//===- Support/CommandLine.h - Flexible Command line parser ------*- C++ -*--=// // // This class implements a command line argument processor that is useful when // creating a tool. It provides a simple, minimalistic interface that is easily // extensible and supports nonlocal (library) command line options. // // Note that rather than trying to figure out what this code does, you should // read the library documentation located in docs/CommandLine.html or looks at // the many example usages in tools/*/*.cpp // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_COMMANDLINE_H #define LLVM_SUPPORT_COMMANDLINE_H #include #include #include #include #include "boost/type_traits/object_traits.hpp" namespace cl { // Short namespace to make usage concise //===----------------------------------------------------------------------===// // ParseCommandLineOptions - Command line option processing entry point. // void cl::ParseCommandLineOptions(int &argc, char **argv, const char *Overview = 0); //===----------------------------------------------------------------------===// // Flags permitted to be passed to command line arguments // enum NumOccurances { // Flags for the number of occurances allowed... Optional = 0x01, // Zero or One occurance ZeroOrMore = 0x02, // Zero or more occurances allowed Required = 0x03, // One occurance required OneOrMore = 0x04, // One or more occurances required // ConsumeAfter - Indicates that this option is fed anything that follows the // last positional argument required by the application (it is an error if // there are zero positional arguments, and a ConsumeAfter option is used). // Thus, for example, all arguments to LLI are processed until a filename is // found. Once a filename is found, all of the succeeding arguments are // passed, unprocessed, to the ConsumeAfter option. // ConsumeAfter = 0x05, OccurancesMask = 0x07, }; enum ValueExpected { // Is a value required for the option? ValueOptional = 0x08, // The value can oppear... or not ValueRequired = 0x10, // The value is required to appear! ValueDisallowed = 0x18, // A value may not be specified (for flags) ValueMask = 0x18, }; enum OptionHidden { // Control whether -help shows this option NotHidden = 0x20, // Option included in --help & --help-hidden Hidden = 0x40, // -help doesn't, but --help-hidden does ReallyHidden = 0x60, // Neither --help nor --help-hidden show this arg HiddenMask = 0x60, }; // Formatting flags - This controls special features that the option might have // that cause it to be parsed differently... // // Prefix - This option allows arguments that are otherwise unrecognized to be // matched by options that are a prefix of the actual value. This is useful for // cases like a linker, where options are typically of the form '-lfoo' or // '-L../../include' where -l or -L are the actual flags. When prefix is // enabled, and used, the value for the flag comes from the suffix of the // argument. // // Grouping - With this option enabled, multiple letter options are allowed to // bunch together with only a single hyphen for the whole group. This allows // emulation of the behavior that ls uses for example: ls -la === ls -l -a // enum FormattingFlags { NormalFormatting = 0x000, // Nothing special Positional = 0x080, // Is a positional argument, no '-' required Prefix = 0x100, // Can this option directly prefix its value? Grouping = 0x180, // Can this option group with other options? FormattingMask = 0x180, }; //===----------------------------------------------------------------------===// // Option Base class // class alias; class Option { friend void cl::ParseCommandLineOptions(int &, char **, const char *, int); friend class alias; // handleOccurances - Overriden by subclasses to handle the value passed into // an argument. Should return true if there was an error processing the // argument and the program should exit. // virtual bool handleOccurance(const char *ArgName, const std::string &Arg) = 0; virtual enum NumOccurances getNumOccurancesFlagDefault() const { return Optional; } virtual enum ValueExpected getValueExpectedFlagDefault() const { return ValueOptional; } virtual enum OptionHidden getOptionHiddenFlagDefault() const { return NotHidden; } virtual enum FormattingFlags getFormattingFlagDefault() const { return NormalFormatting; } int NumOccurances; // The number of times specified int Flags; // Flags for the argument public: const char *ArgStr; // The argument string itself (ex: "help", "o") const char *HelpStr; // The descriptive text message for --help const char *ValueStr; // String describing what the value of this option is inline enum NumOccurances getNumOccurancesFlag() const { int NO = Flags & OccurancesMask; return NO ? (enum NumOccurances)NO : getNumOccurancesFlagDefault(); } inline enum ValueExpected getValueExpectedFlag() const { int VE = Flags & ValueMask; return VE ? (enum ValueExpected)VE : getValueExpectedFlagDefault(); } inline enum OptionHidden getOptionHiddenFlag() const { int OH = Flags & HiddenMask; return OH ? (enum OptionHidden)OH : getOptionHiddenFlagDefault(); } inline enum FormattingFlags getFormattingFlag() const { int OH = Flags & FormattingMask; return OH ? (enum FormattingFlags)OH : getFormattingFlagDefault(); } // hasArgStr - Return true if the argstr != "" bool hasArgStr() const { return ArgStr[0] != 0; } //-------------------------------------------------------------------------=== // Accessor functions set by OptionModifiers // void setArgStr(const char *S) { ArgStr = S; } void setDescription(const char *S) { HelpStr = S; } void setValueStr(const char *S) { ValueStr = S; } void setFlag(unsigned Flag, unsigned FlagMask) { if (Flags & FlagMask) { error(": Specified two settings for the same option!"); exit(1); } Flags |= Flag; } void setNumOccurancesFlag(enum NumOccurances Val) { setFlag(Val, OccurancesMask); } void setValueExpectedFlag(enum ValueExpected Val) { setFlag(Val, ValueMask); } void setHiddenFlag(enum OptionHidden Val) { setFlag(Val, HiddenMask); } void setFormattingFlag(enum FormattingFlags V) { setFlag(V, FormattingMask); } protected: Option() : NumOccurances(0), Flags(0), ArgStr(""), HelpStr(""), ValueStr("") {} public: // addArgument - Tell the system that this Option subclass will handle all // occurances of -ArgStr on the command line. // void addArgument(const char *ArgStr); void removeArgument(const char *ArgStr); // Return the width of the option tag for printing... virtual unsigned getOptionWidth() const = 0; // printOptionInfo - Print out information about this option. The // to-be-maintained width is specified. // virtual void printOptionInfo(unsigned GlobalWidth) const = 0; // addOccurance - Wrapper around handleOccurance that enforces Flags // bool addOccurance(const char *ArgName, const std::string &Value); // Prints option name followed by message. Always returns true. bool error(std::string Message, const char *ArgName = 0); public: inline int getNumOccurances() const { return NumOccurances; } virtual ~Option() {} }; //===----------------------------------------------------------------------===// // Command line option modifiers that can be used to modify the behavior of // command line option parsers... // // desc - Modifier to set the description shown in the --help output... struct desc { const char *Desc; desc(const char *Str) : Desc(Str) {} void apply(Option &O) const { O.setDescription(Desc); } }; // value_desc - Modifier to set the value description shown in the --help // output... struct value_desc { const char *Desc; value_desc(const char *Str) : Desc(Str) {} void apply(Option &O) const { O.setValueStr(Desc); } }; // init - Specify a default (initial) value for the command line argument, if // the default constructor for the argument type does not give you what you // want. This is only valid on "opt" arguments, not on "list" arguments. // template struct initializer { const Ty &Init; initializer(const Ty &Val) : Init(Val) {} template void apply(Opt &O) const { O.setInitialValue(Init); } }; template initializer init(const Ty &Val) { return initializer(Val); } // location - Allow the user to specify which external variable they want to // store the results of the command line argument processing into, if they don't // want to store it in the option itself. // template struct LocationClass { Ty &Loc; LocationClass(Ty &L) : Loc(L) {} template void apply(Opt &O) const { O.setLocation(O, Loc); } }; template LocationClass location(Ty &L) { return LocationClass(L); } //===----------------------------------------------------------------------===// // Enum valued command line option // #define clEnumVal(ENUMVAL, DESC) #ENUMVAL, (int)ENUMVAL, DESC #define clEnumValN(ENUMVAL, FLAGNAME, DESC) FLAGNAME, (int)ENUMVAL, DESC // values - For custom data types, allow specifying a group of values together // as the values that go into the mapping that the option handler uses. Note // that the values list must always have a 0 at the end of the list to indicate // that the list has ended. // template class ValuesClass { // Use a vector instead of a map, because the lists should be short, // the overhead is less, and most importantly, it keeps them in the order // inserted so we can print our option out nicely. std::vector > > Values; void processValues(va_list Vals); public: ValuesClass(const char *EnumName, DataType