//===-- TransformInternals.cpp - Implement shared functions for transforms --=// // // This file defines shared functions used by the different components of the // Transforms library. // //===----------------------------------------------------------------------===// #include "TransformInternals.h" #include "llvm/Method.h" #include "llvm/Type.h" #include "llvm/ConstantVals.h" #include "llvm/Analysis/Expressions.h" #include "llvm/iOther.h" #include // TargetData Hack: Eventually we will have annotations given to us by the // backend so that we know stuff about type size and alignments. For now // though, just use this, because it happens to match the model that GCC uses. // const TargetData TD("LevelRaise: Should be GCC though!"); // ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) // with a value, then remove and delete the original instruction. // void ReplaceInstWithValue(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Value *V) { Instruction *I = *BI; // Replaces all of the uses of the instruction with uses of the value I->replaceAllUsesWith(V); // Remove the unneccesary instruction now... BIL.remove(BI); // Make sure to propogate a name if there is one already... if (I->hasName() && !V->hasName()) V->setName(I->getName(), BIL.getParent()->getSymbolTable()); // Remove the dead instruction now... delete I; } // ReplaceInstWithInst - Replace the instruction specified by BI with the // instruction specified by I. The original instruction is deleted and BI is // updated to point to the new instruction. // void ReplaceInstWithInst(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Instruction *I) { assert(I->getParent() == 0 && "ReplaceInstWithInst: Instruction already inserted into basic block!"); // Insert the new instruction into the basic block... BI = BIL.insert(BI, I)+1; // Replace all uses of the old instruction, and delete it. ReplaceInstWithValue(BIL, BI, I); // Reexamine the instruction just inserted next time around the cleanup pass // loop. --BI; } void ReplaceInstWithInst(Instruction *From, Instruction *To) { BasicBlock *BB = From->getParent(); BasicBlock::InstListType &BIL = BB->getInstList(); BasicBlock::iterator BI = find(BIL.begin(), BIL.end(), From); assert(BI != BIL.end() && "Inst not in it's parents BB!"); ReplaceInstWithInst(BIL, BI, To); } // getStructOffsetType - Return a vector of offsets that are to be used to index // into the specified struct type to get as close as possible to index as we // can. Note that it is possible that we cannot get exactly to Offset, in which // case we update offset to be the offset we actually obtained. The resultant // leaf type is returned. // // If StopEarly is set to true (the default), the first object with the // specified type is returned, even if it is a struct type itself. In this // case, this routine will not drill down to the leaf type. Set StopEarly to // false if you want a leaf // const Type *getStructOffsetType(const Type *Ty, unsigned &Offset, std::vector &Offsets, bool StopEarly = true) { if (Offset == 0 && StopEarly && !Offsets.empty()) return Ty; // Return the leaf type unsigned ThisOffset; const Type *NextType; if (const StructType *STy = dyn_cast(Ty)) { assert(Offset < TD.getTypeSize(STy) && "Offset not in composite!"); const StructLayout *SL = TD.getStructLayout(STy); // This loop terminates always on a 0 <= i < MemberOffsets.size() unsigned i; for (i = 0; i < SL->MemberOffsets.size()-1; ++i) if (Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1]) break; assert(Offset >= SL->MemberOffsets[i] && (i == SL->MemberOffsets.size()-1 || Offset MemberOffsets[i+1])); // Make sure to save the current index... Offsets.push_back(ConstantUInt::get(Type::UByteTy, i)); ThisOffset = SL->MemberOffsets[i]; NextType = STy->getElementTypes()[i]; } else if (const ArrayType *ATy = dyn_cast(Ty)) { assert(Offset < TD.getTypeSize(ATy) && "Offset not in composite!"); NextType = ATy->getElementType(); unsigned ChildSize = TD.getTypeSize(NextType); Offsets.push_back(ConstantUInt::get(Type::UIntTy, Offset/ChildSize)); ThisOffset = (Offset/ChildSize)*ChildSize; } else { Offset = 0; // Return the offset that we were able to acheive return Ty; // Return the leaf type } unsigned