//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAG class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Constants.h" #include "llvm/GlobalVariable.h" #include "llvm/Intrinsics.h" #include "llvm/DerivedTypes.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include #include using namespace llvm; /// makeVTList - Return an instance of the SDVTList struct initialized with the /// specified members. static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) { SDVTList Res = {VTs, NumVTs}; return Res; } //===----------------------------------------------------------------------===// // ConstantFPSDNode Class //===----------------------------------------------------------------------===// /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. bool ConstantFPSDNode::isExactlyValue(double V) const { return DoubleToBits(V) == DoubleToBits(Value); } //===----------------------------------------------------------------------===// // ISD Namespace //===----------------------------------------------------------------------===// /// isBuildVectorAllOnes - Return true if the specified node is a /// BUILD_VECTOR where all of the elements are ~0 or undef. bool ISD::isBuildVectorAllOnes(const SDNode *N) { // Look through a bit convert. if (N->getOpcode() == ISD::BIT_CONVERT) N = N->getOperand(0).Val; if (N->getOpcode() != ISD::BUILD_VECTOR) return false; unsigned i = 0, e = N->getNumOperands(); // Skip over all of the undef values. while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) ++i; // Do not accept an all-undef vector. if (i == e) return false; // Do not accept build_vectors that aren't all constants or which have non-~0 // elements. SDOperand NotZero = N->getOperand(i); if (isa(NotZero)) { if (!cast(NotZero)->isAllOnesValue()) return false; } else if (isa(NotZero)) { MVT::ValueType VT = NotZero.getValueType(); if (VT== MVT::f64) { if (DoubleToBits(cast(NotZero)->getValue()) != (uint64_t)-1) return false; } else { if (FloatToBits(cast(NotZero)->getValue()) != (uint32_t)-1) return false; } } else return false; // Okay, we have at least one ~0 value, check to see if the rest match or are // undefs. for (++i; i != e; ++i) if (N->getOperand(i) != NotZero && N->getOperand(i).getOpcode() != ISD::UNDEF) return false; return true; } /// isBuildVectorAllZeros - Return true if the specified node is a /// BUILD_VECTOR where all of the elements are 0 or undef. bool ISD::isBuildVectorAllZeros(const SDNode *N) { // Look through a bit convert. if (N->getOpcode() == ISD::BIT_CONVERT) N = N->getOperand(0).Val; if (N->getOpcode() != ISD::BUILD_VECTOR) return false; unsigned i = 0, e = N->getNumOperands(); // Skip over all of the undef values. while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) ++i; // Do not accept an all-undef vector. if (i == e) return false; // Do not accept build_vectors that aren't all constants or which have non-~0 // elements. SDOperand Zero = N->getOperand(i); if (isa(Zero)) { if (!cast(Zero)->isNullValue()) return false; } else if (isa(Zero)) { if (!cast(Zero)->isExactlyValue(0.0)) return false; } else return false; // Okay, we have at least one ~0 value, check to see if the rest match or are // undefs. for (++i; i != e; ++i) if (N->getOperand(i) != Zero && N->getOperand(i).getOpcode() != ISD::UNDEF) return false; return true; } /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) /// when given the operation for (X op Y). ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { // To perform this operation, we just need to swap the L and G bits of the // operation. unsigned OldL = (Operation >> 2) & 1; unsigned OldG = (Operation >> 1) & 1; return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits (OldL << 1) | // New G bit (OldG << 2)); // New L bit. } /// getSetCCInverse - Return the operation corresponding to !(X op Y), where /// 'op' is a valid SetCC operation. ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { unsigned Operation = Op; if (isInteger) Operation ^= 7; // Flip L, G, E bits, but not U. else Operation ^= 15; // Flip all of the condition bits. if (Operation > ISD::SETTRUE2) Operation &= ~8; // Don't let N and U bits get set. return ISD::CondCode(Operation); } /// isSignedOp - For an integer comparison, return 1 if the comparison is a /// signed operation and 2 if the result is an unsigned comparison. Return zero /// if the operation does not depend on the sign of the input (setne and seteq). static int isSignedOp(ISD::CondCode Opcode) { switch (Opcode) { default: assert(0 && "Illegal integer setcc operation!"); case ISD::SETEQ: case ISD::SETNE: return 0; case ISD::SETLT: case ISD::SETLE: case ISD::SETGT: case ISD::SETGE: return 1; case ISD::SETULT: case ISD::SETULE: case ISD::SETUGT: case ISD::SETUGE: return 2; } } /// getSetCCOrOperation - Return the result of a logical OR between different /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function /// returns SETCC_INVALID if it is not possible to represent the resultant /// comparison. ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, bool isInteger) { if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) // Cannot fold a signed integer setcc with an unsigned integer setcc. return ISD::SETCC_INVALID; unsigned Op = Op1 | Op2; // Combine all of the condition bits. // If the N and U bits get set then the resultant comparison DOES suddenly // care about orderedness, and is true when ordered. if (Op > ISD::SETTRUE2) Op &= ~16; // Clear the U bit if the N bit is set. // Canonicalize illegal integer setcc's. if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT Op = ISD::SETNE; return ISD::CondCode(Op); } /// getSetCCAndOperation - Return the result of a logical AND between different /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This /// function returns zero if it is not possible to represent the resultant /// comparison. ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, bool isInteger) { if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) // Cannot fold a signed setcc with an unsigned setcc. return ISD::SETCC_INVALID; // Combine all of the condition bits. ISD::CondCode Result = ISD::CondCode(Op1 & Op2); // Canonicalize illegal integer setcc's. if (isInteger) { switch (Result) { default: break; case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE } } return Result; } const TargetMachine &SelectionDAG::getTarget() const { return TLI.getTargetMachine(); } //===----------------------------------------------------------------------===// // SDNode Profile Support //===----------------------------------------------------------------------===// /// AddNodeIDOpcode - Add the node opcode to the NodeID data. /// static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { ID.AddInteger(OpC); } /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them /// solely with their pointer. void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { ID.AddPointer(VTList.VTs); } /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. /// static void AddNodeIDOperands(FoldingSetNodeID &ID, const SDOperand *Ops, unsigned NumOps) { for (; NumOps; --NumOps, ++Ops) { ID.AddPointer(Ops->Val); ID.AddInteger(Ops->ResNo); } } static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, SDVTList VTList, const SDOperand *OpList, unsigned N) { AddNodeIDOpcode(ID, OpC); AddNodeIDValueTypes(ID, VTList); AddNodeIDOperands(ID, OpList, N); } /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID /// data. static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) { AddNodeIDOpcode(ID, N->getOpcode()); // Add the return value info. AddNodeIDValueTypes(ID, N->getVTList()); // Add the operand info. AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands()); // Handle SDNode leafs with special info. switch (N->getOpcode()) { default: break; // Normal nodes don't need extra info. case ISD::TargetConstant: case ISD::Constant: ID.AddInteger(cast(N)->getValue()); break; case ISD::TargetConstantFP: case ISD::ConstantFP: ID.AddDouble(cast(N)->getValue()); break; case ISD::TargetGlobalAddress: case ISD::GlobalAddress: case ISD::TargetGlobalTLSAddress: case ISD::GlobalTLSAddress: { GlobalAddressSDNode *GA = cast(N); ID.AddPointer(GA->getGlobal()); ID.AddInteger(GA->getOffset()); break; } case ISD::BasicBlock: ID.AddPointer(cast(N)->getBasicBlock()); break; case ISD::Register: ID.AddInteger(cast(N)->getReg()); break; case ISD::SRCVALUE: { SrcValueSDNode *SV = cast(N); ID.AddPointer(SV->getValue()); ID.AddInteger(SV->getOffset()); break; } case ISD::FrameIndex: case ISD::TargetFrameIndex: ID.AddInteger(cast(N)->getIndex()); break; case ISD::JumpTable: case ISD::TargetJumpTable: ID.AddInteger(cast(N)->getIndex()); break; case ISD::ConstantPool: case ISD::TargetConstantPool: { ConstantPoolSDNode *CP = cast(N); ID.AddInteger(CP->getAlignment()); ID.AddInteger(CP->getOffset()); if (CP->isMachineConstantPoolEntry()) CP->getMachineCPVal()->AddSelectionDAGCSEId(ID); else ID.AddPointer(CP->getConstVal()); break; } case ISD::LOAD: { LoadSDNode *LD = cast(N); ID.AddInteger(LD->getAddressingMode()); ID.AddInteger(LD->getExtensionType()); ID.AddInteger(LD->getLoadedVT()); ID.AddPointer(LD->getSrcValue()); ID.AddInteger(LD->getSrcValueOffset()); ID.AddInteger(LD->getAlignment()); ID.AddInteger(LD->isVolatile()); break; } case ISD::STORE: { StoreSDNode *ST = cast(N); ID.AddInteger(ST->getAddressingMode()); ID.AddInteger(ST->isTruncatingStore()); ID.AddInteger(ST->getStoredVT()); ID.AddPointer(ST->getSrcValue()); ID.AddInteger(ST->getSrcValueOffset()); ID.AddInteger(ST->getAlignment()); ID.AddInteger(ST->isVolatile()); break; } } } //===----------------------------------------------------------------------===// // SelectionDAG Class //===----------------------------------------------------------------------===// /// RemoveDeadNodes - This method deletes all unreachable nodes in the /// SelectionDAG. void SelectionDAG::RemoveDeadNodes() { // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted. HandleSDNode Dummy(getRoot()); SmallVector DeadNodes; // Add all obviously-dead nodes to the DeadNodes worklist. for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) if (I->use_empty()) DeadNodes.push_back(I); // Process the worklist, deleting the nodes and adding their uses to the // worklist. while (!DeadNodes.empty()) { SDNode *N = DeadNodes.back(); DeadNodes.pop_back(); // Take the node out of the appropriate CSE map. RemoveNodeFromCSEMaps(N); // Next, brutally remove the operand list. This is safe to do, as there are // no cycles in the graph. for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { SDNode *Operand = I->Val; Operand->removeUser(N); // Now that we removed this operand, see if there are no uses of it left. if (Operand->use_empty()) DeadNodes.push_back(Operand); } if (N->OperandsNeedDelete) delete[] N->OperandList; N->OperandList = 0; N->NumOperands = 0; // Finally, remove N itself. AllNodes.erase(N); } // If the root changed (e.g. it was a dead load, update the root). setRoot(Dummy.getValue()); } void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector &Deleted) { SmallVector DeadNodes; DeadNodes.push_back(N); // Process the worklist, deleting the nodes and adding their uses to the // worklist. while (!DeadNodes.empty()) { SDNode *N = DeadNodes.back(); DeadNodes.pop_back(); // Take the node out of the appropriate CSE map. RemoveNodeFromCSEMaps(N); // Next, brutally remove the operand list. This is safe to do, as there are // no cycles in the graph. for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { SDNode *Operand = I->Val; Operand->removeUser(N); // Now that we removed this operand, see if there are no uses of it left. if (Operand->use_empty()) DeadNodes.push_back(Operand); } if (N->OperandsNeedDelete) delete[] N->OperandList; N->OperandList = 0; N->NumOperands = 0; // Finally, remove N itself. Deleted.push_back(N); AllNodes.erase(N); } } void SelectionDAG::DeleteNode(SDNode *N) { assert(N->use_empty() && "Cannot delete a node that is not dead!"); // First take this out of the appropriate CSE map. RemoveNodeFromCSEMaps(N); // Finally, remove uses due to operands of this node, remove from the // AllNodes list, and delete the node. DeleteNodeNotInCSEMaps(N); } void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { // Remove it from the AllNodes list. AllNodes.remove(N); // Drop all of the operands and decrement