Val, const char *Desc, va_list ValueArgs) { // Insert the first value, which is required. Values.push_back(std::make_pair(EnumName, std::make_pair(Val, Desc))); // Process the varargs portion of the values... while (const char *EnumName = va_arg(ValueArgs, const char *)) { DataType EnumVal = (DataType)va_arg(ValueArgs, int); const char *EnumDesc = va_arg(ValueArgs, const char *); Values.push_back(std::make_pair(EnumName, // Add value to value map std::make_pair(EnumVal, EnumDesc))); } } template void apply(Opt &O) const { for (unsigned i = 0, e = Values.size(); i != e; ++i) O.getParser().addLiteralOption(Values[i].first, Values[i].second.first, Values[i].second.second); } }; template ValuesClass values(const char *Arg, DataType Val, const char *Desc, ...) { va_list ValueArgs; va_start(ValueArgs, Desc); ValuesClass Vals(Arg, Val, Desc, ValueArgs); va_end(ValueArgs); return Vals; } //===----------------------------------------------------------------------===// // parser class - Parameterizable parser for different data types. By default, // known data types (string, int, bool) have specialized parsers, that do what // you would expect. The default parser, used for data types that are not // built-in, uses a mapping table to map specific options to values, which is // used, among other things, to handle enum types. //-------------------------------------------------- // generic_parser_base - This class holds all the non-generic code that we do // not need replicated for every instance of the generic parser. This also // allows us to put stuff into CommandLine.cpp // struct generic_parser_base { virtual ~generic_parser_base() {} // Base class should have virtual-dtor // getNumOptions - Virtual function implemented by generic subclass to // indicate how many entries are in Values. // virtual unsigned getNumOptions() const = 0; // getOption - Return option name N. virtual const char *getOption(unsigned N) const = 0; // getDescription - Return description N virtual const char *getDescription(unsigned N) const = 0; // Return the width of the option tag for printing... virtual unsigned getOptionWidth(const Option &O) const; // printOptionInfo - Print out information about this option. The // to-be-maintained width is specified. // virtual void printOptionInfo(const Option &O, unsigned GlobalWidth) const; void initialize(Option &O) { // All of the modifiers for the option have been processed by now, so the // argstr field should be stable, copy it down now. // hasArgStr = O.hasArgStr(); // If there has been no argstr specified, that means that we need to add an // argument for every possible option. This ensures that our options are // vectored to us. // if (!hasArgStr) for (unsigned i = 0, e = getNumOptions(); i != e; ++i) O.addArgument(getOption(i)); } enum ValueExpected getValueExpectedFlagDefault() const { // If there is an ArgStr specified, then we are of the form: // // -opt=O2 or -opt O2 or -optO2 // // In which case, the value is required. Otherwise if an arg str has not // been specified, we are of the form: // // -O2 or O2 or -la (where -l and -a are seperate options) // // If this is the case, we cannot allow a value. // if (hasArgStr) return ValueRequired; else return ValueDisallowed; } // findOption - Return the option number corresponding to the specified // argument string. If the option is not found, getNumOptions() is returned. // unsigned findOption(const char *Name); protected: bool hasArgStr; }; // Default parser implementation - This implementation depends on having a // mapping of recognized options to values of some sort. In addition to this, // each entry in the mapping also tracks a help message that is printed with the // command line option for --help. Because this is a simple mapping parser, the // data type can be any unsupported type. // template class parser : public generic_parser_base { protected: std::vector > > Values; public: // Implement virtual functions needed by generic_parser_base unsigned getNumOptions() const { return Values.size(); } const char *getOption(unsigned N) const { return Values[N].first; } const char *getDescription(unsigned N) const { return Values[N].second.second; } // Default implementation, requires user to populate it with values somehow. template // parse - Return true on error. bool parse(Opt &O, const char *ArgName, const string &Arg) { string ArgVal; if (hasArgStr) ArgVal = Arg; else ArgVal = ArgName; for (unsigned i = 0, e = Values.size(); i != e; ++i) if (ArgVal == Values[i].first) { O.addValue(Values[i].second.first); return false; } return O.error(": Cannot find option named '" + ArgVal + "'!"); } // addLiteralOption - Add