//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the common interface used by the various execution engine // subclasses. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/ADT/Statistic.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MutexGuard.h" #include "llvm/System/DynamicLibrary.h" #include "llvm/Target/TargetData.h" using namespace llvm; STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); STATISTIC(NumGlobals , "Number of global vars initialized"); ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; ExecutionEngine::ExecutionEngine(ModuleProvider *P) { LazyCompilationDisabled = false; Modules.push_back(P); assert(P && "ModuleProvider is null?"); } ExecutionEngine::ExecutionEngine(Module *M) { LazyCompilationDisabled = false; assert(M && "Module is null?"); Modules.push_back(new ExistingModuleProvider(M)); } ExecutionEngine::~ExecutionEngine() { for (unsigned i = 0, e = Modules.size(); i != e; ++i) delete Modules[i]; } /// FindFunctionNamed - Search all of the active modules to find the one that /// defines FnName. This is very slow operation and shouldn't be used for /// general code. Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { for (unsigned i = 0, e = Modules.size(); i != e; ++i) { if (Function *F = Modules[i]->getModule()->getNamedFunction(FnName)) return F; } return 0; } /// addGlobalMapping - Tell the execution engine that the specified global is /// at the specified location. This is used internally as functions are JIT'd /// and as global variables are laid out in memory. It can and should also be /// used by clients of the EE that want to have an LLVM global overlay /// existing data in memory. void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); void *&CurVal = state.getGlobalAddressMap(locked)[GV]; assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); CurVal = Addr; // If we are using the reverse mapping, add it too if (!state.getGlobalAddressReverseMap(locked).empty()) { const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; assert((V == 0 || GV == 0) && "GlobalMapping already established!"); V = GV; } } /// clearAllGlobalMappings - Clear all global mappings and start over again /// use in dynamic compilation scenarios when you want to move globals void ExecutionEngine::clearAllGlobalMappings() { MutexGuard locked(lock); state.getGlobalAddressMap(locked).clear(); state.getGlobalAddressReverseMap(locked).clear(); } /// updateGlobalMapping - Replace an existing mapping for GV with a new /// address. This updates both maps as required. If "Addr" is null, the /// entry for the global is removed from the mappings. void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); // Deleting from the mapping? if (Addr == 0) { state.getGlobalAddressMap(locked).erase(GV); if (!state.getGlobalAddressReverseMap(locked).empty()) state.getGlobalAddressReverseMap(locked).erase(Addr); return; } void *&CurVal = state.getGlobalAddressMap(locked)[GV]; if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) state.getGlobalAddressReverseMap(locked).erase(CurVal); CurVal = Addr; // If we are using the reverse mapping, add it too if (!state.getGlobalAddressReverseMap(locked).empty()) { const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; assert((V == 0 || GV == 0) && "GlobalMapping already established!"); V = GV; } } /// getPointerToGlobalIfAvailable - This returns the address of the specified /// global value if it is has already been codegen'd, otherwise it returns null. /// void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { MutexGuard locked(lock); std::map::iterator I = state.getGlobalAddressMap(locked).find(GV); return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; } /// getGlobalValueAtAddress - Return the LLVM global value object that starts /// at the specified address. /// const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { MutexGuard locked(lock); // If we haven't computed the reverse mapping yet, do so first. if (state.getGlobalAddressReverseMap(locked).empty()) { for (std::map::iterator I = state.getGlobalAddressMap(locked).begin(), E = state.getGlobalAddressMap(locked).end(); I != E; ++I) state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, I->first)); } std::map::iterator I = state.getGlobalAddressReverseMap(locked).find(Addr); return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; } // CreateArgv - Turn a vector of strings into a nice argv style array of // pointers to null terminated strings. // static void *CreateArgv(ExecutionEngine *EE, const std::vector &InputArgv) { unsigned PtrSize = EE->getTargetData()->getPointerSize(); char *Result = new char[(InputArgv.size()+1)*PtrSize]; DOUT << "ARGV = " << (void*)Result << "\n"; const Type *SBytePtr = PointerType::get(Type::Int8Ty); for (unsigned i = 0; i != InputArgv.size(); ++i) { unsigned Size = InputArgv[i].size()+1; char *Dest = new char[Size]; DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); Dest[Size-1] = 0; // Endian safe: Result[i] = (PointerTy)Dest; EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), SBytePtr); } // Null terminate it EE->StoreValueToMemory(PTOGV(0), (GenericValue*)(Result+InputArgv.size()*PtrSize), SBytePtr); return Result; } /// runStaticConstructorsDestructors - This method is used to execute all of /// the static constructors or destructors for a program, depending on the /// value of isDtors. void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; // Execute global ctors/dtors for each module in the program. for (unsigned m = 0, e = Modules.size(); m != e; ++m) { GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); // If this global has internal linkage, or if it has a use, then it must be // an old-style (llvmgcc3) static ctor with __main linked in and in use. If // this is the case, don't execute any of the global ctors, __main will do // it. if (!GV || GV->isExternal() || GV->hasInternalLinkage()) continue; // Should be an array of '{ int, void ()* }' structs. The first value is // the init priority, which we ignore. ConstantArray *InitList = dyn_cast(GV->getInitializer()); if (!InitList) continue; for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) if (ConstantStruct *CS = dyn_cast(InitList->getOperand(i))) { if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. Constant *FP = CS->getOperand(1); if (FP->isNullValue()) break; // Found a null terminator, exit. if (ConstantExpr *CE = dyn_cast(FP)) if (CE->isCast()) FP = CE->getOperand(0); if (Function *F = dyn_cast(FP)) { // Execute the ctor/dtor function! runFunction(F, std::vector()); } } } } /// runFunctionAsMain - This is a helper function which wraps runFunction to /// handle the common task of starting up main with the specified argc, argv, /// and envp parameters. int ExecutionEngine::runFunctionAsMain(Function *Fn, const std::vector &argv, const char * const * envp) { std::vector GVArgs; GenericValue GVArgc; GVArgc.Int32Val = argv.size(); unsigned NumArgs = Fn->getFunctionType()->getNumParams(); if (NumArgs) { GVArgs.push_back(GVArgc); // Arg #0 = argc. if (NumArgs > 1) { GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. assert(((char **)GVTOP(GVArgs[1]))[0] && "argv[0] was null after CreateArgv"); if (NumArgs > 2) { std::vector EnvVars; for (unsigned i = 0; envp[i]; ++i) EnvVars.push_back(envp[i]); GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. } } } return runFunction(Fn, GVArgs).Int32Val; } /// If possible, create a JIT, unless the caller specifically requests an /// Interpreter or there's an error. If even an Interpreter cannot be created, /// NULL is returned. /// ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, bool ForceInterpreter) { ExecutionEngine *EE = 0; // Unless the interpreter was explicitly selected, try making a JIT. if (!ForceInterpreter && JITCtor) EE = JITCtor(MP); // If we can't make a JIT, make an interpreter instead. if (EE == 0 && InterpCtor) EE = InterpCtor(MP); if (EE) { // Make sure we can resolve symbols in the program as well. The zero arg // to the function tells DynamicLibrary to load the program, not a library. try { sys::DynamicLibrary::LoadLibraryPermanently(0); } catch (...) { } } return EE; } /// getPointerToGlobal - This returns the address of the specified global /// value. This may involve code generation if it's a function. /// void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { if (Function *F = const_cast(dyn_cast(GV))) return getPointerToFunction(F); MutexGuard locked(lock); void *p = state.getGlobalAddressMap(locked)[GV]; if (p) return p; // Global variable might have been added since interpreter started. if (GlobalVariable *GVar = const_cast(dyn_cast(GV))) EmitGlobalVariable(GVar); else assert("Global hasn't had an address