used nodes use counts. for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) I->Val->removeUser(N); if (N->OperandsNeedDelete) delete[] N->OperandList; N->OperandList = 0; N->NumOperands = 0; delete N; } /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that /// correspond to it. This is useful when we're about to delete or repurpose /// the node. We don't want future request for structurally identical nodes /// to return N anymore. void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { bool Erased = false; switch (N->getOpcode()) { case ISD::HANDLENODE: return; // noop. case ISD::STRING: Erased = StringNodes.erase(cast(N)->getValue()); break; case ISD::CONDCODE: assert(CondCodeNodes[cast(N)->get()] && "Cond code doesn't exist!"); Erased = CondCodeNodes[cast(N)->get()] != 0; CondCodeNodes[cast(N)->get()] = 0; break; case ISD::ExternalSymbol: Erased = ExternalSymbols.erase(cast(N)->getSymbol()); break; case ISD::TargetExternalSymbol: Erased = TargetExternalSymbols.erase(cast(N)->getSymbol()); break; case ISD::VALUETYPE: Erased = ValueTypeNodes[cast(N)->getVT()] != 0; ValueTypeNodes[cast(N)->getVT()] = 0; break; default: // Remove it from the CSE Map. Erased = CSEMap.RemoveNode(N); break; } #ifndef NDEBUG // Verify that the node was actually in one of the CSE maps, unless it has a // flag result (which cannot be CSE'd) or is one of the special cases that are // not subject to CSE. if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag && !N->isTargetOpcode()) { N->dump(this); cerr << "\n"; assert(0 && "Node is not in map!"); } #endif } /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It /// has been taken out and modified in some way. If the specified node already /// exists in the CSE maps, do not modify the maps, but return the existing node /// instead. If it doesn't exist, add it and return null. /// SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) { assert(N->getNumOperands() && "This is a leaf node!"); if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) return 0; // Never add these nodes. // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. SDNode *New = CSEMap.GetOrInsertNode(N); if (New != N) return New; // Node already existed. return 0; } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op, void *&InsertPos) { if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) return 0; // Never add these nodes. // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. SDOperand Ops[] = { Op }; FoldingSetNodeID ID; AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1); return CSEMap.FindNodeOrInsertPos(ID, InsertPos); } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op1, SDOperand Op2, void *&InsertPos) { if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) return 0; // Never add these nodes. // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. SDOperand Ops[] = { Op1, Op2 }; FoldingSetNodeID ID; AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2); return CSEMap.FindNodeOrInsertPos(ID, InsertPos); } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, const SDOperand *Ops,unsigned NumOps, void *&InsertPos) { if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) return 0; // Never add these nodes. // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Flag) return 0; // Never CSE anything that produces a flag. FoldingSetNodeID ID; AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps); if (const LoadSDNode *LD = dyn_cast(N)) { ID.AddInteger(LD->getAddressingMode()); ID.AddInteger(LD->getExtensionType()); ID.AddInteger(LD->getLoadedVT()); ID.AddPointer(LD->getSrcValue()); ID.AddInteger(LD->getSrcValueOffset()); ID.AddInteger(LD->getAlignment()); ID.AddInteger(LD->isVolatile()); } else if (const StoreSDNode *ST = dyn_cast(N)) { ID.AddInteger(ST->getAddressingMode()); ID.AddInteger(ST->isTruncatingStore()); ID.AddInteger(ST->getStoredVT()); ID.AddPointer(ST->getSrcValue()); ID.AddInteger(ST->getSrcValueOffset()); ID.AddInteger(ST->getAlignment()); ID.AddInteger(ST->isVolatile()); } return CSEMap.FindNodeOrInsertPos(ID, InsertPos); } SelectionDAG::~SelectionDAG() { while (!AllNodes.empty()) { SDNode *N = AllNodes.begin(); N->SetNextInBucket(0); if (N->OperandsNeedDelete) delete [] N->OperandList; N->OperandList = 0; N->NumOperands = 0; AllNodes.pop_front(); } } SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) { if (Op.getValueType() == VT) return Op; int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT)); return getNode(ISD::AND, Op.getValueType(), Op, getConstant(Imm, Op.getValueType())); } SDOperand SelectionDAG::getString(const std::string &Val) { StringSDNode *&N = StringNodes[Val]; if (!N) { N = new StringSDNode(Val); AllNodes.push_back(N); } return SDOperand(N, 0); } SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) { assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!"); // Mask out any bits that are not valid for this constant. Val &= MVT::getIntVTBitMask(VT); unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddInteger(Val); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new ConstantSDNode(isT, Val, VT); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT, bool isTarget) { assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!"); MVT::ValueType EltVT = MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT; if (EltVT == MVT::f32) Val = (float)Val; // Mask out extra precision. // Do the map lookup using the actual bit pattern for the floating point // value, so that we don't have problems with 0.0 comparing equal to -0.0, and // we don't have issues with SNANs. unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0); ID.AddDouble(Val); void *IP = 0; SDNode *N = NULL; if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) if (!MVT::isVector(VT)) return SDOperand(N, 0); if (!N) { N = new ConstantFPSDNode(isTarget, Val, EltVT); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); } SDOperand Result(N, 0); if (MVT::isVector(VT)) { SmallVector Ops; Ops.assign(MVT::getVectorNumElements(VT), Result); Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); } return Result; } SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV, MVT::ValueType VT, int Offset, bool isTargetGA) { const GlobalVariable *GVar = dyn_cast(GV); unsigned Opc; if (GVar && GVar->isThreadLocal()) Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; else Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddPointer(GV); ID.AddInteger(Offset); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT, bool isTarget) { unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddInteger(FI); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new FrameIndexSDNode(FI, VT, isTarget); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){ unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddInteger(JTI); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new JumpTableSDNode(JTI, VT, isTarget); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT, unsigned Alignment, int Offset, bool isTarget) { unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddInteger(Alignment); ID.AddInteger(Offset); ID.AddPointer(C); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT::ValueType VT, unsigned Alignment, int Offset, bool isTarget) { unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); ID.AddInteger(Alignment); ID.AddInteger(Offset); C->AddSelectionDAGCSEId(ID); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0); ID.AddPointer(MBB); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new BasicBlockSDNode(MBB); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getValueType(MVT::ValueType VT) { if ((unsigned)VT >= ValueTypeNodes.size()) ValueTypeNodes.resize(VT+1); if (ValueTypeNodes[VT] == 0) { ValueTypeNodes[VT] = new VTSDNode(VT); AllNodes.push_back(ValueTypeNodes[VT]); } return SDOperand(ValueTypeNodes[VT], 0); } SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) { SDNode *&N = ExternalSymbols[Sym]; if (N) return SDOperand(N, 0); N = new ExternalSymbolSDNode(false, Sym, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT::ValueType VT) { SDNode *&N = TargetExternalSymbols[Sym]; if (N) return SDOperand(N, 0); N = new ExternalSymbolSDNode(true, Sym, VT); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) { if ((unsigned)Cond >= CondCodeNodes.size()) CondCodeNodes.resize(Cond+1); if (CondCodeNodes[Cond] == 0) { CondCodeNodes[Cond] = new CondCodeSDNode(Cond); AllNodes.push_back(CondCodeNodes[Cond]); } return SDOperand(CondCodeNodes[Cond], 0); } SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0); ID.AddInteger(RegNo); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new RegisterSDNode(RegNo, VT); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) { assert((!V || isa(V->getType())) && "SrcValue is not a pointer?"); FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0); ID.AddPointer(V); ID.AddInteger(Offset); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new SrcValueSDNode(V, Offset); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1, SDOperand N2, ISD::CondCode Cond) { // These setcc operations always fold. switch (Cond) { default: break; case ISD::SETFALSE: case ISD::SETFALSE2: return getConstant(0, VT); case ISD::SETTRUE: case ISD::SETTRUE2: return getConstant(1, VT); case ISD::SETOEQ: case ISD::SETOGT: case ISD::SETOGE: case ISD::SETOLT: case ISD::SETOLE: case ISD::SETONE: case ISD::SETO: case ISD::SETUO: case ISD::SETUEQ: case ISD::SETUNE: assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!"); break; } if (ConstantSDNode *N2C = dyn_cast(N2.Val)) { uint64_t C2 = N2C->getValue(); if (ConstantSDNode *N1C = dyn_cast(N1.Val)) { uint64_t C1 = N1C->getValue(); // Sign extend the operands if required if (ISD::isSignedIntSetCC(Cond)) { C1 = N1C->getSignExtended(); C2 = N2C->getSignExtended(); } switch (Cond) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETEQ: return getConstant(C1 == C2, VT); case ISD::SETNE: return getConstant(C1 != C2, VT); case ISD::SETULT: return getConstant(C1 < C2, VT); case ISD::SETUGT: return getConstant(C1 > C2, VT); case ISD::SETULE: return getConstant(C1 <= C2, VT); case ISD::SETUGE: return getConstant(C1 >= C2, VT); case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT); case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT); case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT); case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT); } } } if (ConstantFPSDNode *N1C = dyn_cast(N1.Val)) if (ConstantFPSDNode *N2C = dyn_cast(N2.Val)) { double C1 = N1C->getValue(), C2 = N2C->getValue(); switch (Cond) { default: break; // FIXME: Implement the rest of these! case ISD::SETEQ: return getConstant(C1 == C2, VT); case ISD::SETNE: return getConstant(C1 != C2, VT); case ISD::SETLT: return getConstant(C1 < C2, VT); case ISD::SETGT: return getConstant(C1 > C2, VT); case ISD::SETLE: return getConstant(C1 <= C2, VT); case ISD::SETGE: return getConstant(C1 >= C2, VT); } } else { // Ensure that the constant occurs on the RHS. return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); } // Could not fold it. return SDOperand(); } /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// this predicate to simplify operations downstream. Mask is known to be zero /// for bits that V cannot have. bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth) const { // The masks are not wide enough to represent this type! Should use APInt. if (Op.getValueType() == MVT::i128) return false; uint64_t KnownZero, KnownOne; ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); return (KnownZero & Mask) == Mask; } /// ComputeMaskedBits - Determine which of the bits specified in Mask are /// known to be either zero or one and return them in the KnownZero/KnownOne /// bitsets. This code only analyzes bits in Mask, in order to short-circuit /// processing. void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth) const { KnownZero = KnownOne = 0; // Don't know anything. if (Depth == 6 || Mask == 0) return; // Limit search depth. // The masks are not wide enough to represent this type! Should use APInt. if (Op.getValueType() == MVT::i128) return; uint64_t KnownZero2, KnownOne2; switch (Op.getOpcode()) { case ISD::Constant: // We know all of the bits for a constant! KnownOne = cast(Op)->getValue() & Mask; KnownZero = ~KnownOne & Mask; return; case ISD::AND: // If either the LHS or the RHS are Zero, the result is zero. ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); Mask &= ~KnownZero; ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; // Output known-0 are known to be clear if zero in either the LHS | RHS. KnownZero |= KnownZero2; return; case ISD::OR: ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); Mask &= ~KnownOne; ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; // Output known-1 are known to be set if set in either the LHS | RHS. KnownOne |= KnownOne2; return; case ISD::XOR: { ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are known if clear or set in both the LHS & RHS. uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); KnownZero = KnownZeroOut; return; } case ISD::SELECT: ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; return; case ISD::SELECT_CC: ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; return; case ISD::SETCC: // If we know the result of a setcc has the top bits zero, use this info. if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); return; case ISD::SHL: // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(), KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero <<= SA->getValue(); KnownOne <<= SA->getValue(); KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. } return; case ISD::SRL: // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { MVT::ValueType VT = Op.getValueType(); unsigned ShAmt = SA->getValue(); uint64_t TypeMask = MVT::getIntVTBitMask(VT); ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero &= TypeMask; KnownOne &= TypeMask; KnownZero >>= ShAmt; KnownOne >>= ShAmt; uint64_t HighBits = (1ULL << ShAmt)-1; HighBits <<= MVT::getSizeInBits(VT)-ShAmt; KnownZero |= HighBits; // High bits known zero. } return; case ISD::SRA: if (ConstantSDNode *SA = dyn_cast(Op.getOperand(1))) { MVT::ValueType VT = Op.getValueType(); unsigned ShAmt = SA->getValue(); // Compute the new bits that are at the top now. uint64_t TypeMask = MVT::getIntVTBitMask(VT); uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask; // If any of the demanded bits are produced by the sign extension, we also // demand the input sign bit. uint64_t HighBits = (1ULL << ShAmt)-1; HighBits <<= MVT::getSizeInBits(VT) - ShAmt; if (HighBits & Mask) InDemandedMask |= MVT::getIntVTSignBit(VT); ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero &= TypeMask; KnownOne &= TypeMask; KnownZero >>= ShAmt; KnownOne >>= ShAmt; // Handle the sign bits. uint64_t SignBit = MVT::getIntVTSignBit(VT); SignBit >>= ShAmt; // Adjust to where it is now in the mask. if (KnownZero & SignBit) { KnownZero |= HighBits; // New bits are known zero. } else if (KnownOne & SignBit) { KnownOne |= HighBits; // New bits are known one. } } return; case ISD::SIGN_EXTEND_INREG: { MVT::ValueType EVT = cast(Op.getOperand(1))->getVT(); // Sign extension. Compute the demanded bits in the result that are not // present in the input. uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; uint64_t InSignBit = MVT::getIntVTSignBit(EVT); int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); // If the sign extended bits are demanded, we know that the sign // bit is demanded. if (NewBits) InputDemandedBits |= InSignBit; ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. if (KnownZero & InSignBit) { // Input sign bit known clear KnownZero |= NewBits; KnownOne &= ~NewBits; } else if (KnownOne & InSignBit) { // Input sign bit known set KnownOne |= NewBits; KnownZero &= ~NewBits; } else { // Input sign bit unknown KnownZero &= ~NewBits; KnownOne &= ~NewBits; } return; } case ISD::CTTZ: case ISD::CTLZ: case ISD::CTPOP: { MVT::ValueType VT = Op.getValueType(); unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); KnownOne = 0; return; } case ISD::LOAD: { if (ISD::isZEXTLoad(Op.Val)) { LoadSDNode *LD = cast(Op); MVT::ValueType VT = LD->getLoadedVT(); KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; } return; } case ISD::ZERO_EXTEND: { uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); uint64_t NewBits = (~InMask) & Mask; ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, KnownOne, Depth+1); KnownZero |= NewBits & Mask; KnownOne &= ~NewBits; return; } case ISD::SIGN_EXTEND: { MVT::ValueType InVT = Op.getOperand(0).getValueType(); unsigned InBits = MVT::getSizeInBits(InVT); uint64_t InMask = MVT::getIntVTBitMask(InVT); uint64_t InSignBit = 1ULL << (InBits-1); uint64_t NewBits = (~InMask) & Mask; uint64_t InDemandedBits = Mask & InMask; // If any of the sign extended bits are demanded, we know that the sign // bit is demanded. if (NewBits & Mask) InDemandedBits |= InSignBit; ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, KnownOne, Depth+1); // If the sign bit is known zero or one, the top bits match. if (KnownZero & InSignBit) { KnownZero |= NewBits; KnownOne &= ~NewBits; } else if (KnownOne & InSignBit) { KnownOne |= NewBits; KnownZero &= ~NewBits; } else { // Otherwise, top bits aren't known. KnownOne &= ~NewBits; KnownZero &= ~NewBits; } return; } case ISD::ANY_EXTEND: { MVT::ValueType VT = Op.getOperand(0).getValueType(); ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), KnownZero, KnownOne, Depth+1); return; } case ISD::TRUNCATE: { ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); KnownZero &= OutMask; KnownOne &= OutMask; break; } case ISD::AssertZext: { MVT::ValueType VT = cast(Op.getOperand(1))->getVT(); uint64_t InMask = MVT::getIntVTBitMask(VT); ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, KnownOne, Depth+1); KnownZero |= (~InMask) & Mask; return; } case ISD::ADD: { // If either the LHS or the RHS are Zero, the result is zero. ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are known if clear or set in both the low clear bits // common to both LHS & RHS. For example, 8+(X<<3) is known to have the // low 3 bits clear. uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), CountTrailingZeros_64(~KnownZero2)); KnownZero = (1ULL << KnownZeroOut) - 1; KnownOne = 0; return; } case ISD::SUB: { ConstantSDNode *CLHS = dyn_cast(Op.getOperand(0)); if (!CLHS) return; // We know that the top bits of C-X are clear if X contains less bits // than C (i.e. no wrap-around can happen). For example, 20-X is // positive if we can prove that X is >= 0 and < 16. MVT::ValueType VT = CLHS->getValueType(0); if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit MaskV = ~MaskV & MVT::getIntVTBitMask(VT); ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); // If all of the MaskV bits are known to be zero, then we know the output // top bits are zero, because we now know that the output is from [0-C]. if ((KnownZero & MaskV) == MaskV) { unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero. KnownOne = 0; // No one bits known. } else { KnownZero = KnownOne = 0; // Otherwise, nothing known. } } return; } default: // Allow the target to implement this method for its nodes. if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_VOID: TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this); } return; } } /// ComputeNumSignBits - Return the number of times the sign bit of the /// register is replicated into the other bits. We know that at least 1 bit /// is always equal to the sign bit (itself), but other cases can give us /// information. For example, immediately after an "SRA X, 2", we know that /// the top 3 bits are all equal to each other, so we return 3. unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{ MVT::ValueType VT = Op.getValueType(); assert(MVT::isInteger(VT) && "Invalid VT!"); unsigned VTBits = MVT::getSizeInBits(VT); unsigned Tmp, Tmp2; if (Depth == 6) return 1; // Limit search depth. switch (Op.getOpcode()) { default: break; case ISD::AssertSext: Tmp = MVT::getSizeInBits(cast(Op.getOperand(1))->getVT()); return VTBits-Tmp+1; case ISD::AssertZext: Tmp = MVT::getSizeInBits(cast(Op.getOperand(1))->getVT()); return VTBits-Tmp; case ISD::Constant: { uint64_t Val = cast(Op)->getValue(); // If negative, invert the bits, then look at it. if (Val & MVT::getIntVTSignBit(VT)) Val = ~Val; // Shift the bits so they are the leading bits in the int64_t. Val <<= 64-VTBits; // Return # leading zeros. We use 'min' here in case Val was zero before // shifting. We don't want to return '64' as for an i32 "0". return std::min(VTBits, CountLeadingZeros_64(Val)); } case ISD::SIGN_EXTEND: Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType()); return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; case ISD::SIGN_EXTEND_INREG: // Max of the input and what this extends. Tmp = MVT::getSizeInBits(cast(Op.getOperand(1))->getVT()); Tmp = VTBits-Tmp+1; Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); return std::max(Tmp, Tmp2); case ISD::SRA: Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); // SRA X, C -> adds C sign bits. if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { Tmp += C->getValue(); if (Tmp > VTBits) Tmp = VTBits; } return Tmp; case ISD::SHL: if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { // shl destroys sign bits. Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (C->getValue() >= VTBits || // Bad shift. C->getValue() >= Tmp) break; // Shifted all sign bits out. return Tmp - C->getValue(); } break; case ISD::AND: case ISD::OR: case ISD::XOR: // NOT is handled here. // Logical binary ops preserve the number of sign bits. Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (Tmp == 1) return 1; // Early out. Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); return std::min(Tmp, Tmp2); case ISD::SELECT: Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (Tmp == 1) return 1; // Early out. Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); return std::min(Tmp, Tmp2); case ISD::SETCC: // If setcc returns 0/-1, all bits are sign bits. if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrNegativeOneSetCCResult) return VTBits; break; case ISD::ROTL: case ISD::ROTR: if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { unsigned RotAmt = C->getValue() & (VTBits-1); // Handle rotate right by N like a rotate left by 32-N. if (Op.getOpcode() == ISD::ROTR) RotAmt = (VTBits-RotAmt) & (VTBits-1); // If we aren't rotating out all of the known-in sign bits, return the // number that are left. This handles rotl(sext(x), 1) for example. Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (Tmp > RotAmt+1) return Tmp-RotAmt; } break; case ISD::ADD: // Add can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (Tmp == 1) return 1; // Early out. // Special case decrementing a value (ADD X, -1): if (ConstantSDNode *CRHS = dyn_cast(Op.getOperand(0))) if (CRHS->isAllOnesValue()) { uint64_t KnownZero, KnownOne; uint64_t Mask = MVT::getIntVTBitMask(VT); ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((KnownZero|1) == Mask) return VTBits; // If we are subtracting one from a positive number, there is no carry // out of the result. if (KnownZero & MVT::getIntVTSignBit(VT)) return Tmp; } Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); if (Tmp2 == 1) return 1; return std::min(Tmp, Tmp2)-1; break; case ISD::SUB: Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); if (Tmp2 == 1) return 1; // Handle NEG. if (ConstantSDNode *CLHS = dyn_cast(Op.getOperand(0))) if (CLHS->getValue() == 0) { uint64_t KnownZero, KnownOne; uint64_t Mask = MVT::getIntVTBitMask(VT); ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((KnownZero|1) == Mask) return VTBits; // If the input is known to be positive (the sign bit is known clear), // the output of the NEG has the same number of sign bits as the input. if (KnownZero & MVT::getIntVTSignBit(VT)) return Tmp2; // Otherwise, we treat this like a SUB. } // Sub can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); if (Tmp == 1) return 1; // Early out. return std::min(Tmp, Tmp2)-1; break; case ISD::TRUNCATE: // FIXME: it's tricky to do anything useful for this, but it is an important // case for targets like X86. break; } // Handle LOADX separately here. EXTLOAD case will fallthrough. if (Op.getOpcode() == ISD::LOAD) { LoadSDNode *LD = cast(Op); unsigned ExtType = LD->getExtensionType(); switch (ExtType) { default: break; case ISD::SEXTLOAD: // '17' bits known Tmp = MVT::getSizeInBits(LD->getLoadedVT()); return VTBits-Tmp+1; case ISD::ZEXTLOAD: // '16' bits known Tmp = MVT::getSizeInBits(LD->getLoadedVT()); return VTBits-Tmp; } } // Allow the target to implement this method for