an entry to the mapping table... template void addLiteralOption(const char *Name, const DT &V, const char *HelpStr) { assert(findOption(Name) == Values.size() && "Option already exists!"); Values.push_back(std::make_pair(Name, std::make_pair((DataType)V,HelpStr))); } // removeLiteralOption - Remove the specified option. // void removeLiteralOption(const char *Name) { unsigned N = findOption(Name); assert(N != Values.size() && "Option not found!"); Values.erase(Values.begin()+N); } }; //-------------------------------------------------- // parser // template<> class parser { static bool parseImpl(Option &O, const string &Arg, bool &Val); public: template // parse - Return true on error. bool parse(Opt &O, const char *ArgName, const string &Arg) { bool Val; bool Error = parseImpl(O, Arg, Val); if (!Error) O.addValue(Val); return Error; } enum ValueExpected getValueExpectedFlagDefault() const { return ValueOptional; } void initialize(Option &O) {} // Return the width of the option tag for printing... virtual unsigned getOptionWidth(const Option &O) const; // printOptionInfo - Print out information about this option. The // to-be-maintained width is specified. // virtual void printOptionInfo(const Option &O, unsigned GlobalWidth) const; }; //-------------------------------------------------- // parser // template<> class parser { static bool parseImpl(Option &O, const string &Arg, int &Val); public: // parse - Return true on error. template bool parse(Opt &O, const char *ArgName, const string &Arg) { int Val; bool Error = parseImpl(O, Arg, Val); if (!Error) O.addValue(Val); return Error; } enum ValueExpected getValueExpectedFlagDefault() const { return ValueRequired; } void initialize(Option &O) {} // Return the width of the option tag for printing... virtual unsigned getOptionWidth(const Option &O) const; // printOptionInfo - Print out information about this option. The // to-be-maintained width is specified. // virtual void printOptionInfo(const Option &O, unsigned GlobalWidth) const; }; //-------------------------------------------------- // parser // template<> class parser { static bool parseImpl(Option &O, const string &Arg, double &Val); public: // parse - Return true on error. template bool parse(Opt &O, const char *ArgName, const string &Arg) { double Val; bool Error = parseImpl(O, Arg, Val); if (!Error) O.addValue(Val); return Error; } enum ValueExpected getValueExpectedFlagDefault() const { return ValueRequired; } void initialize(Option &O) {} // Return the width of the option tag for printing... virtual unsigned getOptionWidth(const Option &O) const; // printOptionInfo - Print out information about this option. The // to-be-maintained width is specified. // virtual void printOptionInfo(const Option &O, unsigned GlobalWidth) const; }; // Parser is the same as parser template<> struct parser : public parser {}; //-------------------------------------------------- // parser // template<> struct parser { // parse - Return true on error. template bool parse(Opt &O, const char *ArgName, const string &Arg) { O.addValue(Arg); return false; } enum ValueExpected getValueExpectedFlagDefault() const { return ValueRequired; } void initialize(Option &O) {} // Return the width of the option tag for printing... virtual unsigned getOptionWidth(const Option &O) const; // printOptionInfo - Print out information about this option. The // to-be-maintained width is specified. // virtual void printOptionInfo(const Option &O, unsigned GlobalWidth) const; }; //===----------------------------------------------------------------------===// // applicator class - This class is used because we must use partial // specialization to handle literal string arguments specially (const char* does // not correctly respond to the apply method). Because the syntax to use this // is a pain, we have the 'apply' method below to handle the nastiness... // template struct applicator { template static void opt(const Mod &M, Opt &O) { M.apply(O); } }; // Handle const char* as a special case... template struct applicator { template static void opt(const char *Str, Opt &O) { O.setArgStr(Str); } }; template<> struct applicator { template static void opt(const char *Str, Opt &O) { O.setArgStr(Str); } }; template<> struct applicator { static void opt(NumOccurances NO, Option &O) { O.setNumOccurancesFlag(NO); } }; template<> struct applicator { static void opt(ValueExpected VE, Option &O) { O.setValueExpectedFlag(VE); } }; template<> struct applicator { static void opt(OptionHidden OH, Option &O) { O.setHiddenFlag(OH); } }; template<> struct applicator { static void opt(FormattingFlags FF, Option &O) { O.setFormattingFlag(FF); } }; // apply