//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAGInstrs class, which implements re-scheduling // of MachineInstrs. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched-instrs" #include "ScheduleDAGInstrs.h" #include "llvm/Operator.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtarget.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallSet.h" using namespace llvm; ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, const MachineLoopInfo &mli, const MachineDominatorTree &mdt) : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) { MFI = mf.getFrameInfo(); } /// Run - perform scheduling. /// void ScheduleDAGInstrs::Run(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned endcount) { BB = bb; Begin = begin; InsertPosIndex = endcount; ScheduleDAG::Run(bb, end); } /// getUnderlyingObjectFromInt - This is the function that does the work of /// looking through basic ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObjectFromInt(const Value *V) { do { if (const Operator *U = dyn_cast(V)) { // If we find a ptrtoint, we can transfer control back to the // regular getUnderlyingObjectFromInt. if (U->getOpcode() == Instruction::PtrToInt) return U->getOperand(0); // If we find an add of a constant or a multiplied value, it's // likely that the other operand will lead us to the base // object. We don't have to worry about the case where the // object address is somehow being computed by the multiply, // because our callers only care when the result is an // identifibale object. if (U->getOpcode() != Instruction::Add || (!isa(U->getOperand(1)) && Operator::getOpcode(U->getOperand(1)) != Instruction::Mul)) return V; V = U->getOperand(0); } else { return V; } assert(isa(V->getType()) && "Unexpected operand type!"); } while (1); } /// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObject(const Value *V) { // First just call Value::getUnderlyingObject to let it do what it does. do { V = V->getUnderlyingObject(); // If it found an inttoptr, use special code to continue climing. if (Operator::getOpcode(V) != Instruction::IntToPtr) break; const Value *O = getUnderlyingObjectFromInt(cast(V)->getOperand(0)); // If that succeeded in finding a pointer, continue the search. if (!isa(O->getType())) break; V = O; } while (1); return V; } /// getUnderlyingObjectForInstr - If this machine instr has memory reference /// information and it can be tracked to a normal reference to a known /// object, return the Value for that object. Otherwise return null. static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI, const MachineFrameInfo *MFI) { if (!MI->hasOneMemOperand() || !(*MI->memoperands_begin())->getValue() || (*MI->memoperands_begin())->isVolatile()) return 0; const Value *V = (*MI->memoperands_begin())->getValue(); if (!V) return 0; V = getUnderlyingObject(V); if (const PseudoSourceValue *PSV = dyn_cast(V)) { // For now, ignore PseudoSourceValues which may alias LLVM IR values // because the code that uses this function has no way to cope with // such aliases. if (PSV->isAliased(MFI)) return 0; return V; } if (isIdentifiedObject(V)) return V; return 0; } void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) { if (MachineLoop *ML = MLI.getLoopFor(BB)) if (BB == ML->getLoopLatch()) { MachineBasicBlock *Header = ML->getHeader(); for (MachineBasicBlock::livein_iterator I = Header->livein_begin(), E = Header->livein_end(); I != E; ++I) LoopLiveInRegs.insert(*I); LoopRegs.VisitLoop(ML); } } void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) { // We'll be allocating one SUnit for each instruction, plus one for // the region exit node. SUnits.reserve(BB->size()); // We build scheduling units by walking a block's instruction list from bottom // to top. // Remember where a generic side-effecting instruction is as we procede. If // ChainMMO is null, this is assumed to have arbitrary side-effects. If // ChainMMO is non-null, then Chain makes only a single memory reference. SUnit *Chain = 0; MachineMemOperand *ChainMMO = 0; // Memory references to specific known memory locations are tracked so that // they can be given more precise dependencies. std::map MemDefs; std::map > MemUses; // Check to see if the scheduler cares about latencies. bool UnitLatencies = ForceUnitLatencies(); // Ask the target if address-backscheduling is desirable, and if so how much. const TargetSubtarget &ST = TM.getSubtarget(); unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); // Walk the list of instructions, from bottom moving up. for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin; MII != MIE; --MII) { MachineInstr *MI = prior(MII); const TargetInstrDesc &TID = MI->getDesc(); assert(!TID.isTerminator() && !MI->isLabel() && "Cannot schedule terminators or labels!"); // Create the SUnit for this MI. SUnit *SU = NewSUnit(MI); // Assign the Latency field of SU using target-provided information. if (UnitLatencies) SU->Latency = 1; else ComputeLatency(SU); // Add register-based dependencies (data, anti, and output). for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { const MachineOperand &MO = MI->getOperand(j); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); std::vector &UseList = Uses[Reg]; std::vector &DefList = Defs[Reg]; // Optionally add output and anti dependencies. For anti // dependencies we use a latency of 0 because for a multi-issue // target we want to allow the defining instruction to issue // in the same cycle as the using instruction. // TODO: Using a