//===-- SparcV9CodeEmitter.cpp - --------===// // // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetData.h" #include "Support/hash_set" #include "SparcInternals.h" #include "SparcV9CodeEmitter.h" bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM, MachineCodeEmitter &MCE) { //PM.add(new SparcV9CodeEmitter(MCE)); //MachineCodeEmitter *M = MachineCodeEmitter::createDebugMachineCodeEmitter(); MachineCodeEmitter *M = MachineCodeEmitter::createFilePrinterEmitter(MCE); PM.add(new SparcV9CodeEmitter(this, *M)); PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed return false; } namespace { class JITResolver { MachineCodeEmitter &MCE; // LazyCodeGenMap - Keep track of call sites for functions that are to be // lazily resolved. std::map LazyCodeGenMap; // LazyResolverMap - Keep track of the lazy resolver created for a // particular function so that we can reuse them if necessary. std::map LazyResolverMap; public: JITResolver(MachineCodeEmitter &mce) : MCE(mce) {} unsigned getLazyResolver(Function *F); unsigned addFunctionReference(unsigned Address, Function *F); private: unsigned emitStubForFunction(Function *F); static void CompilationCallback(); unsigned resolveFunctionReference(unsigned RetAddr); }; JITResolver *TheJITResolver; } /// addFunctionReference - This method is called when we need to emit the /// address of a function that has not yet been emitted, so we don't know the /// address. Instead, we emit a call to the CompilationCallback method, and /// keep track of where we are. /// unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) { LazyCodeGenMap[Address] = F; return (intptr_t)&JITResolver::CompilationCallback; } unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) { std::map::iterator I = LazyCodeGenMap.find(RetAddr); assert(I != LazyCodeGenMap.end() && "Not in map!"); Function *F = I->second; LazyCodeGenMap.erase(I); return MCE.forceCompilationOf(F); } unsigned JITResolver::getLazyResolver(Function *F) { std::map::iterator I = LazyResolverMap.lower_bound(F); if (I != LazyResolverMap.end() && I->first == F) return I->second; //std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n"; unsigned Stub = emitStubForFunction(F); LazyResolverMap.insert(I, std::make_pair(F, Stub)); return Stub; } void JITResolver::CompilationCallback() { uint64_t *StackPtr = (uint64_t*)__builtin_frame_address(0); uint64_t RetAddr = (uint64_t)(intptr_t)__builtin_return_address(0); #if 0 std::cerr << "In callback! Addr=0x" << std::hex << RetAddr << " SP=0x" << (unsigned)StackPtr << std::dec << ": Resolving call to function: " << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"; #endif std::cerr << "Sparc's JIT Resolver not implemented!\n"; abort(); #if 0 unsigned NewVal = TheJITResolver->resolveFunctionReference((void*)RetAddr); // Rewrite the call target... so that we don't fault every time we execute // the call. *(unsigned*)RetAddr = NewVal; // Change the return address to reexecute the call instruction... StackPtr[1] -= 4; #endif } /// emitStubForFunction - This method is used by the JIT when it needs to emit /// the address of a function for a function whose code has not yet been /// generated. In order to do this, it generates a stub which jumps to the lazy /// function compiler, which will eventually get fixed to call the function /// directly. /// unsigned JITResolver::emitStubForFunction(Function *F) { #if 0 MCE.startFunctionStub(*F, 6); MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination... unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F); MCE.emitWord(Address-MCE.getCurrentPCValue()-4); MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub! return (intptr_t)MCE.finishFunctionStub(*F); #endif std::cerr << "Sparc's JITResolver::emitStubForFunction() not implemented!