//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveVariable analysis pass. For each machine // instruction in the function, this pass calculates the set of registers that // are immediately dead after the instruction (i.e., the instruction calculates // the value, but it is never used) and the set of registers that are used by // the instruction, but are never used after the instruction (i.e., they are // killed). // // This class computes live variables using are sparse implementation based on // the machine code SSA form. This class computes live variable information for // each virtual and _register allocatable_ physical register in a function. It // uses the dominance properties of SSA form to efficiently compute live // variables for virtual registers, and assumes that physical registers are only // live within a single basic block (allowing it to do a single local analysis // to resolve physical register lifetimes in each basic block). If a physical // register is not register allocatable, it is not tracked. This is useful for // things like the stack pointer and condition codes. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Config/alloca.h" #include using namespace llvm; char LiveVariables::ID = 0; static RegisterPass X("livevars", "Live Variable Analysis"); void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(UnreachableMachineBlockElimID); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } void LiveVariables::VarInfo::dump() const { errs() << " Alive in blocks: "; for (SparseBitVector<>::iterator I = AliveBlocks.begin(), E = AliveBlocks.end(); I != E; ++I) errs() << *I << ", "; errs() << "\n Killed by:"; if (Kills.empty()) errs() << " No instructions.\n"; else { for (unsigned i = 0, e = Kills.size(); i != e; ++i) errs() << "\n #" << i << ": " << *Kills[i]; errs() << "\n"; } } /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && "getVarInfo: not a virtual register!"); RegIdx -= TargetRegisterInfo::FirstVirtualRegister; if (RegIdx >= VirtRegInfo.size()) { if (RegIdx >= 2*VirtRegInfo.size()) VirtRegInfo.resize(RegIdx*2); else VirtRegInfo.resize(2*VirtRegInfo.size()); } return VirtRegInfo[RegIdx]; } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB, std::vector &WorkList) { unsigned BBNum = MBB->getNumber(); // Check to see if this basic block is one of the killing blocks. If so, // remove it. for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) if (VRInfo.Kills[i]->getParent() == MBB) { VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry break; } if (MBB == DefBlock) return; // Terminate recursion if (VRInfo.AliveBlocks.test(BBNum)) return; // We already know the block is live // Mark the variable known alive in this bb VRInfo.AliveBlocks.set(BBNum); for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), E = MBB->pred_rend(); PI != E; ++PI) WorkList.push_back(*PI); } void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB) { std::vector WorkList; MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); while (!WorkList.empty()) { MachineBasicBlock *Pred = WorkList.back(); WorkList.pop_back(); MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); } } void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr *MI) { assert(MRI->getVRegDef(reg) && "Register use before def!"); unsigned BBNum = MBB->getNumber(); VarInfo& VRInfo = getVarInfo(reg); VRInfo.NumUses++; // Check to see if this basic block is already a kill block. if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { // Yes, this register is killed in this basic block already. Increase the // live range by updating the kill instruction. VRInfo.Kills.back() = MI; return; } #ifndef NDEBUG for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); #endif // This situation can occur: // // ,------. // | | // | v // | t2 = phi ... t1 ... // | | // | v // | t1 = ... // | ... = ... t1 ... // | | // `------' // // where there is a use in a PHI node that's a predecessor to the defining // block. We don't want to mark all predecessors as having the value "alive" // in this case. if (MBB == MRI->getVRegDef(reg)->getParent()) return; // Add a new kill entry for this basic block. If this virtual register is // already marked as alive in this basic block, that means it is alive in at // least one of the successor blocks, it's not a kill. if (!VRInfo.AliveBlocks.test(BBNum)) VRInfo.Kills.push_back(MI); // Update all dominating blocks to mark them as "known live". for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), E = MBB->pred_end(); PI != E; ++PI) MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); } void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { VarInfo &VRInfo = getVarInfo(Reg); if (VRInfo.AliveBlocks.empty()) // If vr is not