//===- ComputeClosure.cpp - Implement interprocedural closing of graphs ---===// // // Compute the interprocedural closure of a data structure graph // //===----------------------------------------------------------------------===// // DEBUG_IP_CLOSURE - Define this to debug the act of linking up graphs //#define DEBUG_IP_CLOSURE 1 #include "llvm/Analysis/DataStructure.h" #include "llvm/iOther.h" #include "Support/STLExtras.h" #include // Make all of the pointers that point to Val also point to N. // static void copyEdgesFromTo(PointerVal Val, DSNode *N) { unsigned ValIdx = Val.Index; unsigned NLinks = N->getNumLinks(); const vector &PVSsToUpdate(Val.Node->getReferrers()); for (unsigned i = 0, e = PVSsToUpdate.size(); i != e; ++i) { // Loop over all of the pointers pointing to Val... PointerValSet &PVS = *PVSsToUpdate[i]; for (unsigned j = 0, je = PVS.size(); j != je; ++j) { if (PVS[j].Node == Val.Node && PVS[j].Index >= ValIdx && PVS[j].Index < ValIdx+NLinks) PVS.add(PointerVal(N, PVS[j].Index-ValIdx)); } } } static void ResolveNodesTo(const PointerVal &FromPtr, const PointerValSet &ToVals) { assert(FromPtr.Index == 0 && "Resolved node return pointer should be index 0!"); DSNode *N = FromPtr.Node; // Make everything that pointed to the shadow node also point to the values in // ToVals... // for (unsigned i = 0, e = ToVals.size(); i != e; ++i) copyEdgesFromTo(ToVals[i], N); // Make everything that pointed to the shadow node now also point to the // values it is equivalent to... const vector &PVSToUpdate(N->getReferrers()); for (unsigned i = 0, e = PVSToUpdate.size(); i != e; ++i) PVSToUpdate[i]->add(ToVals); } // ResolveNodeTo - The specified node is now known to point to the set of values // in ToVals, instead of the old shadow node subgraph that it was pointing to. // static void ResolveNodeTo(DSNode *Node, const PointerValSet &ToVals) { assert(Node->getNumLinks() == 1 && "Resolved node can only be a scalar!!"); const PointerValSet &PVS = Node->getLink(0); // Only resolve the first pointer, although there many be many pointers here. // The problem is that the inlined function might return one of the arguments // to the function, and if so, extra values can be added to the arg or call // node that point to what the other one got resolved to. Since these will // be added to the end of the PVS pointed in, we just ignore them. // ResolveNodesTo(PVS[0], ToVals); } // isResolvableCallNode - Return true if node is a call node and it is a call // node that we can inline... // static bool isResolvableCallNode(CallDSNode *CN) { // Only operate on call nodes with direct method calls Function *F = CN->getCall()->getCalledFunction(); if (F == 0) return false; // Only work on call nodes with direct calls to methods with bodies. return !F->isExternal(); } // computeClosure - Replace all of the resolvable call nodes with the contents // of their corresponding method data structure graph... // void FunctionDSGraph::computeClosure(const DataStructure &DS) { // Note that this cannot be a real vector because the keys will be changing // as nodes are eliminated! // typedef pair, CallInst *> CallDescriptor; vector > CallMap; unsigned NumInlines = 0; // Loop over the resolvable call nodes... vector::iterator NI; NI = std::find_if(CallNodes.begin(), CallNodes.end(), isResolvableCallNode); while (NI != CallNodes.end()) { CallDSNode *CN = *NI; Function *F = CN->getCall()->getCalledFunction(); if (NumInlines++ == 100) { // CUTE hack huh? cerr << "Infinite (?) recursion halted\n"; return; } CallNodes.erase(NI); // Remove the call node from the graph unsigned CallNodeOffset = NI-CallNodes.begin(); // Find out if we have already incorporated this node... if so, it will be // in the CallMap... // #if 0 cerr << "\nSearching for: " << (void*)CN->getCall() << ": "; for (unsigned X = 0; X != CN->getArgs().size(); ++X) { cerr << " " << X << " is\n"; CN->getArgs().first[X].print(cerr); } #endif const vector &Args = CN->getArgs(); PointerValSet *CMI = 0; for (unsigned i = 