /// static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS); static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS); /// Getelementptr form. Value* is only accepted for convenience; /// all elements must be Constant's. /// static Constant *getGetElementPtr(Constant *C, ArrayRef IdxList, bool InBounds = false) { return getGetElementPtr(C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()), InBounds); } static Constant *getGetElementPtr(Constant *C, Constant *Idx, bool InBounds = false) { // This form of the function only exists to avoid ambiguous overload // warnings about whether to convert Idx to ArrayRef or // ArrayRef. return getGetElementPtr(C, cast(Idx), InBounds); } static Constant *getGetElementPtr(Constant *C, ArrayRef IdxList, bool InBounds = false); /// Create an "inbounds" getelementptr. See the documentation for the /// "inbounds" flag in LangRef.html for details. static Constant *getInBoundsGetElementPtr(Constant *C, ArrayRef IdxList) { return getGetElementPtr(C, IdxList, true); } static Constant *getInBoundsGetElementPtr(Constant *C, Constant *Idx) { // This form of the function only exists to avoid ambiguous overload // warnings about whether to convert Idx to ArrayRef or // ArrayRef. return getGetElementPtr(C, Idx, true); } static Constant *getInBoundsGetElementPtr(Constant *C, ArrayRef IdxList) { return getGetElementPtr(C, IdxList, true); } static Constant *getExtractElement(Constant *Vec, Constant *Idx); static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx); static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask); static Constant *getExtractValue(Constant *Agg, ArrayRef Idxs); static Constant *getInsertValue(Constant *Agg, Constant *Val, ArrayRef Idxs); /// getOpcode - Return the opcode at the root of this constant expression unsigned getOpcode() const { return getSubclassDataFromValue(); } /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is /// not an ICMP or FCMP constant expression. unsigned getPredicate() const; /// getIndices - Assert that this is an insertvalue or exactvalue /// expression and return the list of indices. ArrayRef getIndices() const; /// getOpcodeName - Return a string representation for an opcode. const char *getOpcodeName() const; /// getWithOperandReplaced - Return a constant expression identical to this /// one, but with the specified operand set to the specified value. Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; /// getWithOperands - This returns the current constant expression with the /// operands replaced with the specified values. The specified array must /// have the same number of operands as our current one. Constant *getWithOperands(ArrayRef Ops) const { return getWithOperands(Ops, getType()); } /// getWithOperands - This returns the current constant expression with the /// operands replaced with the specified values and with the specified result /// type. The specified array must have the same number of operands as our /// current one. Constant *getWithOperands(ArrayRef Ops, Type *Ty) const; virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantExpr *) { return true; } static inline bool classof(const Value *V) { return V->getValueID() == ConstantExprVal; } private: // Shadow Value::setValueSubclassData with a private forwarding method so that // subclasses cannot accidentally use it. void setValueSubclassData(unsigned short D) { Value::setValueSubclassData(D); } }; template <> struct OperandTraits : public VariadicOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) //===----------------------------------------------------------------------===// /// UndefValue - 'undef' values are things that do not have specified contents. /// These are used for a variety of purposes, including global variable /// initializers and operands to instructions. 'undef' values can occur with /// any first-class type. /// /// Undef values aren't exactly constants; if they have multiple uses, they /// can appear to have different bit patterns at each use. See /// LangRef.html#undefvalues for details. /// class UndefValue : public Constant { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT UndefValue(const UndefValue &); // DO NOT IMPLEMENT protected: explicit UndefValue(Type *T) : Constant(T, UndefValueVal, 0, 0) {} protected: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } public: /// get() - Static factory methods - Return an 'undef' object of the specified /// type. /// static UndefValue *get(Type *T); /// getSequentialElement - If this Undef has array or vector type, return a /// undef with the right element type. UndefValue *getSequentialElement(); /// getStructElement - If this undef has struct type, return a undef with the /// right element type for the specified element. UndefValue *getStructElement(unsigned Elt); /// getElementValue - Return an undef of the right value for the specified GEP /// index. UndefValue *getElementValue(Constant *C); /// getElementValue - Return an undef of the right value for the specified GEP /// index. UndefValue *getElementValue(unsigned Idx); virtual void destroyConstant(); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UndefValue *) { return true; } static bool classof(const Value *V) { return V->getValueID() == UndefValueVal; } }; } // End llvm namespace #endif