allocated yet!"); return state.getGlobalAddressMap(locked)[GV]; } /// This macro is used to handle a variety of situations involing integer /// values where the action should be done to one of the GenericValue members. /// THEINTTY is a const Type * for the integer type. ACTION1 comes before /// the GenericValue, ACTION2 comes after. #define DO_FOR_INTEGER(THEINTTY, ACTION) \ { \ unsigned BitWidth = cast(THEINTTY)->getBitWidth(); \ if (BitWidth == 1) {\ ACTION(Int1Val); \ } else if (BitWidth <= 8) {\ ACTION(Int8Val); \ } else if (BitWidth <= 16) {\ ACTION(Int16Val); \ } else if (BitWidth <= 32) { \ ACTION(Int32Val); \ } else if (BitWidth <= 64) { \ ACTION(Int64Val); \ } else {\ assert(0 && "Not implemented: integer types > 64 bits"); \ } \ } /// This function converts a Constant* into a GenericValue. The interesting /// part is if C is a ConstantExpr. /// @brief Get a GenericValue for a Constnat* GenericValue ExecutionEngine::getConstantValue(const Constant *C) { // Declare the result as garbage. GenericValue Result; // If its undefined, return the garbage. if (isa(C)) return Result; // If the value is a ConstantExpr if (const ConstantExpr *CE = dyn_cast(C)) { switch (CE->getOpcode()) { case Instruction::GetElementPtr: { // Compute the index Result = getConstantValue(CE->getOperand(0)); std::vector Indexes(CE->op_begin()+1, CE->op_end()); uint64_t Offset = TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); if (getTargetData()->getPointerSize() == 4) Result.Int32Val += Offset; else Result.Int64Val += Offset; return Result; } case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: break; case Instruction::PtrToInt: { Constant *Op = CE->getOperand(0); GenericValue GV = getConstantValue(Op); return GV; } case Instruction::BitCast: { // Bit casts are no-ops but we can only return the GV of the operand if // they are the same basic type (pointer->pointer, packed->packed, etc.) Constant *Op = CE->getOperand(0); GenericValue GV = getConstantValue(Op); if (Op->getType()->getTypeID() == C->getType()->getTypeID()) return GV; break; } case Instruction::IntToPtr: { // IntToPtr casts are just so special. Cast to intptr_t first. Constant *Op = CE->getOperand(0); GenericValue GV = getConstantValue(Op); #define INT_TO_PTR_ACTION(FIELD) \ return PTOGV((void*)(uintptr_t)GV.FIELD) DO_FOR_INTEGER(Op->getType(), INT_TO_PTR_ACTION) #undef INT_TO_PTR_ACTION break; } case Instruction::Add: switch (CE->getOperand(0)->getType()->getTypeID()) { default: assert(0 && "Bad add type!"); abort(); case Type::IntegerTyID: #define ADD_ACTION(FIELD) \ Result.FIELD = getConstantValue(CE->getOperand(0)).FIELD + \ getConstantValue(CE->getOperand(1)).FIELD; DO_FOR_INTEGER(CE->getOperand(0)->getType(),ADD_ACTION); #undef ADD_ACTION break; case Type::FloatTyID: Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + getConstantValue(CE->getOperand(1)).FloatVal; break; case Type::DoubleTyID: Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + getConstantValue(CE->getOperand(1)).DoubleVal; break; } return Result; default: break; } cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; abort(); } switch (C->getType()->getTypeID()) { #define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \ case Type::TY##TyID: Result.TY##Val = (CTY)cast(C)->GETMETH(); break GET_CONST_VAL(Float , float , ConstantFP, getValue); GET_CONST_VAL(Double, double , ConstantFP, getValue); #undef GET_CONST_VAL case Type::IntegerTyID: { unsigned BitWidth = cast(C->getType())->getBitWidth(); if (BitWidth == 1) Result.Int1Val = (bool)cast(C)->getZExtValue(); else if (BitWidth <= 8) Result.Int8Val = (uint8_t )cast(C)->getZExtValue(); else if (BitWidth <= 16) Result.Int16Val = (uint16_t )cast(C)->getZExtValue(); else if (BitWidth <= 32) Result.Int32Val = (uint32_t )cast(C)->getZExtValue(); else if (BitWidth <= 64) Result.Int64Val = (uint64_t )cast(C)->getZExtValue(); else assert("Integers with > 64-bits not implemented"); break; } case Type::PointerTyID: if (isa(C)) Result.PointerVal = 0; else if (const Function *F = dyn_cast(C)) Result = PTOGV(getPointerToFunctionOrStub(const_cast(F))); else if (const GlobalVariable* GV = dyn_cast(C)) Result = PTOGV(getOrEmitGlobalVariable(const_cast(GV))); else assert(0 && "Unknown constant pointer type!"); break; default: cerr << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; abort(); } return