\n"; abort(); } void SparcV9CodeEmitter::emitConstant(unsigned Val, unsigned Size) { // Output the constant in big endian byte order... unsigned byteVal; for (int i = Size-1; i >= 0; --i) { byteVal = Val >> 8*i; MCE->emitByte(byteVal & 255); } } unsigned getRealRegNum(unsigned fakeReg, unsigned regClass) { switch (regClass) { case UltraSparcRegInfo::IntRegType: { // Sparc manual, p31 static const unsigned IntRegMap[] = { // "o0", "o1", "o2", "o3", "o4", "o5", "o7", 8, 9, 10, 11, 12, 13, 15, // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", 16, 17, 18, 19, 20, 21, 22, 23, // "i0", "i1", "i2", "i3", "i4", "i5", 24, 25, 26, 27, 28, 29, // "i6", "i7", 30, 31, // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", 0, 1, 2, 3, 4, 5, 6, 7, // "o6" 14 }; return IntRegMap[fakeReg]; break; } case UltraSparcRegInfo::FPSingleRegType: { return fakeReg; } case UltraSparcRegInfo::FPDoubleRegType: { return fakeReg; } case UltraSparcRegInfo::FloatCCRegType: { return fakeReg; } case UltraSparcRegInfo::IntCCRegType: { return fakeReg; } default: assert(0 && "Invalid unified register number in getRegType"); return fakeReg; } } int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI, MachineOperand &MO) { int64_t rv = 0; // Return value; defaults to 0 for unhandled cases // or things that get fixed up later by the JIT. if (MO.isVirtualRegister()) { std::cerr << "ERROR: virtual register found in machine code.\n"; abort(); } else if (MO.isPCRelativeDisp()) { Value *V = MO.getVRegValue(); if (BasicBlock *BB = dyn_cast(V)) { std::cerr << "Saving reference to BB (VReg)\n"; unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue(); BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); } else if (Constant *C = dyn_cast(V)) { if (ConstantMap.find(C) != ConstantMap.end()) rv = (int64_t)(intptr_t)ConstantMap[C]; else { std::cerr << "ERROR: constant not in map:" << MO << "\n"; abort(); } } else { std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n"; abort(); } } else if (MO.isPhysicalRegister()) { // This is necessary because the Sparc doesn't actually lay out registers // in the real fashion -- it skips those that it chooses not to allocate, // i.e. those that are the SP, etc. unsigned fakeReg = MO.getReg(), realReg, regClass, regType; regType = TM->getRegInfo().getRegType(fakeReg); // At least map fakeReg into its class fakeReg = TM->getRegInfo().getClassRegNum(fakeReg, regClass); // Find the real register number for use in an instruction realReg = getRealRegNum(fakeReg, regClass); std::cerr << "Reg[" << std::dec << fakeReg << "] = " << realReg << "\n"; rv = realReg; } else if (MO.isImmediate()) { rv = MO.getImmedValue(); } else if (MO.isGlobalAddress()) { rv = (int64_t) (intptr_t)getGlobalAddress(cast(MO.getVRegValue()), MI, MO.isPCRelative()); } else if (MO.isMachineBasicBlock()) { // Duplicate code of the above case for VirtualRegister, BasicBlock... // It should really hit this case, but Sparc backend uses VRegs instead std::cerr << "Saving reference to MBB\n"; BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue(); BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); } else if (MO.isExternalSymbol()) { // Sparc backend doesn't generate this (yet...) std::cerr << "ERROR: External symbol unhandled: " << MO << "\n"; abort(); } else if (MO.isFrameIndex()) { // Sparc backend doesn't generate this (yet...) int FrameIndex = MO.getFrameIndex(); std::cerr << "ERROR: Frame index unhandled.\n"; abort(); } else if (MO.isConstantPoolIndex()) { // Sparc backend doesn't generate this (yet...) std::cerr << "ERROR: Constant Pool index unhandled.\n"; abort(); } else { std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; abort(); } // Finally, deal with the various bitfield-extracting functions that // are used in SPARC assembly. (Some of these make no sense in combination // with some of the above; we'll trust that the instruction selector // will not produce nonsense, and not check for valid combinations here.) if (MO.opLoBits32()) { // %lo(val) return rv & 0x03ff; } else if (MO.opHiBits32()) { // %lm(val) return (rv >> 10) & 0x03fffff; } else if (MO.opLoBits64()) { // %hm(val) return (rv >> 32) & 0x03ff; } else if (MO.opHiBits64()) { // %hh(val) return rv >> 42; } else { // (unadorned) val return rv; } } unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) { Val >>= bit; return (Val & 1); } void* SparcV9CodeEmitter::convertAddress(intptr_t Addr, bool isPCRelative) { if (isPCRelative) { return (void*)(Addr - (intptr_t)MCE->getCurrentPCValue()); } else { return (void*)Addr; } } bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) { std::cerr << "Starting function " << MF.getFunction()->getName() << ", address: " << "0x" << std::hex << (long)MCE->getCurrentPCValue() << "\n"; MCE->startFunction(MF); // FIXME: the Sparc backend does not use the ConstantPool!! //MCE->emitConstantPool(MF.getConstantPool()); // Instead, the