its nodes. if (Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) { unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth); if (NumBits > 1) return NumBits; } // Finally, if we can prove that the top bits of the result are 0's or 1's, // use this information. uint64_t KnownZero, KnownOne; uint64_t Mask = MVT::getIntVTBitMask(VT); ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); uint64_t SignBit = MVT::getIntVTSignBit(VT); if (KnownZero & SignBit) { // SignBit is 0 Mask = KnownZero; } else if (KnownOne & SignBit) { // SignBit is 1; Mask = KnownOne; } else { // Nothing known. return 1; } // Okay, we know that the sign bit in Mask is set. Use CLZ to determine // the number of identical bits in the top of the input value. Mask ^= ~0ULL; Mask <<= 64-VTBits; // Return # leading zeros. We use 'min' here in case Val was zero before // shifting. We don't want to return '64' as for an i32 "0". return std::min(VTBits, CountLeadingZeros_64(Mask)); } /// getNode - Gets or creates the specified node. /// SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT)); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand Operand) { unsigned Tmp1; // Constant fold unary operations with an integer constant operand. if (ConstantSDNode *C = dyn_cast(Operand.Val)) { uint64_t Val = C->getValue(); switch (Opcode) { default: break; case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT); case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: return getConstant(Val, VT); case ISD::TRUNCATE: return getConstant(Val, VT); case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT); case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT); case ISD::BIT_CONVERT: if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) return getConstantFP(BitsToFloat(Val), VT); else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) return getConstantFP(BitsToDouble(Val), VT); break; case ISD::BSWAP: switch(VT) { default: assert(0 && "Invalid bswap!"); break; case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT); case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT); case MVT::i64: return getConstant(ByteSwap_64(Val), VT); } break; case ISD::CTPOP: switch(VT) { default: assert(0 && "Invalid ctpop!"); break; case MVT::i1: return getConstant(Val != 0, VT); case MVT::i8: Tmp1 = (unsigned)Val & 0xFF; return getConstant(CountPopulation_32(Tmp1), VT); case MVT::i16: Tmp1 = (unsigned)Val & 0xFFFF; return getConstant(CountPopulation_32(Tmp1), VT); case MVT::i32: return getConstant(CountPopulation_32((unsigned)Val), VT); case MVT::i64: return getConstant(CountPopulation_64(Val), VT); } case ISD::CTLZ: switch(VT) { default: assert(0 && "Invalid ctlz!"); break; case MVT::i1: return getConstant(Val == 0, VT); case MVT::i8: Tmp1 = (unsigned)Val & 0xFF; return getConstant(CountLeadingZeros_32(Tmp1)-24, VT); case MVT::i16: Tmp1 = (unsigned)Val & 0xFFFF; return getConstant(CountLeadingZeros_32(Tmp1)-16, VT); case MVT::i32: return getConstant(CountLeadingZeros_32((unsigned)Val), VT); case MVT::i64: return getConstant(CountLeadingZeros_64(Val), VT); } case ISD::CTTZ: switch(VT) { default: assert(0 && "Invalid cttz!"); break; case MVT::i1: return getConstant(Val == 0, VT); case MVT::i8: Tmp1 = (unsigned)Val | 0x100; return getConstant(CountTrailingZeros_32(Tmp1), VT); case MVT::i16: Tmp1 = (unsigned)Val | 0x10000; return getConstant(CountTrailingZeros_32(Tmp1), VT); case MVT::i32: return getConstant(CountTrailingZeros_32((unsigned)Val), VT); case MVT::i64: return getConstant(CountTrailingZeros_64(Val), VT); } } } // Constant fold unary operations with an floating point constant operand. if (ConstantFPSDNode *C = dyn_cast(Operand.Val)) switch (Opcode) { case ISD::FNEG: return getConstantFP(-C->getValue(), VT); case ISD::FABS: return getConstantFP(fabs(C->getValue()), VT); case ISD::FP_ROUND: case ISD::FP_EXTEND: return getConstantFP(C->getValue(), VT); case ISD::FP_TO_SINT: return getConstant((int64_t)C->getValue(), VT); case ISD::FP_TO_UINT: return getConstant((uint64_t)C->getValue(), VT); case ISD::BIT_CONVERT: if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) return getConstant(FloatToBits(C->getValue()), VT); else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) return getConstant(DoubleToBits(C->getValue()), VT); break; } unsigned OpOpcode = Operand.Val->getOpcode(); switch (Opcode) { case ISD::TokenFactor: return Operand; // Factor of one node? No factor. case ISD::FP_ROUND: case ISD::FP_EXTEND: assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!"); break; case ISD::SIGN_EXTEND: assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && "Invalid SIGN_EXTEND!"); if (Operand.getValueType() == VT) return Operand; // noop extension assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!"); if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); break; case ISD::ZERO_EXTEND: assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && "Invalid ZERO_EXTEND!"); if (Operand.getValueType() == VT) return Operand; // noop extension assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!"); if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0)); break; case ISD::ANY_EXTEND: assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && "Invalid ANY_EXTEND!"); if (Operand.getValueType() == VT) return Operand; // noop extension assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!"); if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); break; case ISD::TRUNCATE: assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && "Invalid TRUNCATE!"); if (Operand.getValueType() == VT) return Operand; // noop truncate assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!"); if (OpOpcode == ISD::TRUNCATE) return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ANY_EXTEND) { // If the source is smaller than the dest, we still need an extend. if (Operand.Val->getOperand(0).getValueType() < VT) return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); else if (Operand.Val->getOperand(0).getValueType() > VT) return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); else return Operand.Val->getOperand(0); } break; case ISD::BIT_CONVERT: // Basic sanity checking. assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType()) && "Cannot BIT_CONVERT between types of different sizes!"); if (VT == Operand.getValueType()) return Operand; // noop conversion. if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x) return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0)); if (OpOpcode == ISD::UNDEF) return getNode(ISD::UNDEF, VT); break; case ISD::SCALAR_TO_VECTOR: assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) && MVT::getVectorElementType(VT) == Operand.getValueType() && "Illegal SCALAR_TO_VECTOR node!"); break; case ISD::FNEG: if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X) return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1), Operand.Val->getOperand(0)); if (OpOpcode == ISD::FNEG) // --X -> X return Operand.Val->getOperand(0); break; case ISD::FABS: if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) return getNode(ISD::FABS, VT, Operand.Val->getOperand(0)); break; } SDNode *N; SDVTList VTs = getVTList(VT); if (VT != MVT::Flag) { // Don't CSE flag producing nodes FoldingSetNodeID ID; SDOperand Ops[1] = { Operand }; AddNodeIDNode(ID, Opcode, VTs, Ops, 1); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); N = new UnarySDNode(Opcode, VTs, Operand); CSEMap.InsertNode(N, IP); } else { N = new UnarySDNode(Opcode, VTs, Operand); } AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2) { #ifndef NDEBUG switch (Opcode) { case ISD::TokenFactor: assert(VT == MVT::Other && N1.getValueType() == MVT::Other && N2.getValueType() == MVT::Other && "Invalid token factor!"); break; case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::UDIV: case ISD::UREM: case ISD::MULHU: case ISD::MULHS: assert(MVT::isInteger(VT) && "This operator does not apply to FP types!"); // fall through case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::SDIV: case ISD::SREM: assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops"); // fall through. case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: assert(N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); break; case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. assert(N1.getValueType() == VT && MVT::isFloatingPoint(N1.getValueType()) && MVT::isFloatingPoint(N2.getValueType()) && "Invalid FCOPYSIGN!"); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: assert(VT == N1.getValueType() && "Shift operators return type must be the same as their first arg"); assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) && VT != MVT::i1 && "Shifts only work on integers"); break; case ISD::FP_ROUND_INREG: { MVT::ValueType EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg round!"); assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) && "Cannot FP_ROUND_INREG integer types"); assert(EVT <= VT && "Not rounding down!"); break; } case ISD::AssertSext: case ISD::AssertZext: case ISD::SIGN_EXTEND_INREG: { MVT::ValueType EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg extend!"); assert(MVT::isInteger(VT) && MVT::isInteger(EVT) && "Cannot *_EXTEND_INREG FP types"); assert(EVT <= VT && "Not extending!"); } default: break; } #endif ConstantSDNode *N1C = dyn_cast(N1.Val); ConstantSDNode *N2C = dyn_cast(N2.Val); if (N1C) { if (Opcode == ISD::SIGN_EXTEND_INREG) { int64_t Val = N1C->getValue(); unsigned FromBits = MVT::getSizeInBits(cast(N2)->getVT()); Val <<= 64-FromBits; Val >>= 64-FromBits; return getConstant(Val, VT); } if (N2C) { uint64_t C1 = N1C->getValue(), C2 = N2C->getValue(); switch (Opcode) { case ISD::ADD: return getConstant(C1 + C2, VT); case ISD::SUB: return getConstant(C1 - C2, VT); case ISD::MUL: return getConstant(C1 * C2, VT); case ISD::UDIV: if (C2) return getConstant(C1 / C2, VT); break; case ISD::UREM : if (C2) return getConstant(C1 % C2, VT); break; case ISD::SDIV : if (C2) return getConstant(N1C->getSignExtended() / N2C->getSignExtended(), VT); break; case ISD::SREM : if (C2) return getConstant(N1C->getSignExtended() % N2C->getSignExtended(), VT); break; case ISD::AND : return getConstant(C1 & C2, VT); case ISD::OR : return getConstant(C1 | C2, VT); case ISD::XOR : return getConstant(C1 ^ C2, VT); case ISD::SHL : return getConstant(C1 << C2, VT); case ISD::SRL : return getConstant(C1 >> C2, VT); case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT); case ISD::ROTL : return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)), VT); case ISD::ROTR : return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)), VT); default: break; } } else { // Cannonicalize constant to RHS if commutative if (isCommutativeBinOp(Opcode)) { std::swap(N1C, N2C); std::swap(N1, N2); } } } ConstantFPSDNode *N1CFP = dyn_cast(N1.Val); ConstantFPSDNode *N2CFP = dyn_cast(N2.Val); if (N1CFP) { if (N2CFP) { double C1 = N1CFP->getValue(), C2 = N2CFP->getValue(); switch (Opcode) { case ISD::FADD: return getConstantFP(C1 + C2, VT); case ISD::FSUB: return getConstantFP(C1 - C2, VT); case ISD::FMUL: return getConstantFP(C1 * C2, VT); case ISD::FDIV: if (C2) return getConstantFP(C1 / C2, VT); break; case ISD::FREM : if (C2) return getConstantFP(fmod(C1, C2), VT); break; case ISD::FCOPYSIGN: { union { double F; uint64_t I; } u1; u1.F = C1; if (int64_t(DoubleToBits(C2)) < 0) // Sign bit of RHS set? u1.I |= 1ULL << 63; // Set the sign bit of the LHS. else u1.I &= (1ULL << 63)-1; // Clear the sign bit of the LHS. return getConstantFP(u1.F, VT); } default: break; } } else { // Cannonicalize constant to RHS if commutative if (isCommutativeBinOp(Opcode)) { std::swap(N1CFP, N2CFP); std::swap(N1, N2); } } } // Canonicalize an UNDEF to the RHS, even over a constant. if (N1.getOpcode() == ISD::UNDEF) { if (isCommutativeBinOp(Opcode)) { std::swap(N1, N2); } else { switch (Opcode) { case ISD::FP_ROUND_INREG: case ISD::SIGN_EXTEND_INREG: case ISD::SUB: case ISD::FSUB: case ISD::FDIV: case ISD::FREM: case ISD::SRA: return N1; // fold op(undef, arg2) -> undef case ISD::UDIV: case ISD::SDIV: case ISD::UREM: case ISD::SREM: case ISD::SRL: case ISD::SHL: if (!MVT::isVector(VT)) return getConstant(0, VT); // fold op(undef, arg2) -> 0 // For vectors, we can't easily build an all zero vector, just return // the LHS. return N2; } } } // Fold a bunch of operators when