Result; } /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr /// is the address of the memory at which to store Val, cast to GenericValue *. /// It is not a pointer to a GenericValue containing the address at which to /// store Val. /// void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, const Type *Ty) { if (getTargetData()->isLittleEndian()) { switch (Ty->getTypeID()) { case Type::IntegerTyID: { unsigned BitWidth = cast(Ty)->getBitWidth(); uint64_t BitMask = (1ull << BitWidth) - 1; if (BitWidth >= 64) BitMask = (uint64_t)-1; GenericValue TmpVal = Val; if (BitWidth <= 8) Ptr->Untyped[0] = Val.Int8Val & BitMask; else if (BitWidth <= 16) { TmpVal.Int16Val &= BitMask; Ptr->Untyped[0] = TmpVal.Int16Val & 255; Ptr->Untyped[1] = (TmpVal.Int16Val >> 8) & 255; } else if (BitWidth <= 32) { TmpVal.Int32Val &= BitMask; Ptr->Untyped[0] = TmpVal.Int32Val & 255; Ptr->Untyped[1] = (TmpVal.Int32Val >> 8) & 255; Ptr->Untyped[2] = (TmpVal.Int32Val >> 16) & 255; Ptr->Untyped[3] = (TmpVal.Int32Val >> 24) & 255; } else if (BitWidth <= 64) { TmpVal.Int64Val &= BitMask; Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val ); Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 8); Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 16); Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 24); Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 32); Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 40); Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 48); Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val >> 56); } else assert(0 && "Integer types > 64 bits not supported"); break; } Store4BytesLittleEndian: case Type::FloatTyID: Ptr->Untyped[0] = Val.Int32Val & 255; Ptr->Untyped[1] = (Val.Int32Val >> 8) & 255; Ptr->Untyped[2] = (Val.Int32Val >> 16) & 255; Ptr->Untyped[3] = (Val.Int32Val >> 24) & 255; break; case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) goto Store4BytesLittleEndian; /* FALL THROUGH */ case Type::DoubleTyID: Ptr->Untyped[0] = (unsigned char)(Val.Int64Val ); Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 8); Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 16); Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 24); Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 32); Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 40); Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 48); Ptr->Untyped[7] = (unsigned char)(Val.Int64Val >> 56); break; default: cerr << "Cannot store value of type " << *Ty << "!\n"; } } else { switch (Ty->getTypeID()) { case Type::IntegerTyID: { unsigned BitWidth = cast(Ty)->getBitWidth(); uint64_t BitMask = (1ull << BitWidth) - 1; if (BitWidth >= 64) BitMask = (uint64_t)-1; GenericValue TmpVal = Val; if (BitWidth <= 8) Ptr->Untyped[0] = Val.Int8Val & BitMask; else if (BitWidth <= 16) { TmpVal.Int16Val &= BitMask; Ptr->Untyped[1] = TmpVal.Int16Val & 255; Ptr->Untyped[0] = (TmpVal.Int16Val >> 8) & 255; } else if (BitWidth <= 32) { TmpVal.Int32Val &= BitMask; Ptr->Untyped[3] = TmpVal.Int32Val & 255; Ptr->Untyped[2] = (TmpVal.Int32Val >> 8) & 255; Ptr->Untyped[1] = (TmpVal.Int32Val >> 16) & 255; Ptr->Untyped[0] = (TmpVal.Int32Val >> 24) & 255; } else if (BitWidth <= 64) { TmpVal.Int64Val &= BitMask; Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val ); Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 8); Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 16); Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 24); Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 32); Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 40); Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 48); Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val >> 56); } else assert(0 && "Integer types > 64 bits not supported"); break; } Store4BytesBigEndian: case Type::FloatTyID: Ptr->Untyped[3] = Val.Int32Val & 255; Ptr->Untyped[2] = (Val.Int32Val >> 8) & 255; Ptr->Untyped[1] = (Val.Int32Val >> 16) & 255; Ptr->Untyped[0] = (Val.Int32Val >> 24) & 255; break; case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) goto Store4BytesBigEndian; /* FALL THROUGH */ case Type::DoubleTyID: Ptr->Untyped[7] = (unsigned char)(Val.Int64Val ); Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 8); Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 16); Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 24); Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 32); Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 40); Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 48); Ptr->Untyped[0] = (unsigned char)(Val.Int64Val >> 56); break; default: cerr << "Cannot store value of type " << *Ty << "!