//===-- FunctionLoweringInfo.cpp ------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements routines for translating functions from LLVM IR into // Machine IR. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "function-lowering-info" #include "FunctionLoweringInfo.h" #include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence /// of insertvalue or extractvalue indices that identify a member, return /// the linearized index of the start of the member. /// unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex) { // Base case: We're done. if (Indices && Indices == IndicesEnd) return CurIndex; // Given a struct type, recursively traverse the elements. if (const StructType *STy = dyn_cast(Ty)) { for (StructType::element_iterator EB = STy->element_begin(), EI = EB, EE = STy->element_end(); EI != EE; ++EI) { if (Indices && *Indices == unsigned(EI - EB)) return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); } return CurIndex; } // Given an array type, recursively traverse the elements. else if (const ArrayType *ATy = dyn_cast(Ty)) { const Type *EltTy = ATy->getElementType(); for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { if (Indices && *Indices == i) return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); } return CurIndex; } // We haven't found the type we're looking for, so keep searching. return CurIndex + 1; } /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of /// EVTs that represent all the individual underlying /// non-aggregate types that comprise it. /// /// If Offsets is non-null, it points to a vector to be filled in /// with the in-memory offsets of each of the individual values. /// void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, SmallVectorImpl &ValueVTs, SmallVectorImpl *Offsets, uint64_t StartingOffset) { // Given a struct type, recursively traverse the elements. if (const StructType *STy = dyn_cast(Ty)) { const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); for (StructType::element_iterator EB = STy->element_begin(), EI = EB, EE = STy->element_end(); EI != EE; ++EI) ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, StartingOffset + SL->getElementOffset(EI - EB)); return; } // Given an array type, recursively traverse the elements. if (const ArrayType *ATy = dyn_cast(Ty)) { const Type *EltTy = ATy->getElementType(); uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, StartingOffset + i * EltSize); return; } // Interpret void as zero return values. if (Ty->isVoidTy()) return; // Base case: we can get an EVT for this LLVM IR type. ValueVTs.push_back(TLI.getValueType(Ty)); if (Offsets) Offsets->push_back(StartingOffset); } /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it, or used by a /// switch or atomic instruction, which may expand to multiple basic blocks. static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { if (isa(I)) return true; const BasicBlock *BB = I->getParent(); for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (cast(*UI)->getParent() != BB || isa(*UI)) return true; return false; } /// isOnlyUsedInEntryBlock - If the specified argument is only used in the /// entry block, return true. This includes arguments used by switches, since /// the switch may expand into multiple basic blocks. static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) { // With FastISel active, we may be splitting blocks, so force creation // of virtual registers for all non-dead arguments. // Don't force virtual registers for byval arguments though, because // fast-isel can't handle those in all cases. if (EnableFastISel && !A->hasByValAttr()) return A->use_empty(); const BasicBlock *Entry = A->getParent()->begin(); for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) if (cast(*UI)->getParent() != Entry || isa(*UI)) return false; // Use not in entry block. return true; } FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli) : TLI(tli) { } void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, bool EnableFastISel) { Fn = &fn; MF = &mf; RegInfo = &MF->getRegInfo(); // Create a vreg for each argument register that is not dead and is used // outside of the entry block for the function. for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); AI != E; ++AI) if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) InitializeRegForValue(AI); // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. Function::const_iterator BB = Fn->begin(), EB = Fn->end(); for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (const AllocaInst *AI = dyn_cast(I)) if (const ConstantInt *CUI = dyn_cast(AI->getArraySize())) { const Type *Ty = AI->getAllocatedType(); uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); unsigned Align = std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), AI->getAlignment()); TySize *= CUI->getZExtValue(); // Get total allocated size. if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. StaticAllocaMap[AI] = MF->getFrameInfo()->CreateStackObject(TySize, Align, false); } for (; BB != EB; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) if (!isa(I) || !StaticAllocaMap.count(cast(I))) InitializeRegForValue(I); // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. for (BB = Fn->begin(); BB != EB; ++BB) { MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); MBBMap[BB] = MBB; MF->push_back(MBB); // Transfer the address-taken flag. This is necessary because there could // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only // the first one should be marked. if (BB->hasAddressTaken()) MBB->setHasAddressTaken(); // Create Machine PHI nodes for LLVM PHI nodes, lowering them as // appropriate. DebugLoc DL; for (BasicBlock::const_iterator I = BB->begin(); const PHINode *PN = dyn_cast(I); ++I) { if (PN->use_empty()) continue; unsigned PHIReg = ValueMap[PN]; assert(PHIReg && "PHI node does not have an assigned virtual register!"); SmallVector ValueVTs; ComputeValueVTs(TLI, PN->getType(), ValueVTs); for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { EVT VT = ValueVTs[vti]; unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); for (unsigned i = 0; i != NumRegisters; ++i) BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); PHIReg += NumRegisters; } } } // Mark landing pad blocks. for (BB = Fn->begin(); BB != EB; ++BB) if (const InvokeInst *Invoke = dyn_cast(BB->getTerminator())) MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); } /// clear - Clear out all the function-specific state. This returns this /// FunctionLoweringInfo to an empty state, ready to be used for a /// different function. void FunctionLoweringInfo::clear() { assert(CatchInfoFound.size() == CatchInfoLost.size() && "Not all catch info was assigned to a landing pad!"); MBBMap.clear(); ValueMap.clear(); StaticAllocaMap.clear(); #ifndef NDEBUG CatchInfoLost.clear(); CatchInfoFound.clear(); #endif LiveOutRegInfo.clear(); } unsigned FunctionLoweringInfo::MakeReg(EVT VT) { return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); } /// CreateRegForValue - Allocate the appropriate number of virtual registers of /// the correctly promoted or expanded types. Assign these registers /// consecutive vreg numbers and return the first assigned number. /// /// In the case that the given value has struct or array type, this function /// will assign registers for each member or element. /// unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { SmallVector ValueVTs; ComputeValueVTs(TLI, V->getType(), ValueVTs); unsigned FirstReg = 0; for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { EVT ValueVT = ValueVTs[Value]; EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT); unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT); for (unsigned i = 0; i != NumRegs; ++i) { unsigned R = MakeReg(RegisterVT); if (!FirstReg) FirstReg = R; } } return FirstReg; } /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. GlobalVariable *llvm::ExtractTypeInfo(Value *V) { V = V->stripPointerCasts(); GlobalVariable *GV = dyn_cast(V); if (GV && GV->getName() == ".llvm.eh.catch.all.value") { assert(GV->hasInitializer() && "The EH catch-all value must have an initializer"); Value *Init = GV->getInitializer(); GV = dyn_cast(Init); if (!GV) V = cast(Init); } assert((GV || isa(V)) && "TypeInfo must be a global variable or NULL"); return GV; } /// AddCatchInfo - Extract the personality and type infos from an eh.selector /// call, and add them to the specified machine basic block. void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, MachineBasicBlock *MBB) { // Inform the MachineModuleInfo of the personality for this landing pad. const ConstantExpr *CE = cast(I.getOperand(2)); assert(CE->getOpcode() == Instruction::BitCast && isa(CE->getOperand(0)) && "Personality should be a function"); MMI->addPersonality(MBB, cast(CE->getOperand(0))); // Gather all the type infos for this landing pad and pass them along to // MachineModuleInfo. std::vector TyInfo; unsigned N = I.getNumOperands(); for (unsigned i = N - 1; i > 2; --i) { if (const ConstantInt *CI = dyn_cast(I.getOperand(i))) { unsigned FilterLength = CI->getZExtValue(); unsigned FirstCatch = i + FilterLength + !FilterLength; assert (FirstCatch <= N && "Invalid filter length"); if (FirstCatch < N) { TyInfo.reserve(N - FirstCatch); for (unsigned j = FirstCatch; j < N; ++j) TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); MMI->addCatchTypeInfo(MBB, TyInfo); TyInfo.clear(); } if (!FilterLength) { // Cleanup. MMI->addCleanup(MBB); } else { // Filter. TyInfo.reserve(FilterLength - 1); for (unsigned j = i + 1; j < FirstCatch; ++j) TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); MMI->addFilterTypeInfo(MBB, TyInfo); TyInfo.clear(); } N = i; } } if (N > 3) { TyInfo.reserve(N - 3); for (unsigned j = 3; j < N; ++j) TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); MMI->addCatchTypeInfo(MBB, TyInfo); } } void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB, MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { for (BasicBlock::const_iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I) if (const EHSelectorInst *EHSel = dyn_cast(I)) { // Apply the catch info to DestBB. AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]); #ifndef NDEBUG if (!FLI.MBBMap[SrcBB]->isLandingPad()) FLI.CatchInfoFound.insert(EHSel); #endif } } /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being /// processed uses a memory 'm' constraint. bool llvm::hasInlineAsmMemConstraint(std::vector &CInfos, const TargetLowering &TLI) { for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { InlineAsm::ConstraintInfo &CI = CInfos[i]; for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); if (CType == TargetLowering::C_Memory) return true; } // Indirect operand accesses access memory. if (CI.isIndirect) return true; } return false; } /// getFCmpCondCode - Return the ISD condition code corresponding to /// the given LLVM IR floating-point condition code. This includes /// consideration of global floating-point math flags. /// ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { ISD::CondCode FPC, FOC; switch (Pred) { case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; default: llvm_unreachable("Invalid FCmp predicate opcode!"); FOC = FPC = ISD::SETFALSE; break; } if (FiniteOnlyFPMath()) return FOC; else return FPC; } /// getICmpCondCode - Return the ISD condition code corresponding to /// the given LLVM IR integer condition code. /// ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { switch (Pred) { case ICmpInst::ICMP_EQ: return ISD::SETEQ; case ICmpInst::ICMP_NE: return ISD::SETNE; case ICmpInst::ICMP_SLE: return ISD::SETLE; case ICmpInst::ICMP_ULE: return ISD::SETULE; case ICmpInst::ICMP_SGE: return ISD::SETGE; case ICmpInst::ICMP_UGE: return ISD::SETUGE; case ICmpInst::ICMP_SLT: return ISD::SETLT; case ICmpInst::ICMP_ULT: return ISD::SETULT; case ICmpInst::ICMP_SGT: return ISD::SETGT; case ICmpInst::ICMP_UGT: return ISD::SETUGT; default: llvm_unreachable("Invalid ICmp predicate opcode!"); return ISD::SETNE; } } /// Test if the given instruction is in a position to be optimized /// with a tail-call. This roughly means that it's in a block with /// a return and there's nothing that needs to be scheduled /// between it and the return. /// /// This function only tests target-independent requirements. bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr, const TargetLowering &TLI) { const Instruction *I = CS.getInstruction(); const BasicBlock *ExitBB = I->getParent(); const TerminatorInst *Term = ExitBB->getTerminator(); const ReturnInst *Ret = dyn_cast(Term); const Function *F = ExitBB->getParent(); // The block must end in a return statement or unreachable. // // FIXME: Decline tailcall if it's not guaranteed and if the block ends in // an unreachable, for now. The way tailcall optimization is currently // implemented means it will add an epilogue followed by a jump. That is // not profitable. Also, if the callee is a special function (e.g. // longjmp on x86), it can end up causing miscompilation that has not // been fully understood. if (!Ret && (!GuaranteedTailCallOpt || !isa(Term))) return false; // If I will have a chain, make sure no other instruction that will have a // chain interposes between I and the return. if (I->mayHaveSideEffects() || I->mayReadFromMemory() || !I->isSafeToSpeculativelyExecute()) for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; --BBI) { if (&*BBI == I) break; // Debug info intrinsics do not get in the way of tail call optimization. if (isa(BBI)) continue; if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || !BBI->isSafeToSpeculativelyExecute()) return false; } // If the block ends with a void return or unreachable, it doesn't matter // what the call's return type is. if (!Ret || Ret->getNumOperands() == 0) return true; // If the return value is undef, it doesn't matter what the call's // return type is. if (isa(Ret->getOperand(0))) return true; // Conservatively require the attributes of the call to match those of // the return. Ignore noalias because it doesn't affect the call sequence. unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) return false; // It's not safe to eliminate the sign / zero extension of the return value. if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) return false; // Otherwise, make sure the unmodified return value of I is the return value. for (const Instruction *U = dyn_cast(Ret->getOperand(0)); ; U = dyn_cast(U->getOperand(0))) { if (!U) return false; if (!U->hasOneUse()) return false; if (U == I) break; // Check for a truly no-op truncate. if (isa(U) && TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) continue; // Check for a truly no-op bitcast. if (isa(U) && (U->getOperand(0)->getType() == U->getType() || (U->getOperand(0)->getType()->isPointerTy() && U->getType()->isPointerTy()))) continue; // Otherwise it's not a true no-op. return false; } return true; }