the RHS is undef. if (N2.getOpcode() == ISD::UNDEF) { switch (Opcode) { case ISD::ADD: case ISD::ADDC: case ISD::ADDE: case ISD::SUB: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: case ISD::UDIV: case ISD::SDIV: case ISD::UREM: case ISD::SREM: case ISD::XOR: return N2; // fold op(arg1, undef) -> undef case ISD::MUL: case ISD::AND: case ISD::SRL: case ISD::SHL: if (!MVT::isVector(VT)) return getConstant(0, VT); // fold op(arg1, undef) -> 0 // For vectors, we can't easily build an all zero vector, just return // the LHS. return N1; case ISD::OR: if (!MVT::isVector(VT)) return getConstant(MVT::getIntVTBitMask(VT), VT); // For vectors, we can't easily build an all one vector, just return // the LHS. return N1; case ISD::SRA: return N1; } } // Fold operations. switch (Opcode) { case ISD::TokenFactor: // Fold trivial token factors. if (N1.getOpcode() == ISD::EntryToken) return N2; if (N2.getOpcode() == ISD::EntryToken) return N1; break; case ISD::AND: // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's // worth handling here. if (N2C && N2C->getValue() == 0) return N2; break; case ISD::OR: case ISD::XOR: // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's // worth handling here. if (N2C && N2C->getValue() == 0) return N1; break; case ISD::FP_ROUND_INREG: if (cast(N2)->getVT() == VT) return N1; // Not actually rounding. break; case ISD::SIGN_EXTEND_INREG: { MVT::ValueType EVT = cast(N2)->getVT(); if (EVT == VT) return N1; // Not actually extending break; } case ISD::EXTRACT_VECTOR_ELT: assert(N2C && "Bad EXTRACT_VECTOR_ELT!"); // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is // expanding copies of large vectors from registers. if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { unsigned Factor = MVT::getVectorNumElements(N1.getOperand(0).getValueType()); return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(N2C->getValue() / Factor), getConstant(N2C->getValue() % Factor, N2.getValueType())); } // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is // expanding large vector constants. if (N1.getOpcode() == ISD::BUILD_VECTOR) return N1.getOperand(N2C->getValue()); // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector // operations are lowered to scalars. if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) if (ConstantSDNode *IEC = dyn_cast(N1.getOperand(2))) { if (IEC == N2C) return N1.getOperand(1); else return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2); } break; case ISD::EXTRACT_ELEMENT: assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!"); // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding // 64-bit integers into 32-bit parts. Instead of building the extract of // the BUILD_PAIR, only to have legalize rip it apart, just do it now. if (N1.getOpcode() == ISD::BUILD_PAIR) return N1.getOperand(N2C->getValue()); // EXTRACT_ELEMENT of a constant int is also very common. if (ConstantSDNode *C = dyn_cast(N1)) { unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue(); return getConstant(C->getValue() >> Shift, VT); } break; // FIXME: figure out how to safely handle things like // int foo(int x) { return 1 << (x & 255); } // int bar() { return foo(256); } #if 0 case ISD::SHL: case ISD::SRL: case ISD::SRA: if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N2.getOperand(1))->getVT() != MVT::i1) return getNode(Opcode, VT, N1, N2.getOperand(0)); else if (N2.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N2.getOperand(1))) { // If the and is only masking out bits that cannot effect the shift, // eliminate the and. unsigned NumBits = MVT::getSizeInBits(VT); if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) return getNode(Opcode, VT, N1, N2.getOperand(0)); } break; #endif } // Memoize this node if possible. SDNode *N; SDVTList VTs = getVTList(VT); if (VT != MVT::Flag) { SDOperand Ops[] = { N1, N2 }; FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops, 2); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); N = new BinarySDNode(Opcode, VTs, N1, N2); CSEMap.InsertNode(N, IP); } else { N = new BinarySDNode(Opcode, VTs, N1, N2); } AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3) { // Perform various simplifications. ConstantSDNode *N1C = dyn_cast(N1.Val); ConstantSDNode *N2C = dyn_cast(N2.Val); switch (Opcode) { case ISD::SETCC: { // Use FoldSetCC to simplify SETCC's. SDOperand Simp = FoldSetCC(VT, N1, N2, cast(N3)->get()); if (Simp.Val) return Simp; break; } case ISD::SELECT: if (N1C) if (N1C->getValue()) return N2; // select true, X, Y -> X else return N3; // select false, X, Y -> Y if (N2 == N3) return N2; // select C, X, X -> X break; case ISD::BRCOND: if (N2C) if (N2C->getValue()) // Unconditional branch return getNode(ISD::BR, MVT::Other, N1, N3); else return N1; // Never-taken branch break; case ISD::VECTOR_SHUFFLE: assert(VT == N1.getValueType() && VT == N2.getValueType() && MVT::isVector(VT) && MVT::isVector(N3.getValueType()) && N3.getOpcode() == ISD::BUILD_VECTOR && MVT::getVectorNumElements(VT) == N3.getNumOperands() && "Illegal VECTOR_SHUFFLE node!"); break; case ISD::BIT_CONVERT: // Fold bit_convert nodes from a type to themselves. if (N1.getValueType() == VT) return N1; break; } // Memoize node if it doesn't produce a flag. SDNode *N; SDVTList VTs = getVTList(VT); if (VT != MVT::Flag) { SDOperand Ops[] = { N1, N2, N3 }; FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops, 3); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); N = new TernarySDNode(Opcode, VTs, N1, N2, N3); CSEMap.InsertNode(N, IP); } else { N = new TernarySDNode(Opcode, VTs, N1, N2, N3); } AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4) { SDOperand Ops[] = { N1, N2, N3, N4 }; return getNode(Opcode, VT, Ops, 4); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4, SDOperand N5) { SDOperand Ops[] = { N1, N2, N3, N4, N5 }; return getNode(Opcode, VT, Ops, 5); } SDOperand SelectionDAG::getLoad(MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, const Value *SV, int SVOffset, bool isVolatile, unsigned Alignment) { if (Alignment == 0) { // Ensure that codegen never sees alignment 0 const Type *Ty = 0; if (VT != MVT::iPTR) { Ty = MVT::getTypeForValueType(VT); } else if (SV) { const PointerType *PT = dyn_cast(SV->getType()); assert(PT && "Value for load must be a pointer"); Ty = PT->getElementType(); } assert(Ty && "Could not get type information for load"); Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); } SDVTList VTs = getVTList(VT, MVT::Other); SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); SDOperand Ops[] = { Chain, Ptr, Undef }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); ID.AddInteger(ISD::UNINDEXED); ID.AddInteger(ISD::NON_EXTLOAD); ID.AddInteger(VT); ID.AddPointer(SV); ID.AddInteger(SVOffset); ID.AddInteger(Alignment); ID.AddInteger(isVolatile); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment, isVolatile); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, const Value *SV, int SVOffset, MVT::ValueType EVT, bool isVolatile, unsigned Alignment) { // If they are asking for an extending load from/to the same thing, return a // normal load. if (VT == EVT) ExtType = ISD::NON_EXTLOAD; if (MVT::isVector(VT)) assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!"); else assert(EVT < VT && "Should only be an extending load, not truncating!"); assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) && "Cannot sign/zero extend a FP/Vector load!"); assert(MVT::isInteger(VT) == MVT::isInteger(EVT) && "Cannot convert from FP to Int or Int -> FP!"); if (Alignment == 0) { // Ensure that codegen never sees alignment 0 const Type *Ty = 0; if (VT != MVT::iPTR) { Ty = MVT::getTypeForValueType(VT); } else if (SV) { const PointerType *PT = dyn_cast(SV->getType()); assert(PT && "Value for load must be a pointer"); Ty = PT->getElementType(); } assert(Ty && "Could not get type information for load"); Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); } SDVTList VTs = getVTList(VT, MVT::Other); SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); SDOperand Ops[] = { Chain, Ptr, Undef }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); ID.AddInteger(ISD::UNINDEXED); ID.AddInteger(ExtType); ID.AddInteger(EVT); ID.AddPointer(SV); ID.AddInteger(SVOffset); ID.AddInteger(Alignment); ID.AddInteger(isVolatile); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT, SV, SVOffset, Alignment, isVolatile); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base, SDOperand Offset, ISD::MemIndexedMode AM) { LoadSDNode *LD = cast(OrigLoad); assert(LD->getOffset().getOpcode() == ISD::UNDEF && "Load is already a indexed load!"); MVT::ValueType VT = OrigLoad.getValueType(); SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other); SDOperand Ops[] = { LD->getChain(), Base, Offset }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); ID.AddInteger(AM); ID.AddInteger(LD->getExtensionType()); ID.AddInteger(LD->getLoadedVT()); ID.AddPointer(LD->getSrcValue()); ID.AddInteger(LD->getSrcValueOffset()); ID.AddInteger(LD->getAlignment()); ID.AddInteger(LD->isVolatile()); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new LoadSDNode(Ops, VTs, AM, LD->getExtensionType(), LD->getLoadedVT(), LD->getSrcValue(), LD->getSrcValueOffset(), LD->getAlignment(), LD->isVolatile()); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val, SDOperand Ptr, const Value *SV, int SVOffset, bool isVolatile, unsigned Alignment) { MVT::ValueType VT = Val.getValueType(); if (Alignment == 0) { // Ensure that codegen never sees alignment 0 const Type *Ty = 0; if (VT != MVT::iPTR) { Ty = MVT::getTypeForValueType(VT); } else if (SV) { const PointerType *PT = dyn_cast(SV->getType()); assert(PT && "Value for store must be a pointer"); Ty = PT->getElementType(); } assert(Ty && "Could not get type information for store"); Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); } SDVTList VTs = getVTList(MVT::Other); SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); SDOperand Ops[] = { Chain, Val, Ptr, Undef }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); ID.AddInteger(ISD::UNINDEXED); ID.AddInteger(false); ID.AddInteger(VT); ID.AddPointer(SV); ID.AddInteger(SVOffset); ID.AddInteger(Alignment); ID.AddInteger(isVolatile); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false, VT, SV, SVOffset, Alignment, isVolatile); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val, SDOperand Ptr, const Value *SV, int SVOffset, MVT::ValueType SVT, bool isVolatile, unsigned Alignment) { MVT::ValueType VT = Val.getValueType(); bool isTrunc = VT != SVT; assert(VT > SVT && "Not a truncation?"); assert(MVT::isInteger(VT) == MVT::isInteger(SVT) && "Can't do FP-INT conversion!"); if (Alignment == 0) { // Ensure that codegen never sees alignment 0 const Type *Ty = 0; if (VT != MVT::iPTR) { Ty = MVT::getTypeForValueType(VT); } else if (SV) { const PointerType *PT = dyn_cast(SV->getType()); assert(PT && "Value for store must be a pointer"); Ty = PT->getElementType(); } assert(Ty && "Could not get type information for store"); Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); } SDVTList VTs = getVTList(MVT::Other); SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); SDOperand Ops[] = { Chain, Val, Ptr, Undef }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); ID.AddInteger(ISD::UNINDEXED); ID.AddInteger(isTrunc); ID.AddInteger(SVT); ID.AddPointer(SV); ID.AddInteger(SVOffset); ID.AddInteger(Alignment); ID.AddInteger(isVolatile); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc, SVT, SV, SVOffset, Alignment, isVolatile); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base, SDOperand Offset, ISD::MemIndexedMode AM) { StoreSDNode *ST = cast(OrigStore); assert(ST->getOffset().getOpcode() == ISD::UNDEF && "Store is already a indexed store!"); SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); ID.AddInteger(AM); ID.AddInteger(ST->isTruncatingStore()); ID.AddInteger(ST->getStoredVT()); ID.AddPointer(ST->getSrcValue()); ID.AddInteger(ST->getSrcValueOffset()); ID.AddInteger(ST->getAlignment()); ID.AddInteger(ST->isVolatile()); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); SDNode *N = new StoreSDNode(Ops, VTs, AM, ST->isTruncatingStore(), ST->getStoredVT(), ST->getSrcValue(), ST->getSrcValueOffset(), ST->getAlignment(), ST->isVolatile()); CSEMap.InsertNode(N, IP); AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getVAArg(MVT::ValueType