\n"; } } } /// FIXME: document /// GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, const Type *Ty) { GenericValue Result; if (getTargetData()->isLittleEndian()) { switch (Ty->getTypeID()) { case Type::IntegerTyID: { unsigned BitWidth = cast(Ty)->getBitWidth(); if (BitWidth <= 8) Result.Int8Val = Ptr->Untyped[0]; else if (BitWidth <= 16) { Result.Int16Val = (unsigned)Ptr->Untyped[0] | ((unsigned)Ptr->Untyped[1] << 8); } else if (BitWidth <= 32) { Result.Int32Val = (unsigned)Ptr->Untyped[0] | ((unsigned)Ptr->Untyped[1] << 8) | ((unsigned)Ptr->Untyped[2] << 16) | ((unsigned)Ptr->Untyped[3] << 24); } else if (BitWidth <= 64) { Result.Int64Val = (uint64_t)Ptr->Untyped[0] | ((uint64_t)Ptr->Untyped[1] << 8) | ((uint64_t)Ptr->Untyped[2] << 16) | ((uint64_t)Ptr->Untyped[3] << 24) | ((uint64_t)Ptr->Untyped[4] << 32) | ((uint64_t)Ptr->Untyped[5] << 40) | ((uint64_t)Ptr->Untyped[6] << 48) | ((uint64_t)Ptr->Untyped[7] << 56); } else assert(0 && "Integer types > 64 bits not supported"); break; } Load4BytesLittleEndian: case Type::FloatTyID: Result.Int32Val = (unsigned)Ptr->Untyped[0] | ((unsigned)Ptr->Untyped[1] << 8) | ((unsigned)Ptr->Untyped[2] << 16) | ((unsigned)Ptr->Untyped[3] << 24); break; case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) goto Load4BytesLittleEndian; /* FALL THROUGH */ case Type::DoubleTyID: Result.Int64Val = (uint64_t)Ptr->Untyped[0] | ((uint64_t)Ptr->Untyped[1] << 8) | ((uint64_t)Ptr->Untyped[2] << 16) | ((uint64_t)Ptr->Untyped[3] << 24) | ((uint64_t)Ptr->Untyped[4] << 32) | ((uint64_t)Ptr->Untyped[5] << 40) | ((uint64_t)Ptr->Untyped[6] << 48) | ((uint64_t)Ptr->Untyped[7] << 56); break; default: cerr << "Cannot load value of type " << *Ty << "!\n"; abort(); } } else { switch (Ty->getTypeID()) { case Type::IntegerTyID: { unsigned BitWidth = cast(Ty)->getBitWidth(); if (BitWidth <= 8) Result.Int8Val = Ptr->Untyped[0]; else if (BitWidth <= 16) { Result.Int16Val = (unsigned)Ptr->Untyped[1] | ((unsigned)Ptr->Untyped[0] << 8); } else if (BitWidth <= 32) { Result.Int32Val = (unsigned)Ptr->Untyped[3] | ((unsigned)Ptr->Untyped[2] << 8) | ((unsigned)Ptr->Untyped[1] << 16) | ((unsigned)Ptr->Untyped[0] << 24); } else if (BitWidth <= 64) { Result.Int64Val = (uint64_t)Ptr->Untyped[7] | ((uint64_t)Ptr->Untyped[6] << 8) | ((uint64_t)Ptr->Untyped[5] << 16) | ((uint64_t)Ptr->Untyped[4] << 24) | ((uint64_t)Ptr->Untyped[3] << 32) | ((uint64_t)Ptr->Untyped[2] << 40) | ((uint64_t)Ptr->Untyped[1] << 48) | ((uint64_t)Ptr->Untyped[0] << 56); } else assert(0 && "Integer types > 64 bits not supported"); break; } Load4BytesBigEndian: case Type::FloatTyID: Result.Int32Val = (unsigned)Ptr->Untyped[3] | ((unsigned)Ptr->Untyped[2] << 8) | ((unsigned)Ptr->Untyped[1] << 16) | ((unsigned)Ptr->Untyped[0] << 24); break; case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) goto Load4BytesBigEndian; /* FALL THROUGH */ case Type::DoubleTyID: Result.Int64Val = (uint64_t)Ptr->Untyped[7] | ((uint64_t)Ptr->Untyped[6] << 8) | ((uint64_t)Ptr->Untyped[5] << 16) | ((uint64_t)Ptr->Untyped[4] << 24) | ((uint64_t)Ptr->Untyped[3] << 32) | ((uint64_t)Ptr->Untyped[2] << 40) | ((uint64_t)Ptr->Untyped[1] << 48) | ((uint64_t)Ptr->Untyped[0] << 56); break; default: cerr << "Cannot load value of type " << *Ty << "!\n"; abort(); } } return Result; } // InitializeMemory - Recursive function to apply a Constant value into the // specified memory location... // void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { if (isa(Init)) { return; } else if (const ConstantPacked *CP = dyn_cast(Init)) { unsigned ElementSize = getTargetData()->getTypeSize(CP->getType()->getElementType()); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); return; } else if (Init->getType()->isFirstClassType()) { GenericValue Val = getConstantValue(Init); StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); return; } else if (isa(Init)) { memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); return; } switch (Init->getType()->getTypeID()) { case Type::ArrayTyID: { const ConstantArray *CPA = cast(Init); unsigned ElementSize = getTargetData()->getTypeSize(CPA->getType()->getElementType()); for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); return; } case Type::StructTyID: { const ConstantStruct *CPS = cast(Init); const StructLayout *SL = getTargetData()->getStructLayout(cast(CPS->getType())); for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); return; } default: cerr << "Bad Type: " << *Init->getType() << "\n"; assert(0 && "Unknown constant type to initialize memory with!"); } } /// EmitGlobals - Emit all of the global variables to memory, storing their /// addresses into GlobalAddress. This must make sure to copy the contents of /// their initializers into the memory. /// void ExecutionEngine::emitGlobals() { const TargetData *TD = getTargetData(); // Loop over all of the global variables in the program, allocating the memory // to hold them. If there is more than one module, do a prepass over globals // to figure out how the different modules should link together. // std::map, const GlobalValue*> LinkedGlobalsMap; if (Modules.size() != 1) { for (unsigned m = 0, e = Modules.size(); m != e; ++m) { Module &M = *Modules[m]->getModule(); for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { const GlobalValue *GV = I; if (GV->hasInternalLinkage() || GV->isExternal() || GV->hasAppendingLinkage() || !GV->hasName()) continue;// Ignore external globals and globals with internal linkage. const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; // If this is the first time we've seen this global, it is the canonical // version. if (!GVEntry) { GVEntry = GV; continue; } // If the existing global is strong, never replace it. if (GVEntry->hasExternalLinkage() || GVEntry->hasDLLImportLinkage() || GVEntry->hasDLLExportLinkage()) continue; // Otherwise, we know it's linkonce/weak, replace it if this is a strong // symbol. if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) GVEntry = GV; } } } std::vector NonCanonicalGlobals; for (unsigned m = 0, e = Modules.size(); m != e; ++m) { Module &M = *Modules[m]->getModule(); for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { // In the multi-module case, see what this global maps to. if (!LinkedGlobalsMap.empty()) { if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { // If something else is the canonical global, ignore this one. if (GVEntry != &*I) { NonCanonicalGlobals.push_back(I); continue; } } } if (!I->isExternal()) { // Get the type of the global. const Type *Ty = I->getType()->getElementType(); // Allocate some memory for it! unsigned Size = TD->getTypeSize(Ty); addGlobalMapping(I, new char[Size]); } else { // External variable reference. Try to use the dynamic loader to // get a pointer to it. if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) addGlobalMapping(I, SymAddr); else { cerr << "Could not resolve external global address: " << I->getName() << "\n"; abort(); } } } // If there are multiple modules, map the non-canonical globals to their // canonical location. if (!NonCanonicalGlobals.empty()) { for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { const GlobalValue *GV = NonCanonicalGlobals[i]; const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; void *Ptr = getPointerToGlobalIfAvailable(CGV); assert(Ptr && "Canonical global wasn't codegen'd!"); addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); } } // Now that all of the globals are set up in memory, loop through them all // and initialize their contents. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { if (!I->isExternal()) { if (!LinkedGlobalsMap.empty()) { if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) if (GVEntry != &*I) // Not the canonical variable. continue; } EmitGlobalVariable(I); } } } } // EmitGlobalVariable - This method emits the specified global variable to the // address specified in GlobalAddresses, or allocates new memory if it's not // already in the map. void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { void *GA = getPointerToGlobalIfAvailable(GV); DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; const Type *ElTy = GV->getType()->getElementType(); size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); if (GA == 0) { // If it's not already specified, allocate memory for the global. GA = new char[GVSize]; addGlobalMapping(GV, GA); } InitializeMemory(GV->getInitializer(), GA); NumInitBytes += (unsigned)GVSize; ++NumGlobals; }