//===-- llvm/InstrTypes.h - Important Instruction subclasses -----*- C++ -*--=// // // This file defines various meta classes of instructions that exist in the VM // representation. Specific concrete subclasses of these may be found in the // i*.h files... // //===----------------------------------------------------------------------===// #ifndef LLVM_INSTRUCTION_TYPES_H #define LLVM_INSTRUCTION_TYPES_H #include "llvm/Instruction.h" class Method; class SymTabValue; //===----------------------------------------------------------------------===// // TerminatorInst Class //===----------------------------------------------------------------------===// // TerminatorInst - Subclasses of this class are all able to terminate a basic // block. Thus, these are all the flow control type of operations. // class TerminatorInst : public Instruction { public: TerminatorInst(unsigned iType); inline ~TerminatorInst() {} // Terminators must implement the methods required by Instruction... virtual Instruction *clone() const = 0; virtual const char *getOpcodeName() const = 0; // Additionally, they must provide a method to get at the successors of this // terminator instruction. If 'idx' is out of range, a null pointer shall be // returned. // virtual const BasicBlock *getSuccessor(unsigned idx) const = 0; virtual unsigned getNumSuccessors() const = 0; inline BasicBlock *getSuccessor(unsigned idx) { return (BasicBlock*)((const TerminatorInst *)this)->getSuccessor(idx); } }; //===----------------------------------------------------------------------===// // UnaryOperator Class //===----------------------------------------------------------------------===// class UnaryOperator : public Instruction { public: // create() - Construct a unary instruction, given the opcode // and its operand. // static UnaryOperator *create(UnaryOps Op, Value *Source); UnaryOperator(Value *S, UnaryOps iType, const string &Name = "") : Instruction(S->getType(), iType, Name) { Operands.reserve(1); Operands.push_back(Use(S, this)); } inline UnaryOps getOpcode() const { return (UnaryOps)Instruction::getOpcode(); } virtual Instruction *clone() const { return create(getOpcode(), Operands[0]); } virtual const char *getOpcodeName() const = 0; }; //===----------------------------------------------------------------------===// // BinaryOperator Class //===----------------------------------------------------------------------===// class BinaryOperator : public Instruction { public: // create() - Construct a binary instruction, given the opcode // and the two operands. // static BinaryOperator *create(BinaryOps Op, Value *S1, Value *S2, const string &Name = ""); BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const string &Name = "") : Instruction(S1->getType(), iType, Name) { Operands.reserve(2); Operands.push_back(Use(S1, this)); Operands.push_back(Use(S2, this)); assert(Operands[0] && Operands[1] && Operands[0]->getType() == Operands[1]->getType()); } inline BinaryOps getOpcode() const { return (BinaryOps)Instruction::getOpcode(); } virtual Instruction *clone() const { return create(getOpcode(), Operands[0], Operands[1]); } virtual const char *getOpcodeName() const = 0; // swapOperands - Exchange the two operands to this instruction void swapOperands() { swap(Operands[0], Operands[1]); } }; #endif