method - Apply a modifier to an option in a type safe way. template void apply(const Mod &M, Opt *O) { applicator::opt(M, *O); } //===----------------------------------------------------------------------===// // opt_storage class // Default storage class definition: external storage. This implementation // assumes the user will specify a variable to store the data into with the // cl::location(x) modifier. // template class opt_storage { DataType *Location; // Where to store the object... void check() { assert(Location != 0 && "cl::location(...) not specified for a command " "line option with external storage!"); } public: opt_storage() : Location(0) {} bool setLocation(Option &O, DataType &L) { if (Location) return O.error(": cl::location(x) specified more than once!"); Location = &L; return false; } template void setValue(const T &V) { check(); *Location = V; } DataType &getValue() { check(); return *Location; } const DataType &getValue() const { check(); return *Location; } }; // Define how to hold a class type object, such as a string. Since we can // inherit from a class, we do so. This makes us exactly compatible with the // object in all cases that it is used. // template struct opt_storage : public DataType { template void setValue(const T &V) { DataType::operator=(V); } DataType &getValue() { return *this; } const DataType &getValue() const { return *this; } }; // Define a partial specialization to handle things we cannot inherit from. In // this case, we store an instance through containment, and overload operators // to get at the value. // template struct opt_storage { DataType Value; // Make sure we initialize the value with the default constructor for the // type. opt_storage() : Value(DataType()) {} template void setValue(const T &V) { Value = V; } DataType &getValue() { return Value; } DataType getValue() const { return Value; } }; //===----------------------------------------------------------------------===// // opt - A scalar command line option. // template > class opt : public Option, public opt_storage::value>{ ParserClass Parser; virtual bool handleOccurance(const char *ArgName, const std::string &Arg) { return Parser.parse(*this, ArgName, Arg); } virtual enum ValueExpected getValueExpectedFlagDefault() const { return Parser.getValueExpectedFlagDefault(); } // Forward printing stuff to the parser... virtual unsigned getOptionWidth() const {return Parser.getOptionWidth(*this);} virtual void printOptionInfo(unsigned GlobalWidth) const { Parser.printOptionInfo(*this, GlobalWidth); } void done() { addArgument(ArgStr); Parser.initialize(*this); } public: // setInitialValue - Used by the cl::init modifier... void setInitialValue(const DataType &V) { setValue(V); } // addValue - Used by the parser to add a value to the option template void addValue(const T &V) { setValue(V); } ParserClass &getParser() { return Parser; } operator DataType() const { return getValue(); } template DataType &operator=(const T &Val) { setValue(Val); return getValue(); } // One option... template opt(const M0t &M0) { apply(M0, this); done(); } // Two options... template opt(const M0t &M0, const M1t &M1) { apply(M0, this); apply(M1, this); done(); } // Three options... template opt(const M0t &M0, const M1t &M1, const M2t &M2) { apply(M0, this); apply(M1, this); apply(M2, this); done(); } // Four options... template opt(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); done(); } // Five options... template opt(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3, const M4t &M4) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); apply(M4, this); done(); } // Six options... template opt(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3, const M4t &M4, const M5t &M5) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); apply(M4, this); apply(M5, this); done(); } // Seven options... template opt(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3, const M4t &M4, const M5t &M5, const M6t &M6) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); apply(M4, this); apply(M5, this); apply(M6, this); done(); } // Eight options... template opt(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3, const M4t &M4, const M5t &M5, const M6t &M6, const M7t &M7) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); apply(M4, this); apply(M5, this); apply(M6, this); apply(M7, this); done(); } }; //===----------------------------------------------------------------------===// // list_storage class // Default storage class definition: external storage. This implementation // assumes the user will specify a variable to store the data into with the // cl::location(x) modifier. // template