VT, SDOperand Chain, SDOperand Ptr, SDOperand SV) { SDOperand Ops[] = { Chain, Ptr, SV }; return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3); } SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, const SDOperand *Ops, unsigned NumOps) { switch (NumOps) { case 0: return getNode(Opcode, VT); case 1: return getNode(Opcode, VT, Ops[0]); case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); default: break; } switch (Opcode) { default: break; case ISD::SELECT_CC: { assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); assert(Ops[0].getValueType() == Ops[1].getValueType() && "LHS and RHS of condition must have same type!"); assert(Ops[2].getValueType() == Ops[3].getValueType() && "True and False arms of SelectCC must have same type!"); assert(Ops[2].getValueType() == VT && "select_cc node must be of same type as true and false value!"); break; } case ISD::BR_CC: { assert(NumOps == 5 && "BR_CC takes 5 operands!"); assert(Ops[2].getValueType() == Ops[3].getValueType() && "LHS/RHS of comparison should match types!"); break; } } // Memoize nodes. SDNode *N; SDVTList VTs = getVTList(VT); if (VT != MVT::Flag) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); N = new SDNode(Opcode, VTs, Ops, NumOps); CSEMap.InsertNode(N, IP); } else { N = new SDNode(Opcode, VTs, Ops, NumOps); } AllNodes.push_back(N); return SDOperand(N, 0); } SDOperand SelectionDAG::getNode(unsigned Opcode, std::vector &ResultTys, const SDOperand *Ops, unsigned NumOps) { return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(), Ops, NumOps); } SDOperand SelectionDAG::getNode(unsigned Opcode, const MVT::ValueType *VTs, unsigned NumVTs, const SDOperand *Ops, unsigned NumOps) { if (NumVTs == 1) return getNode(Opcode, VTs[0], Ops, NumOps); return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps); } SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, const SDOperand *Ops, unsigned NumOps) { if (VTList.NumVTs == 1) return getNode(Opcode, VTList.VTs[0], Ops, NumOps); switch (Opcode) { // FIXME: figure out how to safely handle things like // int foo(int x) { return 1 << (x & 255); } // int bar() { return foo(256); } #if 0 case ISD::SRA_PARTS: case ISD::SRL_PARTS: case ISD::SHL_PARTS: if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N3.getOperand(1))->getVT() != MVT::i1) return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); else if (N3.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N3.getOperand(1))) { // If the and is only masking out bits that cannot effect the shift, // eliminate the and. unsigned NumBits = MVT::getSizeInBits(VT)*2; if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); } break; #endif } // Memoize the node unless it returns a flag. SDNode *N; if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); void *IP = 0; if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) return SDOperand(E, 0); if (NumOps == 1) N = new UnarySDNode(Opcode, VTList, Ops[0]); else if (NumOps == 2) N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); else if (NumOps == 3) N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); else N = new SDNode(Opcode, VTList, Ops, NumOps); CSEMap.InsertNode(N, IP); } else { if (NumOps == 1) N = new UnarySDNode(Opcode, VTList, Ops[0]); else if (NumOps == 2) N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); else if (NumOps == 3) N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); else N = new SDNode(Opcode, VTList, Ops, NumOps); } AllNodes.push_back(N); return SDOperand(N, 0); } SDVTList SelectionDAG::getVTList(MVT::ValueType VT) { if (!MVT::isExtendedVT(VT)) return makeVTList(SDNode::getValueTypeList(VT), 1); for (std::list >::iterator I = VTList.begin(), E = VTList.end(); I != E; ++I) { if (I->size() == 1 && (*I)[0] == VT) return makeVTList(&(*I)[0], 1); } std::vector V; V.push_back(VT); VTList.push_front(V); return makeVTList(&(*VTList.begin())[0], 1); } SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) { for (std::list >::iterator I = VTList.begin(), E = VTList.end(); I != E; ++I) { if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) return makeVTList(&(*I)[0], 2); } std::vector V; V.push_back(VT1); V.push_back(VT2); VTList.push_front(V); return makeVTList(&(*VTList.begin())[0], 2); } SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3) { for (std::list >::iterator I = VTList.begin(), E = VTList.end(); I != E; ++I) { if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 && (*I)[2] == VT3) return makeVTList(&(*I)[0], 3); } std::vector V; V.push_back(VT1); V.push_back(VT2); V.push_back(VT3); VTList.push_front(V); return makeVTList(&(*VTList.begin())[0], 3); } SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) { switch (NumVTs) { case 0: assert(0 && "Cannot have nodes without results!"); case 1: return getVTList(VTs[0]); case 2: return getVTList(VTs[0], VTs[1]); case 3: return getVTList(VTs[0], VTs[1], VTs[2]); default: break; } for (std::list >::iterator I = VTList.begin(), E = VTList.end(); I != E; ++I) { if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue; bool NoMatch = false; for (unsigned i = 2; i != NumVTs; ++i) if (VTs[i] != (*I)[i]) { NoMatch = true; break; } if (!NoMatch) return makeVTList(&*I->begin(), NumVTs); } VTList.push_front(std::vector(VTs, VTs+NumVTs)); return makeVTList(&*VTList.begin()->begin(), NumVTs); } /// UpdateNodeOperands - *Mutate* the specified node in-place to have the /// specified operands. If the resultant node already exists in the DAG, /// this does not modify the specified node, instead it returns the node that /// already exists. If the resultant node does not exist in the DAG, the /// input node is returned. As a degenerate case, if you specify the same /// input operands as the node already has, the input node is returned. SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand InN, SDOperand Op) { SDNode *N = InN.Val; assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); // Check to see if there is no change. if (Op == N->getOperand(0)) return InN; // See if the modified node already exists. void *InsertPos = 0; if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) return SDOperand(Existing, InN.ResNo); // Nope it doesn't. Remove the node from it's current place in the maps. if (InsertPos) RemoveNodeFromCSEMaps(N); // Now we update the operands. N->OperandList[0].Val->removeUser(N); Op.Val->addUser(N); N->OperandList[0] = Op; // If this gets put into a CSE map, add it. if (InsertPos) CSEMap.InsertNode(N, InsertPos); return InN; } SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) { SDNode *N = InN.Val; assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); // Check to see if there is no change. if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) return InN; // No operands changed, just return the input node. // See if the modified node already exists. void *InsertPos = 0; if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) return SDOperand(Existing, InN.ResNo); // Nope it doesn't. Remove the node from it's current place in the maps. if (InsertPos) RemoveNodeFromCSEMaps(N); // Now we update the operands. if (N->OperandList[0] != Op1) { N->OperandList[0].Val->removeUser(N); Op1.Val->addUser(N); N->OperandList[0] = Op1; } if (N->OperandList[1] != Op2) { N->OperandList[1].Val->removeUser(N); Op2.Val->addUser(N); N->OperandList[1] = Op2; } // If this gets put into a CSE map, add it. if (InsertPos) CSEMap.InsertNode(N, InsertPos); return InN; } SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) { SDOperand Ops[] = { Op1, Op2, Op3 }; return UpdateNodeOperands(N, Ops, 3); } SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4) { SDOperand Ops[] = { Op1, Op2, Op3, Op4 }; return UpdateNodeOperands(N, Ops, 4); } SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3, SDOperand Op4, SDOperand Op5) { SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 }; return UpdateNodeOperands(N, Ops, 5); } SDOperand SelectionDAG:: UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) { SDNode *N = InN.Val; assert(N->getNumOperands() == NumOps && "Update with wrong number of operands"); // Check to see if there is no change. bool AnyChange = false; for (unsigned i = 0; i != NumOps; ++i) { if (Ops[i] != N->getOperand(i)) { AnyChange = true; break; } } // No operands changed, just return the input node. if (!AnyChange) return InN; // See if the modified node already exists. void *InsertPos = 0; if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos)) return SDOperand(Existing, InN.ResNo); // Nope it doesn't. Remove the node from it's current place in the maps. if (InsertPos) RemoveNodeFromCSEMaps(N); // Now we update the operands. for (unsigned i = 0; i != NumOps; ++i) { if (N->OperandList[i] != Ops[i]) { N->OperandList[i].Val->removeUser(N); Ops[i].Val->addUser(N); N->OperandList[i] = Ops[i]; } } // If this gets put into a CSE map, add it. if (InsertPos) CSEMap.InsertNode(N, InsertPos); return InN; } /// MorphNodeTo - This frees the operands of the current node, resets the /// opcode, types, and operands to the specified value. This should only be /// used by the SelectionDAG class. void SDNode::MorphNodeTo(unsigned Opc, SDVTList L, const SDOperand *Ops, unsigned NumOps) { NodeType = Opc; ValueList = L.VTs; NumValues = L.NumVTs; // Clear the operands list, updating used nodes to remove this from their // use list. for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) I->Val->removeUser(this); // If NumOps is larger than the # of operands we currently have, reallocate // the operand list. if (NumOps > NumOperands) { if (OperandsNeedDelete) delete [] OperandList; OperandList = new SDOperand[NumOps]; OperandsNeedDelete = true; } // Assign the new operands. NumOperands = NumOps; for (unsigned i = 0, e = NumOps; i != e; ++i) { OperandList[i] = Ops[i]; SDNode *N = OperandList[i].Val; N->Uses.push_back(this); } } /// SelectNodeTo - These are used for target selectors to *mutate* the /// specified node to have the specified return type, Target opcode, and /// operands. Note that target opcodes are stored as /// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field. /// /// Note that SelectNodeTo returns the resultant node. If there is already a /// node of the specified opcode and operands, it returns that node instead of /// the current one. SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT) { SDVTList VTs = getVTList(VT); FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0); void *IP = 0; if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) return ON; RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0); CSEMap.InsertNode(N, IP); return N; } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1) { // If an identical node already exists, use it. SDVTList VTs = getVTList(VT); SDOperand Ops[] = { Op1 }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1); void *IP = 0; if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) return ON; RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1); CSEMap.InsertNode(N, IP); return N; } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2) { // If an identical node already exists, use it. SDVTList VTs = getVTList(VT); SDOperand Ops[] = { Op1, Op2 }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); void *IP = 0; if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) return ON; RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); CSEMap.InsertNode(N, IP); // Memoize the new node. return N; } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3) { // If an identical node already exists, use it. SDVTList VTs = getVTList(VT); SDOperand Ops[] = { Op1, Op2, Op3 }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); void *IP = 0; if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) return ON; RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); CSEMap.InsertNode(N, IP); // Memoize the new node. return N; } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT, const SDOperand *Ops, unsigned NumOps) { // If an identical node already exists, use it. SDVTList VTs = getVTList(VT); FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps); void *IP = 0; if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) return ON; RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps); CSEMap.InsertNode(N, IP); // Memoize the new node. return N; } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) { SDVTList