//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===// // // This transform changes programs so that disjoint data structures are // allocated out of different pools of memory, increasing locality and shrinking // pointer size. // // This pass requires a DCE & instcombine pass to be run after it for best // results. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/PoolAllocate.h" #include "llvm/Transforms/CloneFunction.h" #include "llvm/Analysis/DataStructureGraph.h" #include "llvm/Module.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "llvm/iMemory.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Argument.h" #include "Support/DepthFirstIterator.h" #include "Support/STLExtras.h" #include // DEBUG_CREATE_POOLS - Enable this to turn on debug output for the pool // creation phase in the top level function of a transformed data structure. // //#define DEBUG_CREATE_POOLS 1 // DEBUG_TRANSFORM_PROGRESS - Enable this to get lots of debug output on what // the transformation is doing. // //#define DEBUG_TRANSFORM_PROGRESS 1 // DEBUG_POOLBASE_LOAD_ELIMINATOR - Turn this on to get statistics about how // many static loads were eliminated from a function... // #define DEBUG_POOLBASE_LOAD_ELIMINATOR 1 #include "Support/CommandLine.h" enum PtrSize { Ptr8bits, Ptr16bits, Ptr32bits }; static cl::Enum ReqPointerSize("ptrsize", 0, "Set pointer size for -poolalloc pass", clEnumValN(Ptr32bits, "32", "Use 32 bit indices for pointers"), clEnumValN(Ptr16bits, "16", "Use 16 bit indices for pointers"), clEnumValN(Ptr8bits , "8", "Use 8 bit indices for pointers"), 0); static cl::Flag DisableRLE("no-pool-load-elim", "Disable pool load elimination after poolalloc pass", cl::Hidden); const Type *POINTERTYPE; // FIXME: This is dependant on the sparc backend layout conventions!! static TargetData TargetData("test"); static const Type *getPointerTransformedType(const Type *Ty) { if (PointerType *PT = dyn_cast(Ty)) { return POINTERTYPE; } else if (StructType *STy = dyn_cast(Ty)) { vector NewElTypes; NewElTypes.reserve(STy->getElementTypes().size()); for (StructType::ElementTypes::const_iterator I = STy->getElementTypes().begin(), E = STy->getElementTypes().end(); I != E; ++I) NewElTypes.push_back(getPointerTransformedType(*I)); return StructType::get(NewElTypes); } else if (ArrayType *ATy = dyn_cast(Ty)) { return ArrayType::get(getPointerTransformedType(ATy->getElementType()), ATy->getNumElements()); } else { assert(Ty->isPrimitiveType() && "Unknown derived type!"); return Ty; } } namespace { struct PoolInfo { DSNode *Node; // The node this pool allocation represents Value *Handle; // LLVM value of the pool in the current context const Type *NewType; // The transformed type of the memory objects const Type *PoolType; // The type of the pool const Type *getOldType() const { return Node->getType(); } PoolInfo() { // Define a default ctor for map::operator[] cerr << "Map subscript used to get element that doesn't exist!\n"; abort(); // Invalid } PoolInfo(DSNode *N, Value *H, const Type *NT, const Type *PT) : Node(N), Handle(H), NewType(NT), PoolType(PT) { // Handle can be null... assert(N && NT && PT && "Pool info null!"); } PoolInfo(DSNode *N) : Node(N), Handle(0), NewType(0), PoolType(0) { assert(N && "Invalid pool info!"); // The new type of the memory object is the same as the old type, except // that all of the pointer values are replaced with POINTERTYPE values. NewType = getPointerTransformedType(getOldType()); } }; // ScalarInfo - Information about an LLVM value that we know points to some // datastructure we are processing. // struct ScalarInfo { Value *Val; // Scalar value in Current Function PoolInfo Pool; // The pool the scalar points into ScalarInfo(Value *V, const PoolInfo &PI) : Val(V), Pool(PI) { assert(V && "Null value passed to ScalarInfo ctor!"); } }; // CallArgInfo - Information on one operand for a call that got expanded. struct CallArgInfo { int ArgNo; // Call argument number this corresponds to DSNode *Node; // The graph node for the pool Value *PoolHandle; // The LLVM value that is the pool pointer CallArgInfo(int Arg, DSNode *N, Value *PH) : ArgNo(Arg), Node(N), PoolHandle(PH) { assert(Arg >= -1 && N && PH && "Illegal values to CallArgInfo ctor!"); } // operator< when sorting, sort by argument number. bool operator<(const CallArgInfo &CAI) const { return ArgNo < CAI.ArgNo; } }; // TransformFunctionInfo - Information about how a function eeds to be // transformed. // struct TransformFunctionInfo { // ArgInfo - Maintain information about the arguments that need to be // processed. Each CallArgInfo corresponds to an argument that needs to // have a pool pointer passed into the transformed function with it. // // As a special case, "argument" number -1 corresponds to the return value. // vector ArgInfo; // Func - The function to be transformed... Function *Func; // The call instruction that is used to map CallArgInfo PoolHandle values // into the new function values. CallInst *Call; // default ctor... TransformFunctionInfo() : Func(0), Call(0) {} bool operator<(const TransformFunctionInfo &TFI) const { if (Func < TFI.Func) return true; if (Func > TFI.Func) return false; if (ArgInfo.size() < TFI.ArgInfo.size()) return true; if (ArgInfo.size() > TFI.ArgInfo.size()) return false; return ArgInfo < TFI.ArgInfo; } void finalizeConstruction() { // Sort the vector so that the return value is