SubOffs = Offset - ThisOffset; const Type *LeafTy = getStructOffsetType(NextType, SubOffs, Offsets, StopEarly); Offset = ThisOffset + SubOffs; return LeafTy; } // ConvertableToGEP - This function returns true if the specified value V is // a valid index into a pointer of type Ty. If it is valid, Idx is filled in // with the values that would be appropriate to make this a getelementptr // instruction. The type returned is the root type that the GEP would point to // const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal, std::vector &Indices, BasicBlock::iterator *BI = 0) { const CompositeType *CompTy = dyn_cast(Ty); if (CompTy == 0) return 0; // See if the cast is of an integer expression that is either a constant, // or a value scaled by some amount with a possible offset. // analysis::ExprType Expr = analysis::ClassifyExpression(OffsetVal); // Get the offset and scale now... unsigned Offset = 0, Scale = Expr.Var != 0; // Get the offset value if it exists... if (Expr.Offset) { int Val = getConstantValue(Expr.Offset); if (Val < 0) return false; // Don't mess with negative offsets Offset = (unsigned)Val; } // Get the scale value if it exists... if (Expr.Scale) { int Val = getConstantValue(Expr.Scale); if (Val < 0) return false; // Don't mess with negative scales Scale = (unsigned)Val; if (Scale == 1) Scale = 0; // No interesting scale if *1 } // Loop over the Scale and Offset values, filling in the Indices vector for // our final getelementptr instruction. // const Type *NextTy = CompTy; do { if (!isa(NextTy)) return 0; // Type must not be ready for processing... CompTy = cast(NextTy); if (const StructType *StructTy = dyn_cast(CompTy)) { unsigned ActualOffset = Offset; NextTy = getStructOffsetType(StructTy, ActualOffset, Indices); if (StructTy == NextTy && ActualOffset == 0) return 0; // No progress. :( Offset -= ActualOffset; } else { const Type *ElTy = cast(CompTy)->getElementType(); if (!ElTy->isSized()) return 0; // Type is unreasonable... escape! unsigned ElSize = TD.getTypeSize(ElTy); // See if the user is indexing into a different cell of this array... if (Scale && Scale >= ElSize) { // A scale n*ElSize might occur if we are not stepping through // array by one. In this case, we will have to insert math to munge // the index. // unsigned ScaleAmt = Scale/ElSize; if (Scale-ScaleAmt*ElSize) return 0; // Didn't scale by a multiple of element size, bail out Scale = 0; // Scale is consumed unsigned Index = Offset/ElSize; // is zero unless Offset > ElSize Offset -= Index*ElSize; // Consume part of the offset if (BI) { // Generate code? BasicBlock *BB = (**BI)->getParent(); if (Expr.Var->getType() != Type::UIntTy) { CastInst *IdxCast = new CastInst(Expr.Var, Type::UIntTy); if (Expr.Var->hasName()) IdxCast->setName(Expr.Var->getName()+"-idxcast"); *BI = BB->getInstList().insert(*BI, IdxCast)+1; Expr.Var = IdxCast; } if (ScaleAmt && ScaleAmt != 1) { // If we have to scale up our index, do so now Value *ScaleAmtVal = ConstantUInt::get(Type::UIntTy, ScaleAmt); Instruction *Scaler = BinaryOperator::create(Instruction::Mul, Expr.Var,ScaleAmtVal); if (Expr.Var->hasName()) Scaler->setName(Expr.Var->getName()+"-scale"); *BI = BB->getInstList().insert(*BI, Scaler)+1; Expr.Var = Scaler; } if (Index) { // Add an offset to the index Value *IndexAmt = ConstantUInt::get(Type::UIntTy, Index); Instruction *Offseter = BinaryOperator::create(Instruction::Add, Expr.Var, IndexAmt); if (Expr.Var->hasName()) Offseter->setName(Expr.Var->getName()+"-offset"); *BI = BB->getInstList().insert(*BI, Offseter)+1; Expr.Var = Offseter; } } Indices.push_back(Expr.Var); } else if (Offset >= ElSize) { // Calculate the index that we are entering into the array cell with unsigned Index = Offset/ElSize; Indices.push_back(ConstantUInt::get(Type::UIntTy, Index)); Offset -= Index*ElSize; // Consume part of the offset } else if (!isa(CompTy) || CompTy == Ty) { // Must be indexing a small amount into the first cell of the array // Just index into element zero of the array here. // Indices.push_back(ConstantUInt::get(Type::UIntTy, 0)); } else { return 0; // Hrm. wierd, can't handle this case. Bail } NextTy = ElTy; } } while (Offset || Scale); // Go until we're done! return NextTy; }