VTs = getVTList(VT1, VT2); FoldingSetNodeID ID; SDOperand Ops[] = { Op1, Op2 }; AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); void *IP = 0; if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) return ON; RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); CSEMap.InsertNode(N, IP); // Memoize the new node. return N; } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3) { // If an identical node already exists, use it. SDVTList VTs = getVTList(VT1, VT2); SDOperand Ops[] = { Op1, Op2, Op3 }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); void *IP = 0; if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) return ON; RemoveNodeFromCSEMaps(N); N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); CSEMap.InsertNode(N, IP); // Memoize the new node. return N; } /// getTargetNode - These are used for target selectors to create a new node /// with specified return type(s), target opcode, and operands. /// /// Note that getTargetNode returns the resultant node. If there is already a /// node of the specified opcode and operands, it returns that node instead of /// the current one. SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, SDOperand Op1, SDOperand Op2, SDOperand Op3) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, const SDOperand *Ops, unsigned NumOps) { return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1) { const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) { const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); SDOperand Ops[] = { Op1, Op2 }; return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3) { const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); SDOperand Ops[] = { Op1, Op2, Op3 }; return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, const SDOperand *Ops, unsigned NumOps) { const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, SDOperand Op1, SDOperand Op2) { const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); SDOperand Ops[] = { Op1, Op2 }; return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, SDOperand Op1, SDOperand Op2, SDOperand Op3) { const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); SDOperand Ops[] = { Op1, Op2, Op3 }; return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val; } SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, MVT::ValueType VT2, MVT::ValueType VT3, const SDOperand *Ops, unsigned NumOps) { const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val; } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version assumes From/To have a single result value. /// void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN, std::vector *Deleted) { SDNode *From = FromN.Val, *To = ToN.Val; assert(From->getNumValues() == 1 && To->getNumValues() == 1 && "Cannot replace with this method!"); assert(From != To && "Cannot replace uses of with self"); while (!From->use_empty()) { // Process users until they are all gone. SDNode *U = *From->use_begin(); // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(U); for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; I != E; ++I) if (I->Val == From) { From->removeUser(U); I->Val = To; To->addUser(U); } // Now that we have modified U, add it back to the CSE maps. If it already // exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { ReplaceAllUsesWith(U, Existing, Deleted); // U is now dead. if (Deleted) Deleted->push_back(U); DeleteNodeNotInCSEMaps(U); } } } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version assumes From/To have matching types and numbers of result /// values. /// void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To, std::vector *Deleted) { assert(From != To && "Cannot replace uses of with self"); assert(From->getNumValues() == To->getNumValues() && "Cannot use this version of ReplaceAllUsesWith!"); if (From->getNumValues() == 1) { // If possible, use the faster version. ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted); return; } while (!From->use_empty()) { // Process users until they are all gone. SDNode *U = *From->use_begin(); // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(U); for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; I != E; ++I) if (I->Val == From) { From->removeUser(U); I->Val = To; To->addUser(U); } // Now that we have modified U, add it back to the CSE maps. If it already // exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { ReplaceAllUsesWith(U, Existing, Deleted); // U is now dead. if (Deleted) Deleted->push_back(U); DeleteNodeNotInCSEMaps(U); } } } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version can replace From with any result values. To must match the /// number and types of values returned by From. void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDOperand *To, std::vector *Deleted) { if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) { // Degenerate case handled above. ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted); return; } while (!From->use_empty()) { // Process users until they are all gone. SDNode *U = *From->use_begin(); // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(U); for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; I != E; ++I) if (I->Val == From) { const SDOperand &ToOp = To[I->ResNo]; From->removeUser(U); *I = ToOp; ToOp.Val->addUser(U); } // Now that we have modified U, add it back to the CSE maps. If it already // exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { ReplaceAllUsesWith(U, Existing, Deleted); // U is now dead. if (Deleted) Deleted->push_back(U); DeleteNodeNotInCSEMaps(U); } } } /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving /// uses of other values produced by From.Val alone. The Deleted vector is /// handled the same was as for ReplaceAllUsesWith. void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To, std::vector &Deleted) { assert(From != To && "Cannot replace a value with itself"); // Handle the simple, trivial, case efficiently. if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) { ReplaceAllUsesWith(From, To, &Deleted); return; } // Get all of the users of From.Val. We want these in a nice, // deterministically ordered and uniqued set, so we use a SmallSetVector. SmallSetVector Users(From.Val->use_begin(), From.Val->use_end()); while (!Users.empty()) { // We know that this user uses some value of From. If it is the right // value, update it. SDNode *User = Users.back(); Users.pop_back(); for (SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands; Op != E; ++Op) { if (*Op == From) { // Okay, we know this user needs to be updated. Remove its old self // from the CSE maps. RemoveNodeFromCSEMaps(User); // Update all operands that match "From". for (; Op != E; ++Op) { if (*Op == From) { From.Val->removeUser(User); *Op = To; To.Val->addUser(User); } } // Now that we have modified User, add it back to the CSE maps. If it // already exists there, recursively merge the results together. if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) { unsigned NumDeleted = Deleted.size(); ReplaceAllUsesWith(User, Existing, &Deleted); // User is now dead. Deleted.push_back(User); DeleteNodeNotInCSEMaps(User); // We have to be careful here, because ReplaceAllUsesWith could have // deleted a user of From, which means there may be dangling pointers // in the "Users" setvector. Scan over the deleted node pointers and // remove them from the setvector. for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i) Users.remove(Deleted[i]); } break; // Exit the operand scanning loop. } } } } /// AssignNodeIds - Assign a unique node id for each node in the DAG based on /// their allnodes order. It returns the maximum id. unsigned SelectionDAG::AssignNodeIds() { unsigned Id = 0; for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){ SDNode *N = I; N->setNodeId(Id++); } return Id; } /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG /// based on their topological order. It returns the maximum id and a vector /// of the SDNodes* in assigned order by reference. unsigned SelectionDAG::AssignTopologicalOrder(std::vector &TopOrder) { unsigned DAGSize = AllNodes.size(); std::vector InDegree(DAGSize); std::vector Sources; // Use a two pass approach to avoid using a std::map which is slow. unsigned Id = 0; for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){ SDNode *N = I; N->setNodeId(Id++); unsigned Degree = N->use_size(); InDegree[N->getNodeId()] = Degree; if (Degree == 0) Sources.push_back(N); } TopOrder.clear(); while (!Sources.empty()) { SDNode *N = Sources.back(); Sources.pop_back(); TopOrder.push_back(N); for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { SDNode *P = I->Val; unsigned Degree = --InDegree[P->getNodeId()]; if (Degree == 0) Sources.push_back(P); } } // Second pass, assign the actual topological order as node ids. Id = 0; for (std::vector::iterator TI = TopOrder.begin(),TE = TopOrder.end(); TI != TE; ++TI) (*TI)->setNodeId(Id++); return Id; } //===----------------------------------------------------------------------===// // SDNode Class //===----------------------------------------------------------------------===// // Out-of-line virtual method to give class a home. void SDNode::ANCHOR() {} void UnarySDNode::ANCHOR() {} void BinarySDNode::ANCHOR() {} void TernarySDNode::ANCHOR() {} void HandleSDNode::ANCHOR() {} void StringSDNode::ANCHOR() {} void ConstantSDNode::ANCHOR() {} void ConstantFPSDNode::ANCHOR() {} void GlobalAddressSDNode::ANCHOR() {} void FrameIndexSDNode::ANCHOR() {} void JumpTableSDNode::ANCHOR() {} void ConstantPoolSDNode::ANCHOR() {} void BasicBlockSDNode::ANCHOR() {} void SrcValueSDNode::ANCHOR() {} void RegisterSDNode::ANCHOR() {} void ExternalSymbolSDNode::ANCHOR() {} void CondCodeSDNode::ANCHOR() {} void VTSDNode::ANCHOR() {} void LoadSDNode::ANCHOR() {} void StoreSDNode::ANCHOR() {} HandleSDNode::~HandleSDNode() { SDVTList VTs = { 0, 0 }; MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses. } GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT, int o) : SDNode(isa(GA) && cast(GA)->isThreadLocal() ? // Thread Local (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) : // Non Thread Local (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress), getSDVTList(VT)), Offset(o) { TheGlobal = const_cast(GA); } /// Profile - Gather unique data for the node. /// void SDNode::Profile(FoldingSetNodeID &ID) { AddNodeIDNode(ID, this); } /// getValueTypeList - Return a pointer to the specified value type. /// MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) { static MVT::ValueType VTs[MVT::LAST_VALUETYPE]; VTs[VT] = VT; return &VTs[VT]; } /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the /// indicated value. This method ignores uses of other values defined by this /// operation. bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { assert(Value < getNumValues() && "Bad value!"); // If there is only one value, this is easy. if (getNumValues() == 1) return use_size() == NUses; if (use_size() < NUses) return false; SDOperand TheValue(const_cast(this), Value); SmallPtrSet UsersHandled; for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) { SDNode *User = *UI; if (User->getNumOperands() == 1 || UsersHandled.insert(User)) // First time we've seen this? for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) if (User->getOperand(i) == TheValue) { if (NUses == 0) return false; // too many uses --NUses; } } // Found exactly the right number of uses? return NUses == 0; } /// hasAnyUseOfValue - Return true if there are any use of the indicated /// value. This method ignores uses of other values defined by this operation. bool SDNode::hasAnyUseOfValue(unsigned Value) const { assert(Value < getNumValues() && "Bad value!"); if (use_size() == 0) return false; SDOperand TheValue(const_cast(this), Value); SmallPtrSet UsersHandled; for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) { SDNode *User = *UI; if (User->getNumOperands() == 1 || UsersHandled.insert(User)) // First time we've seen this? for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) if (User->getOperand(i) == TheValue) { return true; } } return false; } /// isOnlyUse - Return true if this node is the only use of N. /// bool SDNode::isOnlyUse(SDNode *N) const { bool Seen = false; for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { SDNode *User = *I; if (User == this) Seen = true; else return false; } return Seen; } /// isOperand - Return true if this node is an operand of N. /// bool SDOperand::isOperand(SDNode *N) const { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (*this == N->getOperand(i)) return true; return false; } bool SDNode::isOperand(SDNode *N) const { for (unsigned i = 0, e = N->NumOperands; i != e; ++i) if (this == N->OperandList[i].Val) return true; return false; } static void findPredecessor(SDNode *N, const SDNode *P, bool &found, SmallPtrSet &Visited) { if (found || !Visited.insert(N)) return; for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) { SDNode *Op = N->getOperand(i).Val; if (Op == P) { found = true; return; } findPredecessor(Op, P, found, Visited); } } /// isPredecessor - Return true if this node is a predecessor of N. This node /// is either an operand of N or it can be reached by recursively traversing /// up the operands. /// NOTE: this is an expensive method. Use it carefully. bool SDNode::isPredecessor(SDNode *N) const { SmallPtrSet Visited; bool found = false; findPredecessor(N, this, found, Visited); return found; } uint64_t SDNode::getConstantOperandVal(unsigned Num) const { assert(Num < NumOperands && "Invalid child # of SDNode!"); return cast(OperandList[Num])->getValue(); } std::string SDNode::getOperationName(const SelectionDAG *G) const { switch (getOpcode()) { default: if (getOpcode() < ISD::BUILTIN_OP_END) return "<>"; else { if (G) { if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo()) if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes()) return TII->getName(getOpcode()-ISD::BUILTIN_OP_END); TargetLowering &TLI = G->getTargetLoweringInfo(); const char *Name = TLI.getTargetNodeName(getOpcode()); if (Name) return Name; } return "<>"; } case ISD::PCMARKER: return "PCMarker"; case ISD::READCYCLECOUNTER: return "ReadCycleCounter"; case ISD::SRCVALUE: return "SrcValue"; case ISD::EntryToken: return "EntryToken"; case ISD::TokenFactor: return "TokenFactor"; case ISD::AssertSext: return "AssertSext"; case ISD::AssertZext: return "AssertZext"; case ISD::STRING: return "String"; case ISD::BasicBlock: return "BasicBlock"; case ISD::VALUETYPE: return "ValueType"; case ISD::Register: return "Register"; case ISD::Constant: return "Constant"; case ISD::ConstantFP: return "ConstantFP"; case ISD::GlobalAddress: return "GlobalAddress"; case ISD::GlobalTLSAddress: return "GlobalTLSAddress"; case ISD::FrameIndex: return "FrameIndex"; case ISD::JumpTable: return "JumpTable"; case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE"; case ISD::RETURNADDR: return "RETURNADDR"; case ISD::FRAMEADDR: return "FRAMEADDR"; case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET"; case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR"; case ISD::EHSELECTION: return "EHSELECTION"; case ISD::EH_RETURN: return "EH_RETURN"; case ISD::ConstantPool: return "ConstantPool"; case ISD::ExternalSymbol: return "ExternalSymbol"; case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = cast(getOperand(0))->getValue(); return Intrinsic::getName((Intrinsic::ID)IID); } case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: { unsigned IID = cast(getOperand(1))->getValue(); return Intrinsic::getName((Intrinsic::ID)IID); } case ISD::BUILD_VECTOR: return "BUILD_VECTOR"; case ISD::TargetConstant: return "TargetConstant"; case ISD::TargetConstantFP:return "TargetConstantFP"; case ISD::TargetGlobalAddress: return "TargetGlobalAddress"; case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress"; case ISD::TargetFrameIndex: return "TargetFrameIndex"; case ISD::TargetJumpTable: return "TargetJumpTable"; case ISD::TargetConstantPool: return "TargetConstantPool"; case ISD::TargetExternalSymbol: return "TargetExternalSymbol"; case ISD::CopyToReg: return "CopyToReg"; case ISD::CopyFromReg: return "CopyFromReg"; case ISD::UNDEF: return "undef"; case ISD::MERGE_VALUES: return "merge_values"; case ISD::INLINEASM: return "inlineasm"; case ISD::LABEL: return "label"; case ISD::HANDLENODE: return "handlenode"; case ISD::FORMAL_ARGUMENTS: return "formal_arguments"; case ISD::CALL: return "call"; // Unary operators case ISD::FABS: return "fabs"; case ISD::FNEG: return "fneg"; case ISD::FSQRT: return "fsqrt"; case ISD::FSIN: return "fsin"; case ISD::FCOS: return "fcos"; case ISD::FPOWI: return "fpowi"; // Binary operators case ISD::ADD: return "add"; case ISD::SUB: return "sub"; case ISD::MUL: return "mul"; case ISD::MULHU: return "mulhu"; case ISD::MULHS: return "mulhs"; case ISD::SDIV: return "sdiv"; case ISD::UDIV: return "udiv"; case ISD::SREM: return "srem"; case ISD::UREM: return "urem"; case ISD::AND: return "and"; case ISD::OR: return "or"; case ISD::XOR: return "xor"; case ISD::SHL: return "shl"; case ISD::SRA: return "sra"; case ISD::SRL: return "srl"; case ISD::ROTL: return "rotl"; case ISD::ROTR: return "rotr"; case ISD::FADD: return "fadd"; case ISD::FSUB: return "fsub"; case ISD::FMUL: return "fmul"; case ISD::FDIV: return "fdiv"; case ISD::FREM: return "frem"; case ISD::FCOPYSIGN: return "fcopysign"; case ISD::SETCC: return "setcc"; case ISD::SELECT: return "select"; case ISD::SELECT_CC: return "select_cc"; case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt"; case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt"; case ISD::CONCAT_VECTORS: return "concat_vectors"; case ISD::EXTRACT_SUBVECTOR: return "extract_subvector"; case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector"; case ISD::VECTOR_SHUFFLE: return "vector_shuffle"; case ISD::CARRY_FALSE: return "carry_false"; case ISD::ADDC: return "addc"; case ISD::ADDE: return "adde"; case ISD::SUBC: return "subc"; case ISD::SUBE: return "sube"; case ISD::SHL_PARTS: return "shl_parts"; case ISD::SRA_PARTS: return "sra_parts"; case ISD::SRL_PARTS: return "srl_parts"; case ISD::EXTRACT_SUBREG: return "extract_subreg"; case ISD::INSERT_SUBREG: return "insert_subreg"; // Conversion operators. case ISD::SIGN_EXTEND: return "sign_extend"; case ISD::ZERO_EXTEND: return "zero_extend"; case ISD::ANY_EXTEND: return "any_extend"; case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg"; case ISD::TRUNCATE: return "truncate"; case ISD::FP_ROUND: return "fp_round"; case ISD::FP_ROUND_INREG: return "fp_round_inreg"; case ISD::FP_EXTEND: return "fp_extend"; case ISD::SINT_TO_FP: return "sint_to_fp"; case ISD::UINT_TO_FP: return "uint_to_fp"; case ISD::FP_TO_SINT: return "fp_to_sint"; case ISD::FP_TO_UINT: return "fp_to_uint"; case ISD::BIT_CONVERT: return "bit_convert"; // Control flow instructions case ISD::BR: return "br"; case ISD::BRIND: return "brind"; case ISD::BR_JT: return "br_jt"; case ISD::BRCOND: return "brcond"; case ISD::BR_CC: return "br_cc"; case ISD::RET: return "ret"; case ISD::CALLSEQ_START: return "callseq_start"; case ISD::CALLSEQ_END: return "callseq_end"; // Other operators case ISD::LOAD: return "load"; case ISD::STORE: return "store"; case ISD::VAARG: return "vaarg"; case ISD::VACOPY: return "vacopy"; case ISD::VAEND: return "vaend"; case ISD::VASTART: return "vastart"; case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc"; case ISD::EXTRACT_ELEMENT: return "extract_element"; case ISD::BUILD_PAIR: return "build_pair"; case ISD::STACKSAVE: return "stacksave"; case ISD::STACKRESTORE: return "stackrestore"; // Block memory operations. case ISD::MEMSET: return "memset"; case ISD::MEMCPY: return "memcpy"; case ISD::MEMMOVE: return "memmove"; // Bit manipulation case ISD::BSWAP: return "bswap"; case ISD::CTPOP: return "ctpop"; case ISD::CTTZ: return "cttz"; case ISD::CTLZ: return "ctlz"; // Debug info case ISD::LOCATION: return "location"; case ISD::DEBUG_LOC: return "debug_loc"; // Trampolines case ISD::ADJUST_TRAMP: return "adjust_tramp"; case ISD::TRAMPOLINE: return "trampoline"; case ISD::CONDCODE: switch (cast(this)->get()) { default: assert(0 && "Unknown setcc condition!"); case ISD::SETOEQ: return "setoeq"; case ISD::SETOGT: return "setogt"; case ISD::SETOGE: return "setoge"; case ISD::SETOLT: return "setolt"; case ISD::SETOLE: return "setole"; case ISD::SETONE: return "setone"; case ISD::SETO: return "seto"; case ISD::SETUO: return "setuo"; case ISD::SETUEQ: return "setue"; case ISD::SETUGT: return "setugt"; case ISD::SETUGE: return "setuge"; case ISD::SETULT: return "setult"; case ISD::SETULE: return "setule"; case ISD::SETUNE: return "setune"; case ISD::SETEQ: return "seteq"; case ISD::SETGT: return "setgt"; case ISD::SETGE: return "setge"; case ISD::SETLT: return "setlt"; case ISD::SETLE: return "setle"; case ISD::SETNE: return "setne"; } } } const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) { switch (AM) { default: return ""; case ISD::PRE_INC: return ""; case ISD::PRE_DEC: return ""; case ISD::POST_INC: return ""; case ISD::POST_DEC: return ""; } } void SDNode::dump() const { dump(0); } void SDNode::dump(const SelectionDAG *G) const { cerr << (void*)this << ": "; for (unsigned i = 0, e = getNumValues(); i != e; ++i) { if (i) cerr << ","; if (getValueType(i) == MVT::Other) cerr << "ch"; else cerr << MVT::getValueTypeString(getValueType(i)); } cerr << " = " << getOperationName(G); cerr << " "; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { if (i) cerr << ", "; cerr << (void*)getOperand(i).Val; if (unsigned RN = getOperand(i).ResNo) cerr << ":" << RN; } if (const ConstantSDNode *CSDN = dyn_cast(this)) { cerr << "<" << CSDN->getValue() << ">"; } else if (const ConstantFPSDNode *CSDN = dyn_cast(this)) { cerr << "<" << CSDN->getValue() << ">"; } else if (const GlobalAddressSDNode *GADN = dyn_cast(this)) { int offset = GADN->getOffset(); cerr << "<"; WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">"; if (offset > 0) cerr << " + " << offset; else cerr << " " << offset; } else if (const FrameIndexSDNode *FIDN = dyn_cast(this)) { cerr << "<" << FIDN->getIndex() << ">"; } else if (const JumpTableSDNode *JTDN = dyn_cast(this)) { cerr << "<" << JTDN->getIndex() << ">"; } else if (const ConstantPoolSDNode *CP = dyn_cast(this)){ int offset = CP->getOffset(); if (CP->isMachineConstantPoolEntry()) cerr << "<" << *CP->getMachineCPVal() << ">"; else cerr << "<" << *CP->getConstVal() << ">"; if (offset > 0) cerr << " + " << offset; else cerr << " " << offset; } else if (const BasicBlockSDNode *BBDN = dyn_cast(this)) { cerr << "<"; const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock(); if (LBB) cerr << LBB->getName() << " "; cerr << (const void*)BBDN->getBasicBlock() << ">"; } else if (const RegisterSDNode *R = dyn_cast(this)) { if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) { cerr << " " <getTarget().getRegisterInfo()->getName(R->getReg()); } else { cerr << " #" << R->getReg(); } } else if (const ExternalSymbolSDNode *ES = dyn_cast(this)) { cerr << "'" << ES->getSymbol() << "'"; } else if (const SrcValueSDNode *M = dyn_cast(this)) { if (M->getValue()) cerr << "<" << M->getValue() << ":" << M->getOffset() << ">"; else cerr << "getOffset() << ">"; } else if (const VTSDNode *N = dyn_cast(this)) { cerr << ":" << MVT::getValueTypeString(N->getVT()); } else if (const LoadSDNode *LD = dyn_cast(this)) { bool doExt = true; switch (LD->getExtensionType()) { default: doExt = false; break; case ISD::EXTLOAD: cerr << " getLoadedVT()) << ">"; const char *AM = getIndexedModeName(LD->getAddressingMode()); if (*AM) cerr << " " << AM; } else if (const StoreSDNode *ST = dyn_cast(this)) { if (ST->isTruncatingStore()) cerr << " getStoredVT()) << ">"; const char *AM = getIndexedModeName(ST->getAddressingMode()); if (*AM) cerr << " " << AM; } } static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (N->getOperand(i).Val->hasOneUse()) DumpNodes(N->getOperand(i).Val, indent+2, G); else cerr << "\n" << std::string(indent+2, ' ') << (void*)N->getOperand(i).Val << ": "; cerr << "\n" << std::string(indent, ' '); N->dump(G); } void SelectionDAG::dump() const { cerr << "SelectionDAG has " << AllNodes.size() << " nodes:"; std::vector Nodes; for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) Nodes.push_back(I); std::sort(Nodes.begin(), Nodes.end()); for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val) DumpNodes(Nodes[i], 2, this); } if (getRoot().Val) DumpNodes(getRoot().Val, 2, this); cerr << "\n\n"; } const Type *ConstantPoolSDNode::getType() const { if (isMachineConstantPoolEntry()) return Val.MachineCPVal->getType(); return Val.ConstVal->getType(); }