first, followed by the // argument records, in order. Note that this must be a stable sort so // that the entries with the same sorting criteria (ie they are multiple // pool entries for the same argument) are kept in depth first order. stable_sort(ArgInfo.begin(), ArgInfo.end()); } // addCallInfo - For a specified function call CI, figure out which pool // descriptors need to be passed in as arguments, and which arguments need // to be transformed into indices. If Arg != -1, the specified call // argument is passed in as a pointer to a data structure. // void addCallInfo(DataStructure *DS, CallInst *CI, int Arg, DSNode *GraphNode, map &PoolDescs); // Make sure that all dependant arguments are added to this transformation // info. For example, if we call foo(null, P) and foo treats it's first and // second arguments as belonging to the same data structure, the we MUST add // entries to know that the null needs to be transformed into an index as // well. // void ensureDependantArgumentsIncluded(DataStructure *DS, map &PoolDescs); }; // Define the pass class that we implement... struct PoolAllocate : public Pass { const char *getPassName() const { return "Pool Allocate"; } PoolAllocate() { switch (ReqPointerSize) { case Ptr32bits: POINTERTYPE = Type::UIntTy; break; case Ptr16bits: POINTERTYPE = Type::UShortTy; break; case Ptr8bits: POINTERTYPE = Type::UByteTy; break; } CurModule = 0; DS = 0; PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0; } // getPoolType - Get the type used by the backend for a pool of a particular // type. This pool record is used to allocate nodes of type NodeType. // // Here, PoolTy = { NodeType*, sbyte*, uint }* // const StructType *getPoolType(const Type *NodeType) { vector PoolElements; PoolElements.push_back(PointerType::get(NodeType)); PoolElements.push_back(PointerType::get(Type::SByteTy)); PoolElements.push_back(Type::UIntTy); StructType *Result = StructType::get(PoolElements); // Add a name to the symbol table to correspond to the backend // representation of this pool... assert(CurModule && "No current module!?"); string Name = CurModule->getTypeName(NodeType); if (Name.empty()) Name = CurModule->getTypeName(PoolElements[0]); CurModule->addTypeName(Name+"oolbe", Result); return Result; } bool run(Module *M); // getAnalysisUsage - This function requires data structure information // to be able to see what is pool allocatable. // virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(DataStructure::ID); } public: // CurModule - The module being processed. Module *CurModule; // DS - The data structure graph for the module being processed. DataStructure *DS; // Prototypes that we add to support pool allocation... Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolAllocArray, *PoolFree; // The map of already transformed functions... note that the keys of this // map do not have meaningful values for 'Call' or the 'PoolHandle' elements // of the ArgInfo elements. // map TransformedFunctions; // getTransformedFunction - Get a transformed function, or return null if // the function specified hasn't been transformed yet. // Function *getTransformedFunction(TransformFunctionInfo &TFI) const { map::const_iterator I = TransformedFunctions.find(TFI); if (I != TransformedFunctions.end()) return I->second; return 0; } // addPoolPrototypes - Add prototypes for the pool functions to the // specified module and update the Pool* instance variables to point to // them. // void addPoolPrototypes(Module *M); // CreatePools - Insert instructions into the function we are processing to // create all of the memory pool objects themselves. This also inserts // destruction code. Add an alloca for each pool that is allocated to the // PoolDescs map. // void CreatePools(Function *F, const vector &Allocs, map &PoolDescs); // processFunction - Convert a function to use pool allocation where // available. // bool processFunction(Function *F); // transformFunctionBody - This transforms the instruction in 'F' to use the // pools specified in PoolDescs when modifying data structure nodes // specified in the PoolDescs map. IPFGraph is the closed data structure // graph for F, of which the PoolDescriptor nodes come from. // void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph, map &PoolDescs); // transformFunction - Transform the specified function the specified way. // It we have already transformed that function that way, don't do anything. // The nodes in the TransformFunctionInfo come out of callers data structure // graph, and the PoolDescs passed in are the caller's. // void transformFunction(TransformFunctionInfo &TFI, FunctionDSGraph &CallerIPGraph, map &PoolDescs); }; } // isNotPoolableAlloc - This is a predicate that returns true if the specified // allocation node in a data structure graph is eligable for pool allocation. // static bool isNotPoolableAlloc(const AllocDSNode *DS) { if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's. return false; } // processFunction - Convert a function to use pool allocation where // available. // bool PoolAllocate::processFunction(Function *F) { // Get the closed datastructure graph for the current function... if there are // any allocations in this graph that are not escaping, we need to pool // allocate them here! // FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F); // Get all of the allocations that do not escape