Sparc backend has its own constant pool implementation: const hash_set &pool = MF.getInfo()->getConstantPoolValues(); for (hash_set::const_iterator I = pool.begin(), E = pool.end(); I != E; ++I) { const Constant *C = *I; // For now we just allocate some memory on the heap, this can be // dramatically improved. const Type *Ty = ((Value*)C)->getType(); void *Addr = malloc(TM->getTargetData().getTypeSize(Ty)); //FIXME //TheVM.InitializeMemory(C, Addr); std::cerr << "Adding ConstantMap[" << C << "]=" << std::dec << Addr << "\n"; ConstantMap[C] = Addr; } for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) emitBasicBlock(*I); MCE->finishFunction(MF); std::cerr << "Finishing function " << MF.getFunction()->getName() << "\n"; ConstantMap.clear(); for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { long Location = BBLocations[BBRefs[i].first]; unsigned *Ref = BBRefs[i].second.first; MachineInstr *MI = BBRefs[i].second.second; std::cerr << "Fixup @" << std::hex << Ref << " to " << Location << " in instr: " << std::dec << *MI << "\n"; } // Resolve branches to BasicBlocks for the entire function for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { long Location = BBLocations[BBRefs[i].first]; unsigned *Ref = BBRefs[i].second.first; MachineInstr *MI = BBRefs[i].second.second; std::cerr << "attempting to resolve BB: " << i << "\n"; for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { MachineOperand &op = MI->getOperand(ii); if (op.isPCRelativeDisp()) { // the instruction's branch target is made such that it branches to // PC + (br target * 4), so undo that arithmetic here: // Location is the target of the branch // Ref is the location of the instruction, and hence the PC unsigned branchTarget = (Location - (long)Ref) >> 2; // Save the flags. bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false; if (op.opLoBits32()) { loBits32=true; } if (op.opHiBits32()) { hiBits32=true; } if (op.opLoBits64()) { loBits64=true; } if (op.opHiBits64()) { hiBits64=true; } MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, branchTarget); if (loBits32) { MI->setOperandLo32(ii); } else if (hiBits32) { MI->setOperandHi32(ii); } else if (loBits64) { MI->setOperandLo64(ii); } else if (hiBits64) { MI->setOperandHi64(ii); } std::cerr << "Rewrote BB ref: "; unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI); *Ref = fixedInstr; break; } } } BBRefs.clear(); BBLocations.clear(); return false; } void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { currBB = MBB.getBasicBlock(); BBLocations[currBB] = MCE->getCurrentPCValue(); for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) emitInstruction(**I); } void SparcV9CodeEmitter::emitInstruction(MachineInstr &MI) { emitConstant(getBinaryCodeForInstr(MI), 4); } void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI, bool isPCRelative) { if (isPCRelative) { // must be a call, this is a major hack! // Try looking up the function to see if it is already compiled! if (void *Addr = (void*)(intptr_t)MCE->getGlobalValueAddress(V)) { intptr_t CurByte = MCE->getCurrentPCValue(); // The real target of the call is Addr = PC + (target * 4) // CurByte is the PC, Addr we just received return (void*) (((long)Addr - (long)CurByte) >> 2); } else { if (Function *F = dyn_cast(V)) { // Function has not yet been code generated! TheJITResolver->addFunctionReference(MCE->getCurrentPCValue(), cast(V)); // Delayed resolution... return (void*)(intptr_t)TheJITResolver->getLazyResolver(cast(V)); } else if (Constant *C = ConstantPointerRef::get(V)) { if (ConstantMap.find(C) != ConstantMap.end()) { return ConstantMap[C]; } else { std::cerr << "Constant: 0x" << std::hex << &*C << std::dec << ", " << *V << " not found in ConstantMap!\n"; abort(); } #if 0 } else if (const GlobalVariable *G = dyn_cast(V)) { if (G->isConstant()) { const Constant* C = G->getInitializer(); if (ConstantMap.find(C) != ConstantMap.end()) { return ConstantMap[C]; } else { std::cerr << "Constant: " << *G << " not found in ConstantMap!\n"; abort(); } } else { std::cerr << "Variable: " << *G << " address not found!\n"; abort(); } #endif } else { std::cerr << "Unhandled global: " << *V << "\n"; abort(); } } } else { return convertAddress((intptr_t)MCE->getGlobalValueAddress(V), isPCRelative); } } #include "SparcV9CodeEmitter.inc"