latency of 1 here for output dependencies assumes // there's no cost for reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1; for (unsigned i = 0, e = DefList.size(); i != e; ++i) { SUnit *DefSU = DefList[i]; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(Reg))) DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg)); } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { std::vector &DefList = Defs[*Alias]; for (unsigned i = 0, e = DefList.size(); i != e; ++i) { SUnit *DefSU = DefList[i]; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(*Alias))) DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias)); } } if (MO.isDef()) { // Add any data dependencies. unsigned DataLatency = SU->Latency; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i]; if (UseSU != SU) { unsigned LDataLatency = DataLatency; // Optionally add in a special extra latency for nodes that // feed addresses. // TODO: Do this for register aliases too. // TODO: Perhaps we should get rid of // SpecialAddressLatency and just move this into // adjustSchedDependency for the targets that care about // it. if (SpecialAddressLatency != 0 && !UnitLatencies) { MachineInstr *UseMI = UseSU->getInstr(); const TargetInstrDesc &UseTID = UseMI->getDesc(); int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg); assert(RegUseIndex >= 0 && "UseMI doesn's use register!"); if ((UseTID.mayLoad() || UseTID.mayStore()) && (unsigned)RegUseIndex < UseTID.getNumOperands() && UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass()) LDataLatency += SpecialAddressLatency; } // Adjust the dependence latency using operand def/use // information (if any), and then allow the target to // perform its own adjustments. const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg); if (!UnitLatencies) { ComputeOperandLatency(SU, UseSU, (SDep &)dep); ST.adjustSchedDependency(SU, UseSU, (SDep &)dep); } UseSU->addPred(dep); } } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { std::vector &UseList = Uses[*Alias]; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i]; if (UseSU != SU) { const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias); if (!UnitLatencies) { ComputeOperandLatency(SU, UseSU, (SDep &)dep); ST.adjustSchedDependency(SU, UseSU, (SDep &)dep); } UseSU->addPred(dep); } } } // If a def is going to wrap back around to the top of the loop, // backschedule it. if (!UnitLatencies && DefList.empty()) { LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg); if (I != LoopRegs.Deps.end()) { const MachineOperand *UseMO = I->second.first; unsigned Count = I->second.second; const MachineInstr *UseMI = UseMO->getParent(); unsigned UseMOIdx = UseMO - &UseMI->getOperand(0); const TargetInstrDesc &UseTID = UseMI->getDesc(); // TODO: If we knew the total depth of the region here, we could // handle the case where the whole loop is inside the region but // is large enough that the isScheduleHigh trick isn't needed. if (UseMOIdx < UseTID.getNumOperands()) { // Currently, we only support scheduling regions consisting of // single basic blocks. Check to see if the instruction is in // the same region by checking to see if it has the same parent. if (UseMI->getParent() != MI->getParent()) { unsigned Latency = SU->Latency; if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) Latency += SpecialAddressLatency; // This is a wild guess as to the portion of the latency which // will be overlapped by work done outside the current // scheduling region. Latency -= std::min(Latency, Count); // Add the artifical edge. ExitSU.addPred(SDep(SU, SDep::Order, Latency, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); } else if (SpecialAddressLatency > 0 && UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) { // The entire loop body is within the current scheduling region // and the latency of this operation is assumed to be greater // than the latency of the loop. // TODO: Recursively mark data-edge predecessors as // isScheduleHigh too. SU->isScheduleHigh = true; } } LoopRegs.Deps.erase(I); } } UseList.clear(); if (!MO.isDead()) DefList.clear(); DefList.push_back(SU); } else { UseList.push_back(SU); } } // Add chain dependencies. // Chain dependencies used to enforce memory order should have // latency of 0 (except for true dependency of Store followed by // aliased Load... we estimate that with a single cycle of latency // assuming the hardware will bypass) // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable // after stack slots are lowered to actual addresses. // TODO: Use an AliasAnalysis and do real alias-analysis queries, and // produce more precise dependence information. #define STORE_LOAD_LATENCY 1 unsigned TrueMemOrderLatency = 0; if (TID.isCall() || TID.hasUnmodeledSideEffects()) { new_chain: // This is the conservative case. Add dependencies on all memory // references. if (Chain) Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); Chain = SU; for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); PendingLoads.clear(); for (std::map::iterator I = MemDefs.begin(), E = MemDefs.end(); I != E; ++I) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); I->second = SU; } for (std::map >::iterator I = MemUses.begin(), E = MemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); I->second.clear(); } // See if it is known to just have a single memory reference. MachineInstr *ChainMI = Chain->getInstr(); const TargetInstrDesc &ChainTID = ChainMI->getDesc(); if (!ChainTID.isCall() && !ChainTID.hasUnmodeledSideEffects() && ChainMI->hasOneMemOperand() && !