the current function. Since // they are still live (they exist in the graph at all), this means we must // have scalar references to these nodes, but the scalars are never returned. // vector Allocs; IPGraph.getNonEscapingAllocations(Allocs); // Filter out allocations that we cannot handle. Currently, this includes // variable sized array allocations and alloca's (which we do not want to // pool allocate) // Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc), Allocs.end()); if (Allocs.empty()) return false; // Nothing to do. #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "Transforming Function: " << F->getName() << "\n"; #endif // Insert instructions into the function we are processing to create all of // the memory pool objects themselves. This also inserts destruction code. // This fills in the PoolDescs map to associate the alloc node with the // allocation of the memory pool corresponding to it. // map PoolDescs; CreatePools(F, Allocs, PoolDescs); #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "Transformed Entry Function: \n" << F; #endif // Now we need to figure out what called functions we need to transform, and // how. To do this, we look at all of the scalars, seeing which functions are // either used as a scalar value (so they return a data structure), or are // passed one of our scalar values. // transformFunctionBody(F, IPGraph, PoolDescs); return true; } //===----------------------------------------------------------------------===// // // NewInstructionCreator - This class is used to traverse the function being // modified, changing each instruction visit'ed to use and provide pointer // indexes instead of real pointers. This is what changes the body of a // function to use pool allocation. // class NewInstructionCreator : public InstVisitor { PoolAllocate &PoolAllocator; vector &Scalars; map &CallMap; map &XFormMap; // Map old pointers to new indexes struct RefToUpdate { Instruction *I; // Instruction to update unsigned OpNum; // Operand number to update Value *OldVal; // The old value it had RefToUpdate(Instruction *i, unsigned o, Value *ov) : I(i), OpNum(o), OldVal(ov) {} }; vector ReferencesToUpdate; const ScalarInfo &getScalarRef(const Value *V) { for (unsigned i = 0, e = Scalars.size(); i != e; ++i) if (Scalars[i].Val == V) return Scalars[i]; cerr << "Could not find scalar " << V << " in scalar map!\n"; assert(0 && "Scalar not found in getScalar!"); abort(); return Scalars[0]; } const ScalarInfo *getScalar(const Value *V) { for (unsigned i = 0, e = Scalars.size(); i != e; ++i) if (Scalars[i].Val == V) return &Scalars[i]; return 0; } BasicBlock::iterator ReplaceInstWith(Instruction *I, Instruction *New) { BasicBlock *BB = I->getParent(); BasicBlock::iterator RI = find(BB->begin(), BB->end(), I); BB->getInstList().replaceWith(RI, New); XFormMap[I] = New; return RI; } Instruction *createPoolBaseInstruction(Value *PtrVal) { const ScalarInfo &SC = getScalarRef(PtrVal); vector Args(3); Args[0] = ConstantUInt::get(Type::UIntTy, 0); // No pointer offset Args[1] = ConstantUInt::get(Type::UByteTy, 0); // Field #0 of pool descriptr Args[2] = ConstantUInt::get(Type::UByteTy, 0); // Field #0 of poolalloc val return new LoadInst(SC.Pool.Handle, Args, PtrVal->getName()+".poolbase"); } public: NewInstructionCreator(PoolAllocate &PA, vector &S, map &C, map &X) : PoolAllocator(PA), Scalars(S), CallMap(C), XFormMap(X) {} // updateReferences - The NewInstructionCreator is responsible for creating // new instructions to replace the old ones in the function, and then link up // references to values to their new values. For it to do this, however, it // keeps track of information about the value mapping of old values to new // values that need to be patched up. Given this value map and a set of // instruction operands to patch, updateReferences performs the updates. // void updateReferences() { for (unsigned i = 0, e = ReferencesToUpdate.size(); i != e; ++i) { RefToUpdate &Ref = ReferencesToUpdate[i]; Value *NewVal = XFormMap[Ref.OldVal]; if (NewVal == 0) { if (isa(Ref.OldVal) && // Refering to a null ptr? cast(Ref.OldVal)->isNullValue()) { // Transform the null pointer into a null index... caching in XFormMap XFormMap[Ref.OldVal] = NewVal = Constant::getNullValue(POINTERTYPE); //} else if (isa(Ref.OldVal)) { } else { cerr << "Unknown reference to: " << Ref.OldVal << "\n"; assert(XFormMap[Ref.OldVal] && "Reference to value that was not updated found!"); } } Ref.I->setOperand(Ref.OpNum, NewVal); } ReferencesToUpdate.clear(); } //===--------------------------------------------------------------------===// // Transformation methods: // These methods specify how each type of instruction is transformed by the // NewInstructionCreator instance... //===--------------------------------------------------------------------===// void visitGetElementPtrInst(GetElementPtrInst *I) { assert(0 && "Cannot transform get element ptr instructions yet!"); } // Replace the load instruction with a new one. void visitLoadInst(LoadInst *I) { vector BeforeInsts; // Cast our index to be a UIntTy so we can use it to index into the pool... CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE), Type::UIntTy, I->getOperand(0)->getName()); BeforeInsts.push_back(Index); ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(0))); // Include the pool base instruction... Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(0)); BeforeInsts.push_back(PoolBase); Instruction *IdxInst = BinaryOperator::create(Instruction::Add, *I->idx_begin(), Index, I->getName()+".idx"); BeforeInsts.push_back(IdxInst); vector Indices(I->idx_begin(), I->idx_end()); Indices[0] = IdxInst; Instruction *Address = new GetElementPtrInst(PoolBase, Indices, I->getName()+".addr"); BeforeInsts.push_back(Address); Instruction *NewLoad = new LoadInst(Address, I->getName()); // Replace the load instruction with the new load instruction... BasicBlock::iterator II = ReplaceInstWith(I, NewLoad); // Add all of the instructions before the load... NewLoad->getParent()->getInstList().insert(II, BeforeInsts.begin(), BeforeInsts.end()); // If not yielding a pool allocated pointer, use the new load value as the // value in the program instead of the old load value... // if (!getScalar(I)) I->replaceAllUsesWith(NewLoad); } // Replace the store instruction with a new one. In the store instruction, // the value stored could be a pointer type, meaning that the new store may // have to change one or both of it's operands. // void visitStoreInst(StoreInst *I) { assert(getScalar(I->getOperand(1)) && "Store inst found only storing pool allocated pointer. " "Not imp yet!"); Value *Val = I->getOperand(0); // The value to store... // Check to see if the value we are storing is a data structure pointer... //if (const ScalarInfo *ValScalar = getScalar(I->getOperand(0))) if (isa(I->getOperand(0)->getType())) Val = Constant::getNullValue(POINTERTYPE); // Yes, store a dummy Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(1)); // Cast our index to be a UIntTy so we can use it to index into the pool... CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE), Type::UIntTy, I->getOperand(1)->getName()); ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(1))); // Instructions to add after the Index... vector AfterInsts; Instruction *IdxInst = BinaryOperator::create(Instruction::Add, *I->idx_begin(), Index, "idx"); AfterInsts.push_back(IdxInst); vector Indices(I->idx_begin(), I->idx_end()); Indices[0] = IdxInst; Instruction *Address = new GetElementPtrInst(PoolBase, Indices, I->getName()+"storeaddr"); AfterInsts.push_back(Address); Instruction *NewStore = new StoreInst(Val, Address); AfterInsts.push_back(NewStore); if (Val != I->getOperand(0)) // Value stored was a pointer? ReferencesToUpdate.push_back(RefToUpdate(NewStore, 0, I->getOperand(0))); // Replace the store instruction with the cast instruction... BasicBlock::iterator II = ReplaceInstWith(I, Index); // Add the pool base calculator instruction before the index... II = Index->getParent()->getInstList().insert(II, PoolBase)+2; // Add the instructions that go after the index... Index->getParent()->getInstList().insert(II, AfterInsts.begin(), AfterInsts.end()); } // Create call to poolalloc for every malloc instruction void visitMallocInst(MallocInst *I) { const ScalarInfo &SCI = getScalarRef(I); vector Args; CallInst *Call; if (!I->isArrayAllocation()) { Args.push_back(SCI.Pool.Handle); Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName()); } else { Args.push_back(I->getArraySize()); Args.push_back(SCI.Pool.Handle); Call = new CallInst(PoolAllocator.PoolAllocArray, Args, I->getName()); } ReplaceInstWith(I, Call); } // Convert a call to poolfree for every free instruction... void visitFreeInst(FreeInst *I) { // Create a new call to poolfree before the free instruction vector Args; Args.push_back(Constant::getNullValue(POINTERTYPE)); Args.push_back(getScalarRef(I->getOperand(0)).Pool.Handle); Instruction *NewCall = new CallInst(PoolAllocator.PoolFree, Args); ReplaceInstWith(I, NewCall); ReferencesToUpdate.push_back(RefToUpdate(NewCall, 1, I->getOperand(0))); } // visitCallInst - Create a new call instruction with the extra arguments for // all of the memory pools that the call needs. // void visitCallInst(CallInst *I) { TransformFunctionInfo &TI = CallMap[I]; // Start with all of the old arguments... vector Args(I->op_begin()+1, I->op_end()); for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i) { // Replace all of the pointer arguments with our new pointer typed values. if (TI.ArgInfo[i].ArgNo != -1) Args[TI.ArgInfo[i].ArgNo] = Constant::getNullValue(POINTERTYPE); // Add all of the pool arguments... Args.push_back(TI.ArgInfo[i].PoolHandle); } Function *NF = PoolAllocator.getTransformedFunction(TI); Instruction *NewCall = new CallInst(NF, Args, I->getName()); ReplaceInstWith(I, NewCall); // Keep track of the mapping of operands so that we can resolve them to real // values later. Value *RetVal = NewCall; for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i) if (TI.ArgInfo[i].ArgNo != -1) ReferencesToUpdate.push_back(RefToUpdate(NewCall, TI.ArgInfo[i].ArgNo+1, I->getOperand(TI.ArgInfo[i].ArgNo+1))); else RetVal = 0; // If returning a pointer, don't change retval... // If not returning a pointer, use the new call as the value in the program // instead of the old call... // if (RetVal) I->replaceAllUsesWith(RetVal); } // visitPHINode - Create a new PHI node of POINTERTYPE for all of the old Phi // nodes... // void visitPHINode(PHINode *PN) { Value *DummyVal = Constant::getNullValue(POINTERTYPE); PHINode *NewPhi = new PHINode(POINTERTYPE, PN->getName()); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { NewPhi->addIncoming(DummyVal, PN->getIncomingBlock(i)); ReferencesToUpdate.push_back(RefToUpdate(NewPhi, i*2, PN->getIncomingValue(i))); } ReplaceInstWith(PN, NewPhi); } // visitReturnInst - Replace ret instruction with a new return... void visitReturnInst(ReturnInst *I) { Instruction *Ret = new ReturnInst(Constant::getNullValue(POINTERTYPE)); ReplaceInstWith(I, Ret); ReferencesToUpdate.push_back(RefToUpdate(Ret, 0, I->getOperand(0))); } // visitSetCondInst - Replace a conditional test instruction with a new one void visitSetCondInst(SetCondInst *SCI) { BinaryOperator *I = (BinaryOperator*)SCI; Value *DummyVal = Constant::getNullValue(POINTERTYPE); BinaryOperator *New = BinaryOperator::create(I->getOpcode(), DummyVal, DummyVal, I->getName()); ReplaceInstWith(I, New); ReferencesToUpdate.push_back(RefToUpdate(New, 0, I->getOperand(0))); ReferencesToUpdate.push_back(RefToUpdate(New, 1, I->getOperand(1))); // Make sure branches refer to the new condition... I->replaceAllUsesWith(New); } void visitInstruction(Instruction *I) { cerr << "Unknown instruction to FunctionBodyTransformer:\n" << I; } }; // PoolBaseLoadEliminator - Every load and store through a pool allocated // pointer causes a load of the real pool base out of the pool descriptor. // Iterate through the function, doing a local elimination pass of duplicate // loads. This attempts to turn the all too common: // // %reg109.poolbase22 = load %root.pool* %root.pool, uint 0, ubyte 0, ubyte 0 // %reg207 = load %root.p* %reg109.poolbase22, uint %reg109, ubyte 0, ubyte 0 // %reg109.poolbase23 = load %root.pool* %root.pool, uint 0, ubyte 0, ubyte 0 // store double %reg207, %root.p* %reg109.poolbase23, uint %reg109, ... // // into: // %reg109.poolbase22 = load %root.pool* %root.pool, uint 0, ubyte 0, ubyte 0 // %reg207 = load %root.p* %reg109.poolbase22, uint %reg109, ubyte 0, ubyte 0 // store double %reg207, %root.p* %reg109.poolbase22, uint %reg109, ... // // class PoolBaseLoadEliminator : public InstVisitor { // PoolDescValues - Keep track of the values in the current function that are // pool descriptors (loads from which we want to eliminate). // vector PoolDescValues; // PoolDescMap - As we are analyzing a BB, keep track of which load to use // when referencing a pool descriptor. // map PoolDescMap; // These two fields keep track of statistics of how effective we are, if // debugging is enabled. // unsigned Eliminated, Remaining; public: // Compact the pool descriptor map into a list of the pool descriptors in the // current context that we should know about... // PoolBaseLoadEliminator(const map &PoolDescs) { Eliminated = Remaining = 0; for (map::const_iterator I = PoolDescs.begin(), E = PoolDescs.end(); I != E; ++I) PoolDescValues.push_back(I->second.Handle); // Remove duplicates from the list of pool values sort(PoolDescValues.begin(), PoolDescValues.end()); PoolDescValues.erase(unique(PoolDescValues.begin(), PoolDescValues.end()), PoolDescValues.end()); } #ifdef DEBUG_POOLBASE_LOAD_ELIMINATOR void visitFunction(Function *F) { cerr << "Pool Load Elim '" << F->getName() << "'\t"; } ~PoolBaseLoadEliminator() { unsigned Total = Eliminated+Remaining; if (Total) cerr << "removed " << Eliminated << "[" << Eliminated*100/Total << "%] loads, leaving " << Remaining << ".\n"; } #endif // Loop over the function, looking for loads to eliminate. Because we are a // local transformation, we reset all of our state when we enter a new basic // block. // void visitBasicBlock(BasicBlock *) { PoolDescMap.clear(); // Forget state. } // Starting with an empty basic block, we scan it looking for loads of the // pool descriptor. When we find a load, we add it to the PoolDescMap, // indicating that we have a value available to recycle next time we see the // poolbase of this instruction being loaded. // void visitLoadInst(LoadInst *LI) { Value *LoadAddr = LI->getPointerOperand(); map::iterator VIt = PoolDescMap.find(LoadAddr); if (VIt != PoolDescMap.end()) { // We already have a value for this load? LI->replaceAllUsesWith(VIt->second); // Make the current load dead ++Eliminated; } else { // This load might not be a load of a pool pointer, check to see if it is if (LI->getNumOperands() == 4 && // load pool, uint 0, ubyte 0, ubyte 0 find(PoolDescValues.begin(), PoolDescValues.end(), LoadAddr) != PoolDescValues.end()) { assert("Make sure it's a load of the pool base, not a chaining field" && LI->getOperand(1) == Constant::getNullValue(Type::UIntTy) && LI->getOperand(2) == Constant::getNullValue(Type::UByteTy) && LI->getOperand(3) == Constant::getNullValue(Type::UByteTy)); // If it is a load of a pool base, keep track of it for future reference PoolDescMap.insert(make_pair(LoadAddr, LI)); ++Remaining; } } } // If we run across a function call, forget all state... Calls to // poolalloc/poolfree can invalidate the pool base pointer, so it should be // reloaded the next time it is used. Furthermore, a call to a random // function might call one of these functions, so be conservative. Through // more analysis, this could be improved in the future. // void visitCallInst(CallInst *) { PoolDescMap.clear(); } }; static void addNodeMapping(DSNode *SrcNode, const PointerValSet &PVS, map &NodeMapping) { for (unsigned i = 0, e = PVS.size(); i != e; ++i) if (NodeMapping[SrcNode].add(PVS[i])) { // Not in map yet? assert(PVS[i].Index == 0 && "Node indexing not supported yet!"); DSNode *DestNode = PVS[i].Node; // Loop over all of the outgoing