class list_storage { StorageClass *Location; // Where to store the object... public: list_storage() : Location(0) {} bool setLocation(Option &O, StorageClass &L) { if (Location) return O.error(": cl::location(x) specified more than once!"); Location = &L; return false; } template void addValue(const T &V) { assert(Location != 0 && "cl::location(...) not specified for a command " "line option with external storage!"); Location->push_back(V); } }; // Define how to hold a class type object, such as a string. Since we can // inherit from a class, we do so. This makes us exactly compatible with the // object in all cases that it is used. // template struct list_storage : public std::vector { template void addValue(const T &V) { push_back(V); } }; //===----------------------------------------------------------------------===// // list - A list of command line options. // template > class list : public Option, public list_storage { ParserClass Parser; virtual enum NumOccurances getNumOccurancesFlagDefault() const { return ZeroOrMore; } virtual enum ValueExpected getValueExpectedFlagDefault() const { return Parser.getValueExpectedFlagDefault(); } virtual bool handleOccurance(const char *ArgName, const std::string &Arg) { return Parser.parse(*this, ArgName, Arg); } // Forward printing stuff to the parser... virtual unsigned getOptionWidth() const {return Parser.getOptionWidth(*this);} virtual void printOptionInfo(unsigned GlobalWidth) const { Parser.printOptionInfo(*this, GlobalWidth); } void done() { addArgument(ArgStr); Parser.initialize(*this); } public: ParserClass &getParser() { return Parser; } // One option... template list(const M0t &M0) { apply(M0, this); done(); } // Two options... template list(const M0t &M0, const M1t &M1) { apply(M0, this); apply(M1, this); done(); } // Three options... template list(const M0t &M0, const M1t &M1, const M2t &M2) { apply(M0, this); apply(M1, this); apply(M2, this); done(); } // Four options... template list(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); done(); } // Five options... template list(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3, const M4t &M4) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); apply(M4, this); done(); } // Six options... template list(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3, const M4t &M4, const M5t &M5) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); apply(M4, this); apply(M5, this); done(); } // Seven options... template list(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3, const M4t &M4, const M5t &M5, const M6t &M6) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); apply(M4, this); apply(M5, this); apply(M6, this); done(); } // Eight options... template list(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3, const M4t &M4, const M5t &M5, const M6t &M6, const M7t &M7) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); apply(M4, this); apply(M5, this); apply(M6, this); apply(M7, this); done(); } }; //===----------------------------------------------------------------------===// // Aliased command line option (alias this name to a preexisting name) // class alias : public Option { Option *AliasFor; virtual bool handleOccurance(const char *ArgName, const std::string &Arg) { return AliasFor->handleOccurance(AliasFor->ArgStr, Arg); } // Aliases default to be hidden... virtual enum OptionHidden getOptionHiddenFlagDefault() const {return Hidden;} // Handle printing stuff... virtual unsigned getOptionWidth() const; virtual void printOptionInfo(unsigned GlobalWidth) const; void done() { if (!hasArgStr()) error(": cl::alias must have argument name specified!"); if (AliasFor == 0) error(": cl::alias must have an cl::aliasopt(option) specified!"); addArgument(ArgStr); } public: void setAliasFor(Option &O) { if (AliasFor) error(": cl::alias must only have one cl::aliasopt(...) specified!"); AliasFor = &O; } // One option... template alias(const M0t &M0) : AliasFor(0) { apply(M0, this); done(); } // Two options... template alias(const M0t &M0, const M1t &M1) : AliasFor(0) { apply(M0, this); apply(M1, this); done(); } // Three options... template alias(const M0t &M0, const M1t &M1, const M2t &M2) : AliasFor(0) { apply(M0, this); apply(M1, this); apply(M2, this); done(); } // Four options... template alias(const M0t &M0, const M1t &M1, const M2t &M2, const M3t &M3) : AliasFor(0) { apply(M0, this); apply(M1, this); apply(M2, this); apply(M3, this); done(); } }; // aliasfor - Modifier to set the option an alias aliases. struct aliasopt { Option &Opt; aliasopt(Option &O) : Opt(O) {} void apply(alias &A) const { A.setAliasFor(Opt); } }; } // End namespace cl #endif