(*ChainMI->memoperands_begin())->isVolatile() && (*ChainMI->memoperands_begin())->getValue()) // We know that the Chain accesses one specific memory location. ChainMMO = *ChainMI->memoperands_begin(); else // Unknown memory accesses. Assume the worst. ChainMMO = 0; } else if (TID.mayStore()) { TrueMemOrderLatency = STORE_LOAD_LATENCY; if (const Value *V = getUnderlyingObjectForInstr(MI, MFI)) { // A store to a specific PseudoSourceValue. Add precise dependencies. // Handle the def in MemDefs, if there is one. std::map::iterator I = MemDefs.find(V); if (I != MemDefs.end()) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, /*isNormalMemory=*/true)); I->second = SU; } else { MemDefs[V] = SU; } // Handle the uses in MemUses, if there are any. std::map >::iterator J = MemUses.find(V); if (J != MemUses.end()) { for (unsigned i = 0, e = J->second.size(); i != e; ++i) J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency, /*Reg=*/0, /*isNormalMemory=*/true)); J->second.clear(); } // Add dependencies from all the PendingLoads, since without // memoperands we must assume they alias anything. for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); // Add a general dependence too, if needed. if (Chain) Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } else { // Treat all other stores conservatively. goto new_chain; } } else if (TID.mayLoad()) { TrueMemOrderLatency = 0; if (MI->isInvariantLoad(AA)) { // Invariant load, no chain dependencies needed! } else if (const Value *V = getUnderlyingObjectForInstr(MI, MFI)) { // A load from a specific PseudoSourceValue. Add precise dependencies. std::map::iterator I = MemDefs.find(V); if (I != MemDefs.end()) I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, /*isNormalMemory=*/true)); MemUses[V].push_back(SU); // Add a general dependence too, if needed. if (Chain && (!ChainMMO || (ChainMMO->isStore() || ChainMMO->isVolatile()))) Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } else if (MI->hasVolatileMemoryRef()) { // Treat volatile loads conservatively. Note that this includes // cases where memoperand information is unavailable. goto new_chain; } else { // A normal load. Depend on the general chain, as well as on // all stores. In the absense of MachineMemOperand information, // we can't even assume that the load doesn't alias well-behaved // memory locations. if (Chain) Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); for (std::map::iterator I = MemDefs.begin(), E = MemDefs.end(); I != E; ++I) I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); PendingLoads.push_back(SU); } } } for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) { Defs[i].clear(); Uses[i].clear(); } PendingLoads.clear(); } void ScheduleDAGInstrs::FinishBlock() { // Nothing to do. } void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) { const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); // Compute the latency for the node. SU->Latency = InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass()); // Simplistic target-independent heuristic: assume that loads take // extra time. if (InstrItins.isEmpty()) if (SU->getInstr()->getDesc().mayLoad()) SU->Latency += 2; } void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use, SDep& dep) const { const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); if (InstrItins.isEmpty()) return; // For a data dependency with a known register... if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0)) return; const unsigned Reg = dep.getReg(); // ... find the definition of the register in the defining // instruction MachineInstr *DefMI = Def->getInstr(); int DefIdx = DefMI->findRegisterDefOperandIdx(Reg); if (DefIdx != -1) { int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx); if (DefCycle >= 0) { MachineInstr *UseMI = Use->getInstr(); const unsigned UseClass = UseMI->getDesc().getSchedClass(); // For all uses of the register, calculate the maxmimum latency int Latency = -1; for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = UseMI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned MOReg = MO.getReg(); if (MOReg != Reg) continue; int UseCycle = InstrItins.getOperandCycle(UseClass, i); if (UseCycle >= 0) Latency = std::max(Latency, DefCycle - UseCycle + 1); } // If we found a latency, then replace the existing dependence latency. if (Latency >= 0) dep.setLatency(Latency); } } } void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { SU->getInstr()->dump(); } std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { std::string s; raw_string_ostream oss(s); if (SU == &EntrySU) oss << ""; else if (SU == &ExitSU) oss << ""; else SU->getInstr()->print(oss); return oss.str(); } // EmitSchedule - Emit the machine code in scheduled order. MachineBasicBlock *ScheduleDAGInstrs:: EmitSchedule(DenseMap *EM) { // For MachineInstr-based scheduling, we're rescheduling the instructions in // the block, so start by removing them from the block. while (Begin != InsertPos) { MachineBasicBlock::iterator I = Begin; ++Begin; BB->remove(I); } // Then re-insert them according to the given schedule. for (unsigned i = 0, e = Sequence.size(); i != e; i++) { SUnit *SU = Sequence[i]; if (!SU) { // Null SUnit* is a noop. EmitNoop(); continue; } BB->insert(InsertPos, SU->getInstr()); } // Update the Begin iterator, as the first instruction in the block // may have been scheduled later. if (!Sequence.empty()) Begin = Sequence[0]->getInstr(); return BB; }