alive in any block, then defaults to dead. VRInfo.Kills.push_back(MI); } /// FindLastPartialDef - Return the last partial def of the specified register. /// Also returns the sub-register that's defined. MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, unsigned &PartDefReg) { unsigned LastDefReg = 0; unsigned LastDefDist = 0; MachineInstr *LastDef = NULL; for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { MachineInstr *Def = PhysRegDef[SubReg]; if (!Def) continue; unsigned Dist = DistanceMap[Def]; if (Dist > LastDefDist) { LastDefReg = SubReg; LastDef = Def; LastDefDist = Dist; } } PartDefReg = LastDefReg; return LastDef; } /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add /// implicit defs to a machine instruction if there was an earlier def of its /// super-register. void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { // If there was a previous use or a "full" def all is well. if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) { // Otherwise, the last sub-register def implicitly defines this register. // e.g. // AH = // AL = ... , // = AH // ... // = EAX // All of the sub-registers must have been defined before the use of Reg! unsigned PartDefReg = 0; MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg); // If LastPartialDef is NULL, it must be using a livein register. if (LastPartialDef) { LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, true/*IsImp*/)); PhysRegDef[Reg] = LastPartialDef; SmallSet Processed; for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { if (Processed.count(SubReg)) continue; if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg)) continue; // This part of Reg was defined before the last partial def. It's killed // here. LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, false/*IsDef*/, true/*IsImp*/)); PhysRegDef[SubReg] = LastPartialDef; for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) Processed.insert(*SS); } } } // Remember this use. PhysRegUse[Reg] = MI; for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) PhysRegUse[SubReg] = MI; } /// hasRegisterUseBelow - Return true if the specified register is used after /// the current instruction and before it's next definition. bool LiveVariables::hasRegisterUseBelow(unsigned Reg, MachineBasicBlock::iterator I, MachineBasicBlock *MBB) { if (I == MBB->end()) return false; // First find out if there are any uses / defs below. bool hasDistInfo = true; unsigned CurDist = DistanceMap[I]; SmallVector Uses; SmallVector Defs; for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), RE = MRI->reg_end(); RI != RE; ++RI) { MachineOperand &UDO = RI.getOperand(); MachineInstr *UDMI = &*RI; if (UDMI->getParent() != MBB) continue; DenseMap::iterator DI = DistanceMap.find(UDMI); bool isBelow = false; if (DI == DistanceMap.end()) { // Must be below if it hasn't been assigned a distance yet. isBelow = true; hasDistInfo = false; } else if (DI->second > CurDist) isBelow = true; if (isBelow) { if (UDO.isUse()) Uses.push_back(UDMI); if (UDO.isDef()) Defs.push_back(UDMI); } } if (Uses.empty()) // No uses below. return false; else if (!Uses.empty() && Defs.empty()) // There are uses below but no defs below. return true; // There are both uses and defs below. We need to know which comes first. if (!hasDistInfo) { // Complete DistanceMap for this MBB. This information is computed only // once per MBB. ++I; ++CurDist; for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist) DistanceMap.insert(std::make_pair(I, CurDist)); } unsigned EarliestUse = DistanceMap[Uses[0]]; for (unsigned i = 1, e = Uses.size(); i != e; ++i) { unsigned Dist = DistanceMap[Uses[i]]; if (Dist < EarliestUse) EarliestUse = Dist; } for (unsigned i = 0, e = Defs.size(); i != e; ++i) { unsigned Dist = DistanceMap[Defs[i]]; if (Dist < EarliestUse) // The register is defined before its first use below. return false; } return true; } bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { if (!PhysRegUse[Reg] && !PhysRegDef[Reg]) return false; MachineInstr *LastRefOrPartRef = PhysRegUse[Reg] ? PhysRegUse[Reg] : PhysRegDef[Reg]; unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; // The whole register is used. // AL = // AH = // // = AX // = AL, AX // AX = // // Or whole register is defined, but not used at all. // AX = // ... // AX = // // Or whole register is defined, but only partly used. // AX = AL // = AL // AX = SmallSet PartUses; for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { if (MachineInstr *Use = PhysRegUse[SubReg]) { PartUses.insert(SubReg); for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) PartUses.insert(*SS); unsigned Dist = DistanceMap[Use]; if (Dist > LastRefOrPartRefDist) { LastRefOrPartRefDist = Dist; LastRefOrPartRef = Use; } } } if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) // If the last reference is the last def, then it's not used at all. // That is, unless we are currently processing the last reference itself. LastRefOrPartRef->addRegisterDead(Reg, TRI, true); // Partial uses. Mark register def dead and add implicit def of // sub-registers which are used. // EAX = op AL // That is, EAX def is dead but AL def extends pass it. // Enable this after live interval analysis is fixed to improve codegen! else if (!PhysRegUse[Reg]) { PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { if (PartUses.count(SubReg)) { bool NeedDef = true; if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); if (MO) { NeedDef = false; assert(!MO->isDead()); } } if (NeedDef) PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, true, true)); LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) PartUses.erase(*SS); } } } else LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); return true; } void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { // What parts of the register are previously defined? SmallSet Live; if (PhysRegDef[Reg] || PhysRegUse[Reg]) { Live.insert(Reg); for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) Live.insert(*SS); } else { for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { // If a register isn't itself defined, but all parts that make up of it // are defined, then consider it also defined. // e.g. // AL = // AH = // = AX if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { Live.insert(SubReg); for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) Live.insert(*SS); } } } // Start from the largest piece, find the last time any part of the register // is referenced. if (!HandlePhysRegKill(Reg, MI)) { // Only some of the sub-registers are used. for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { if (!Live.count(SubReg)) // Skip if this sub-register isn't defined. continue; if (HandlePhysRegKill(SubReg, MI)) { Live.erase(SubReg); for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) Live.erase(*SS); } } assert(Live.empty() && "Not all defined registers are killed / dead?"); } if (MI) { // Does this extend the live range of a super-register? SmallSet Processed; for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg); unsigned SuperReg = *SuperRegs; ++SuperRegs) { if (Processed.count(SuperReg)) continue; MachineInstr *LastRef = PhysRegUse[SuperReg] ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg]; if (LastRef && LastRef != MI) { // The larger register is previously defined. Now a smaller part is // being re-defined. Treat it as read/mod/write if there are uses // below. // EAX = // AX = EAX, EAX // ... /// = EAX if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) { MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/, true/*IsImp*/,true/*IsKill*/)); MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/, true/*IsImp*/)); PhysRegDef[SuperReg] = MI; PhysRegUse[SuperReg] = NULL; Processed.insert(SuperReg); for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { PhysRegDef[*SS] = MI; PhysRegUse[*SS] = NULL; Processed.insert(*SS); } } else { // Otherwise, the super register is killed. if (HandlePhysRegKill(SuperReg, MI)) { PhysRegDef[SuperReg] = NULL; PhysRegUse[SuperReg] = NULL; for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { PhysRegDef[*SS] = NULL; PhysRegUse[*SS] = NULL; Processed.insert(*SS); } } } } } // Remember this def. PhysRegDef[Reg] = MI; PhysRegUse[Reg] = NULL; for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); unsigned SubReg = *SubRegs; ++SubRegs) { PhysRegDef[SubReg] = MI; PhysRegUse[SubReg] = NULL; } } } bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { MF = &mf; MRI = &mf.getRegInfo(); TRI = MF->getTarget().getRegisterInfo(); ReservedRegisters = TRI->getReservedRegs(mf); unsigned NumRegs = TRI->getNumRegs(); PhysRegDef = new MachineInstr*[NumRegs]; PhysRegUse = new MachineInstr*[NumRegs]; PHIVarInfo = new SmallVector[MF->getNumBlockIDs()]; std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); /// Get some space for a respectable number of registers. VirtRegInfo.resize(64); analyzePHINodes(mf); // Calculate live variable information in depth first order on the CFG of the // function. This guarantees that we will see the definition of a virtual // register before its uses due to dominance properties of SSA (except for PHI // nodes, which are treated as a special case). MachineBasicBlock *Entry = MF->begin(); SmallPtrSet Visited; for (df_ext_iterator > DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { MachineBasicBlock *MBB = *DFI; // Mark live-in registers as live-in. for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), EE = MBB->livein_end(); II != EE; ++II) { assert(TargetRegisterInfo::isPhysicalRegister(*II) && "Cannot have a live-in virtual register!"); HandlePhysRegDef(*II, 0); } // Loop over all of the instructions, processing them. DistanceMap.clear(); unsigned Dist = 0; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { MachineInstr *MI = I; DistanceMap.insert(std::make_pair(MI, Dist++)); // Process all of the operands of the instruction... unsigned NumOperandsToProcess = MI->getNumOperands(); // Unless it is a PHI node. In this case, ONLY process the DEF, not any // of the uses. They will be handled in other basic blocks. if (MI->getOpcode() == TargetInstrInfo::PHI) NumOperandsToProcess = 1; SmallVector UseRegs; SmallVector DefRegs; for (unsigned i = 0; i != NumOperandsToProcess; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || MO.getReg() == 0) continue; unsigned MOReg = MO.getReg(); if (MO.isUse()) UseRegs.push_back(MOReg); if (MO.isDef()) DefRegs.push_back(MOReg); } // Process all uses. for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { unsigned MOReg = UseRegs[i]; if (TargetRegisterInfo::isVirtualRegister(MOReg)) HandleVirtRegUse(MOReg, MBB, MI); else if (!ReservedRegisters[MOReg]) HandlePhysRegUse(MOReg, MI); } // Process all defs. for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { unsigned MOReg = DefRegs[i]; if (TargetRegisterInfo::isVirtualRegister(MOReg)) HandleVirtRegDef(MOReg, MI); else if (!ReservedRegisters[MOReg]) HandlePhysRegDef(MOReg, MI); } } // Handle any virtual assignments from PHI nodes which might be at the // bottom of this basic block. We check all of our successor blocks to see // if they have PHI nodes, and if so, we simulate an assignment at the end // of the current block. if (!PHIVarInfo[MBB->getNumber()].empty()) { SmallVector& VarInfoVec = PHIVarInfo[MBB->getNumber()]; for (SmallVector::iterator I = VarInfoVec.begin(), E = VarInfoVec.end(); I != E; ++I) // Mark it alive only in the block we are representing. MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), MBB); } // Finally, if the last instruction in the block is a return, make sure to // mark it as using all of the live-out values in the function. if (!MBB->empty() && MBB->back().getDesc().isReturn()) { MachineInstr *Ret = &MBB->back(); for (MachineRegisterInfo::liveout_iterator I = MF->getRegInfo().liveout_begin(), E = MF->getRegInfo().liveout_end(); I != E; ++I) { assert(TargetRegisterInfo::isPhysicalRegister(*I) && "Cannot have a live-out virtual register!"); HandlePhysRegUse(*I, Ret); // Add live-out registers as implicit uses. if (!Ret->readsRegister(*I)) Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); } } // Loop over PhysRegDef / PhysRegUse, killing any registers that are // available at the end of the basic block. for (unsigned i = 0; i != NumRegs; ++i) if (PhysRegDef[i] || PhysRegUse[i]) HandlePhysRegDef(i, 0); std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); } // Convert and transfer the dead / killed information we have gathered into // VirtRegInfo onto MI's. for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) if (VirtRegInfo[i].Kills[j] == MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) VirtRegInfo[i] .Kills[j]->addRegisterDead(i + TargetRegisterInfo::FirstVirtualRegister, TRI); else VirtRegInfo[i] .Kills[j]->addRegisterKilled(i + TargetRegisterInfo::FirstVirtualRegister, TRI); // Check to make sure there are no unreachable blocks in the MC CFG for the // function. If so, it is due to a bug in the instruction selector or some // other part of the code generator if this happens. #ifndef NDEBUG for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) assert(Visited.count(&*i) != 0 && "unreachable basic block found"); #endif delete[] PhysRegDef; delete[] PhysRegUse; delete[] PHIVarInfo; return false; } /// replaceKillInstruction - Update register kill info by replacing a kill /// instruction with a new one. void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, MachineInstr *NewMI) { VarInfo &VI = getVarInfo(Reg); std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); } /// removeVirtualRegistersKilled - Remove all killed info for the specified /// instruction. void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isKill()) { MO.setIsKill(false); unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { bool removed = getVarInfo(Reg).removeKill(MI); assert(removed && "kill not in register's VarInfo?"); removed = true; } } } } /// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the variable information of a virtual register /// which is used in a PHI node. We map that to the BB the vreg is coming from. /// void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] .push_back(BBI->getOperand(i).getReg()); }