0, e = CallMap.size(); i != e; ++i) { #if 0 cerr << "Found: " << (void*)CallMap[i].first.second << ": "; for (unsigned X = 0; X != CallMap[i].first.first.size(); ++X) { cerr << " " << X << " is\n"; CallMap[i].first.first[X].print(cerr); } #endif // Look to see if the function call takes a superset of the values we are // providing as input // CallDescriptor &CD = CallMap[i].first; if (CD.second == CN->getCall() && CD.first.size() == Args.size()) { bool FoundMismatch = false; for (unsigned j = 0, je = Args.size(); j != je; ++j) { PointerValSet ArgSet = CD.first[j]; if (ArgSet.add(Args[j])) { FoundMismatch = true; break; } } if (!FoundMismatch) { CMI = &CallMap[i].second; break; } } } // Hold the set of values that correspond to the incorporated methods // return set. // PointerValSet RetVals; if (CMI) { // We have already inlined an identical function call! RetVals = *CMI; } else { // Get the datastructure graph for the new method. Note that we are not // allowed to modify this graph because it will be the cached graph that // is returned by other users that want the local datastructure graph for // a method. // const FunctionDSGraph &NewFunction = DS.getDSGraph(F); // StartNode - The first node of the incorporated graph, last node of the // preexisting data structure graph... // unsigned StartArgNode = ArgNodes.size(); unsigned StartAllocNode = AllocNodes.size(); // Incorporate a copy of the called function graph into the current graph, // allowing us to do local transformations to local graph to link // arguments to call values, and call node to return value... // RetVals = cloneFunctionIntoSelf(NewFunction, false); CallMap.push_back(make_pair(CallDescriptor(CN->getArgs(), CN->getCall()), RetVals)); // If the call node has arguments, process them now! if (CN->getNumArgs()) { // The ArgNodes of the incorporated graph should be the nodes starting // at StartNode, ordered the same way as the call arguments. The arg // nodes are seperated by a single shadow node, but that shadow node // might get eliminated in the process of optimization. // for (unsigned i = 0, e = CN->getNumArgs(); i != e; ++i) { // Get the arg node of the incorporated method... ArgDSNode *ArgNode = ArgNodes[StartArgNode]; // Now we make all of the nodes inside of the incorporated method // point to the real arguments values, not to the shadow nodes for the // argument. // ResolveNodeTo(ArgNode, CN->getArgValues(i)); // Remove the argnode from the set of nodes in this method... ArgNodes.erase(ArgNodes.begin()+StartArgNode); // ArgNode is no longer useful, delete now! delete ArgNode; } } // Loop through the nodes, deleting alloca nodes in the inlined function. // Since the memory has been released, we cannot access their pointer // fields (with defined results at least), so it is not possible to use // any pointers to the alloca. Drop them now, and remove the alloca's // since they are dead (we just removed all links to them). // for (unsigned i = StartAllocNode; i != AllocNodes.size(); ++i) if (AllocNodes[i]->isAllocaNode()) { AllocDSNode *NDS = AllocNodes[i]; NDS->removeAllIncomingEdges(); // These edges are invalid now delete NDS; // Node is dead AllocNodes.erase(AllocNodes.begin()+i); // Remove slot in Nodes array --i; // Don't skip the next node } } // If the function returns a pointer value... Resolve values pointing to // the shadow nodes pointed to by CN to now point the values in RetVals... // if (CN->getNumLinks()) ResolveNodeTo(CN, RetVals); // Now the call node is completely destructable. Eliminate it now. delete CN; bool Changed = true; while (Changed) { // Eliminate shadow nodes that are not distinguishable from some other // node in the graph... // Changed = UnlinkUndistinguishableNodes(); // Eliminate shadow nodes that are now extraneous due to linking... Changed |= RemoveUnreachableNodes(); } //if (F == Func) return; // Only do one self inlining // Move on to the next call node... NI = std::find_if(CallNodes.begin(), CallNodes.end(), isResolvableCallNode); } }