//===-- LiveIntervalUnion.cpp - Live interval union data structure --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // LiveIntervalUnion represents a coalesced set of live intervals. This may be // used during coalescing to represent a congruence class, or during register // allocation to model liveness of a physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "LiveIntervalUnion.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; // Merge a LiveInterval's segments. Guarantee no overlaps. // // Consider coalescing adjacent segments to save space, even though it makes // extraction more complicated. void LiveIntervalUnion::unify(LiveInterval &lvr) { // Insert each of the virtual register's live segments into the map SegmentIter segPos = segments_.begin(); for (LiveInterval::iterator lvrI = lvr.begin(), lvrEnd = lvr.end(); lvrI != lvrEnd; ++lvrI ) { LiveSegment segment(lvrI->start, lvrI->end, lvr); segPos = segments_.insert(segPos, segment); assert(*segPos == segment && "need equal val for equal key"); #ifndef NDEBUG // check for overlap (inductively) if (segPos != segments_.begin()) { SegmentIter prevPos = segPos; --prevPos; assert(prevPos->end <= segment.start && "overlapping segments" ); } SegmentIter nextPos = segPos; ++nextPos; if (nextPos != segments_.end()) assert(segment.end <= nextPos->start && "overlapping segments" ); #endif // NDEBUG } } // Low-level helper to find the first segment in the range [segI,segEnd) that // intersects with a live virtual register segment, or segI.start >= lvr.end // // This logic is tied to the underlying LiveSegments data structure. For now, we // use a binary search within the vector to find the nearest starting position, // then reverse iterate to find the first overlap. // // Upon entry we have segI.start < lvrSeg.end // seg |--... // \ . // lvr ...-| // // After binary search, we have segI.start >= lvrSeg.start: // seg |--... // / // lvr |--... // // Assuming intervals are disjoint, if an intersection exists, it must be the // segment found or immediately behind it. We continue reverse iterating to // return the first overlap. typedef LiveIntervalUnion::SegmentIter SegmentIter; static SegmentIter upperBound(SegmentIter segBegin, SegmentIter segEnd, const LiveRange &lvrSeg) { assert(lvrSeg.end > segBegin->start && "segment iterator precondition"); // get the next LIU segment such that setg.start is not less than // lvrSeg.start SegmentIter segI = std::upper_bound(segBegin, segEnd, lvrSeg.start); while (segI != segBegin) { --segI; if (lvrSeg.start >= segI->end) return ++segI; } return segI; } // Private interface accessed by Query. // // Find a pair of segments that intersect, one in the live virtual register // (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query) // is responsible for advancing the LiveIntervalUnion segments to find a // "notable" intersection, which requires query-specific logic. // // This design assumes only a fast mechanism for intersecting a single live // virtual register segment with a set of LiveIntervalUnion segments. This may // be ok since most LVRs have very few segments. If we had a data // structure that optimizd MxN intersection of segments, then we would bypass // the loop that advances within the LiveInterval. // // If no intersection exists, set lvrI = lvrEnd, and set segI to the first // segment whose start point is greater than LiveInterval's end point. // // Assumes that segments are sorted by start position in both // LiveInterval and LiveSegments. void LiveIntervalUnion::Query::findIntersection(InterferenceResult &ir) const { LiveInterval::iterator lvrEnd = lvr_.end(); SegmentIter liuEnd = liu_.end(); while (ir.liuSegI_ != liuEnd) { // Slowly advance the live virtual reg iterator until we surpass the next // segment in this union. If this is ever used for coalescing of fixed // registers and we have a LiveInterval with thousands of segments, then use // upper bound instead. while (ir.lvrSegI_ != lvrEnd && ir.lvrSegI_->end <= ir.liuSegI_->start) ++ir.lvrSegI_; if (ir.lvrSegI_ == lvrEnd) break; // lvrSegI_ may have advanced far beyond liuSegI_, // do a fast intersection test to "catch up" ir.liuSegI_ = upperBound(ir.liuSegI_, liuEnd, *ir.lvrSegI_); // Check if no liuSegI_ exists with lvrSegI_->start < liuSegI_.end if (ir.liuSegI_ == liuEnd) break; if (ir.liuSegI_->start < ir.lvrSegI_->end) { assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) && "upperBound postcondition"); break; } } if (ir.liuSegI_ == liuEnd) ir.lvrSegI_ = lvrEnd; } // Find the first intersection, and cache interference info // (retain segment iterators into both lvr_ and liu_). LiveIntervalUnion::InterferenceResult LiveIntervalUnion::Query::firstInterference() { if (firstInterference_ != LiveIntervalUnion::InterferenceResult()) { return firstInterference_; } firstInterference_ = InterferenceResult(lvr_.begin(), liu_.begin()); findIntersection(firstInterference_); return firstInterference_; } // Treat the result as an iterator and advance to the next interfering pair // of segments. This is a plain iterator with no filter. bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &ir) const { assert(isInterference(ir) && "iteration past end of interferences"); // Advance either the lvr or liu segment to ensure that we visit all unique // overlapping pairs. if (ir.lvrSegI_->end < ir.liuSegI_->end) { if (++ir.lvrSegI_ == lvr_.end()) return false; } else { if (++ir.liuSegI_ == liu_.end()) { ir.lvrSegI_ = lvr_.end(); return false; } } if (overlap(*ir.lvrSegI_, *ir.liuSegI_)) return true; // find the next intersection findIntersection(ir); return isInterference(ir); }