links in the mapped graph for (unsigned l = 0, le = DestNode->getNumOutgoingLinks(); l != le; ++l) { PointerValSet &SrcSet = SrcNode->getOutgoingLink(l); const PointerValSet &DestSet = DestNode->getOutgoingLink(l); // Add all of the node mappings now! for (unsigned si = 0, se = SrcSet.size(); si != se; ++si) { assert(SrcSet[si].Index == 0 && "Can't handle node offset!"); addNodeMapping(SrcSet[si].Node, DestSet, NodeMapping); } } } } // CalculateNodeMapping - There is a partial isomorphism between the graph // passed in and the graph that is actually used by the function. We need to // figure out what this mapping is so that we can transformFunctionBody the // instructions in the function itself. Note that every node in the graph that // we are interested in must be both in the local graph of the called function, // and in the local graph of the calling function. Because of this, we only // define the mapping for these nodes [conveniently these are the only nodes we // CAN define a mapping for...] // // The roots of the graph that we are transforming is rooted in the arguments // passed into the function from the caller. This is where we start our // mapping calculation. // // The NodeMapping calculated maps from the callers graph to the called graph. // static void CalculateNodeMapping(Function *F, TransformFunctionInfo &TFI, FunctionDSGraph &CallerGraph, FunctionDSGraph &CalledGraph, map &NodeMapping) { int LastArgNo = -2; for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) { // Figure out what nodes in the called graph the TFI.ArgInfo[i].Node node // corresponds to... // // Only consider first node of sequence. Extra nodes may may be added // to the TFI if the data structure requires more nodes than just the // one the argument points to. We are only interested in the one the // argument points to though. // if (TFI.ArgInfo[i].ArgNo != LastArgNo) { if (TFI.ArgInfo[i].ArgNo == -1) { addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getRetNodes(), NodeMapping); } else { // Figure out which node argument # ArgNo points to in the called graph. Value *Arg = F->getArgumentList()[TFI.ArgInfo[i].ArgNo]; addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg], NodeMapping); } LastArgNo = TFI.ArgInfo[i].ArgNo; } } } // addCallInfo - For a specified function call CI, figure out which pool // descriptors need to be passed in as arguments, and which arguments need to be // transformed into indices. If Arg != -1, the specified call argument is // passed in as a pointer to a data structure. // void TransformFunctionInfo::addCallInfo(DataStructure *DS, CallInst *CI, int Arg, DSNode *GraphNode, map &PoolDescs) { assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!"); assert(Func == 0 || Func == CI->getCalledFunction() && "Function call record should always call the same function!"); assert(Call == 0 || Call == CI && "Call element already filled in with different value!"); Func = CI->getCalledFunction(); Call = CI; //FunctionDSGraph &CalledGraph = DS->getClosedDSGraph(Func); // For now, add the entire graph that is pointed to by the call argument. // This graph can and should be pruned to only what the function itself will // use, because often this will be a dramatically smaller subset of what we // are providing. // // FIXME: This should use pool links instead of extra arguments! // for (df_iterator I = df_begin(GraphNode), E = df_end(GraphNode); I != E; ++I) ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescs[*I].Handle)); } static void markReachableNodes(const PointerValSet &Vals, set &ReachableNodes) { for (unsigned n = 0, ne = Vals.size(); n != ne; ++n) { DSNode *N = Vals[n].Node; if (ReachableNodes.count(N) == 0) // Haven't already processed node? ReachableNodes.insert(df_begin(N), df_end(N)); // Insert all } } // Make sure that all dependant arguments are added to this transformation info. // For example, if we call foo(null, P) and foo treats it's first and second // arguments as belonging to the same data structure, the we MUST add entries to // know that the null needs to be transformed into an index as well. // void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS, map &PoolDescs) { // FIXME: This does not work for indirect function calls!!! if (Func == 0) return; // FIXME! // Make sure argument entries are sorted. finalizeConstruction(); // Loop over the function signature, checking to see if there are any pointer // arguments that we do not convert... if there is something we haven't // converted, set done to false. // unsigned PtrNo = 0; bool Done = true; if (isa(Func->getReturnType())) // Make sure we convert retval if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == -1) { // We DO transform the ret val... skip all possible entries for retval while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == -1) PtrNo++; } else { Done = false; } for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) { Argument *Arg = Func->getArgumentList()[i]; if (isa(Arg->getType())) { if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) { // We DO transform this arg... skip all possible entries for argument while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i) PtrNo++; } else { Done = false; break; } } } // If we already have entries for all pointer arguments and retvals, there // certainly is no work to do. Bail out early to avoid building relatively // expensive data structures. // if (Done) return; #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "Must ensure dependant arguments for: " << Func->getName() << "\n"; #endif // Otherwise, we MIGHT have to add the arguments/retval if they are part of // the same datastructure graph as some other argument or retval that we ARE // processing. // // Get the data structure graph for the called function. // FunctionDSGraph &CalledDS = DS->getClosedDSGraph(Func); // Build a mapping between the nodes in our current graph and the nodes in the // called function's graph. We build it based on our _incomplete_ // transformation information, because it contains all of the info that we // should need. // map NodeMapping; CalculateNodeMapping(Func, *this, DS->getClosedDSGraph(Call->getParent()->getParent()), CalledDS, NodeMapping); // Build the inverted version of the node mapping, that maps from a node in // the called functions graph to a single node in the caller graph. // map InverseNodeMap; for (map::iterator I = NodeMapping.begin(), E = NodeMapping.end(); I != E; ++I) { PointerValSet &CalledNodes = I->second; for (unsigned i = 0, e = CalledNodes.size(); i != e; ++i) InverseNodeMap[CalledNodes[i].Node] = I->first; } NodeMapping.clear(); // Done with information, free memory // Build a set of reachable nodes from the arguments/retval that we ARE // passing in... set ReachableNodes; // Loop through all of the arguments, marking all of the reachable data // structure nodes reachable if they are from this pointer... // for (unsigned i = 0, e = ArgInfo.size(); i != e; ++i) { if (ArgInfo[i].ArgNo == -1) { if (i == 0) // Only process retvals once (performance opt) markReachableNodes(CalledDS.getRetNodes(), ReachableNodes); } else { // If it's an argument value... Argument *Arg = Func->getArgumentList()[ArgInfo[i].ArgNo]; if (isa(Arg->getType())) markReachableNodes(CalledDS.getValueMap()[Arg], ReachableNodes); } } // Now that we know which nodes are already reachable, see if any of the // arguments that we are not passing values in for can reach one of the // existing nodes... // // IN THEORY, we should allow arbitrary paths from the argument to // nodes we know about. The problem is that if we do this, then I don't know // how to get pool pointers for this head list. Since we are completely // deadline driven, I'll just allow direct accesses to the graph. // PtrNo = 0; if (isa(Func->getReturnType())) // Make sure we convert retval if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == -1) { // We DO transform the ret val... skip all possible entries for retval while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == -1) PtrNo++; } else { // See what the return value points to... // FIXME: This should generalize to any number of nodes, just see if any // are reachable. assert(CalledDS.getRetNodes().size() == 1 && "Assumes only one node is returned"); DSNode *N = CalledDS.getRetNodes()[0].Node; // If the return value is not marked as being passed in, but it NEEDS to // be transformed, then make it known now. // if (ReachableNodes.count(N)) { #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "ensure dependant arguments adds return value entry!\n"; #endif addCallInfo(DS, Call, -1, InverseNodeMap[N], PoolDescs); // Keep sorted! finalizeConstruction(); } } for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) { Argument *Arg = Func->getArgumentList()[i]; if (isa(Arg->getType())) { if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) { // We DO transform this arg... skip all possible entries for argument while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i) PtrNo++; } else { // This should generalize to any number of nodes, just see if any are // reachable. assert(CalledDS.getValueMap()[Arg].size() == 1 && "Only handle case where pointing to one node so far!"); // If the arg is not marked as being passed in, but it NEEDS to // be transformed, then make it known now. // DSNode *N = CalledDS.getValueMap()[Arg][0].Node; if (ReachableNodes.count(N)) { #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "ensure dependant arguments adds for arg #" << i << "\n"; #endif addCallInfo(DS, Call, i, InverseNodeMap[N], PoolDescs); // Keep sorted! finalizeConstruction(); } } } } } // transformFunctionBody - This transforms the instruction in 'F' to use the // pools specified in PoolDescs when modifying data structure nodes specified in // the PoolDescs map. Specifically, scalar values specified in the Scalars // vector must be remapped. IPFGraph is the closed data structure graph for F, // of which the PoolDescriptor nodes come from. // void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph, map &PoolDescs) { // Loop through the value map looking for scalars that refer to nonescaping // allocations. Add them to the Scalars vector. Note that we may have // multiple entries in the Scalars vector for each value if it points to more // than one object. // map &ValMap = IPFGraph.getValueMap(); vector Scalars; #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "Building scalar map for fn '" << F->getName() << "' body:\n"; #endif for (map::iterator I = ValMap.begin(), E = ValMap.end(); I != E; ++I) { const PointerValSet &PVS = I->second; // Set of things pointed to by scalar // Check to see if the scalar points to a data structure node... for (unsigned i = 0, e = PVS.size(); i != e; ++i) { if (PVS[i].Index) { cerr << "Problem in " << F->getName() << " for " << I->first << "\n"; } assert(PVS[i].Index == 0 && "Nonzero not handled yet!"); // If the allocation is in the nonescaping set... map::iterator AI = PoolDescs.find(PVS[i].Node); if (AI != PoolDescs.end()) { // Add it to the list of scalars Scalars.push_back(ScalarInfo(I->first, AI->second)); #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "\nScalar Mapping from:" << I->first << "Scalar Mapping to: "; PVS.print(cerr); #endif } } } #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "\nIn '" << F->getName() << "': Found the following values that point to poolable nodes:\n"; for (unsigned i = 0, e = Scalars.size(); i != e; ++i) cerr << Scalars[i].Val; cerr << "\n"; #endif // CallMap - Contain an entry for every call instruction that needs to be // transformed. Each entry in the map contains information about what we need // to do to each call site to change it to work. // map CallMap; // Now we need to figure out what called functions we need to transform, and // how. To do this, we look at all of the scalars, seeing which functions are // either used as a scalar value (so they return a data structure), or are // passed one of our scalar values. // for (unsigned i = 0, e = Scalars.size(); i != e; ++i) { Value *ScalarVal = Scalars[i].Val; // Check to see if the scalar _IS_ a call... if (CallInst *CI = dyn_cast(ScalarVal)) // If so, add information about the pool it will be returning... CallMap[CI].addCallInfo(DS, CI, -1, Scalars[i].Pool.Node, PoolDescs); // Check to see if the scalar is an operand to a call... for (Value::use_iterator UI = ScalarVal->use_begin(), UE = ScalarVal->use_end(); UI != UE; ++UI) { if (CallInst *CI = dyn_cast(*UI)) { // Find out which operand this is to the call instruction... User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal); assert(OI != CI->op_end() && "Call on use list but not an operand!?"); assert(OI != CI->op_begin() && "Pointer operand is call destination?"); // FIXME: This is broken if the same pointer is passed to a call more // than once! It will get multiple entries for the first pointer. // Add the operand number and pool handle to the call table... CallMap[CI].addCallInfo(DS, CI, OI-CI->op_begin()-1, Scalars[i].Pool.Node, PoolDescs); } } } // Make sure that all dependant arguments are added as well. For example, if // we call foo(null, P) and foo treats it's first and second arguments as // belonging to the same data structure, the we MUST set up the CallMap to // know that the null needs to be transformed into an index as well. // for (map::iterator I = CallMap.begin(); I != CallMap.end(); ++I) I->second.ensureDependantArgumentsIncluded(DS, PoolDescs); #ifdef DEBUG_TRANSFORM_PROGRESS // Print out call map... for (map::iterator I = CallMap.begin(); I != CallMap.end(); ++I) { cerr << "For call: " << I->first; cerr << I->second.Func->getName() << " must pass pool pointer for args #"; for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i) cerr << I->second.ArgInfo[i].ArgNo << ", "; cerr << "\n\n"; } #endif // Loop through all of the call nodes, recursively creating the new functions // that we want to call... This uses a map to prevent infinite recursion and // to avoid duplicating functions unneccesarily. // for (map::iterator I = CallMap.begin(), E = CallMap.end(); I != E; ++I) { // Transform all of the functions we need, or at least ensure there is a // cached version available. transformFunction(I->second, IPFGraph, PoolDescs); } // Now that all of the functions that we want to call are available, transform // the local function so that it uses the pools locally and passes them to the // functions that we just hacked up. // // First step, find the instructions to be modified. vector InstToFix; for (unsigned i = 0, e = Scalars.size(); i != e; ++i) { Value *ScalarVal = Scalars[i].Val; // Check to see if the scalar _IS_ an instruction. If so, it is involved. if (Instruction *Inst = dyn_cast(ScalarVal)) InstToFix.push_back(Inst); // All all of the instructions that use the scalar as an operand... for (Value::use_iterator UI = ScalarVal->use_begin(), UE = ScalarVal->use_end(); UI != UE; ++UI) InstToFix.push_back(cast(*UI)); } // Make sure that we get return instructions that return a null value from the // function... // if (!IPFGraph.getRetNodes().empty()) { assert(IPFGraph.getRetNodes().size() == 1 && "Can only return one node?"); PointerVal RetNode = IPFGraph.getRetNodes()[0]; assert(RetNode.Index == 0 && "Subindexing not implemented yet!"); // Only process return instructions if the return value of this function is // part of one of the data structures we are transforming... // if (PoolDescs.count(RetNode.Node)) { // Loop over all of the basic blocks, adding return instructions... for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) if (ReturnInst *RI = dyn_cast((*I)->getTerminator())) InstToFix.push_back(RI); } } // Eliminate duplicates by sorting, then removing equal neighbors. sort(InstToFix.begin(), InstToFix.end()); InstToFix.erase(unique(InstToFix.begin(), InstToFix.end()), InstToFix.end()); // Loop over all of the instructions to transform, creating the new // replacement instructions for them. This also unlinks them from the // function so they can be safely deleted later. // map XFormMap; NewInstructionCreator NIC(*this, Scalars, CallMap, XFormMap); // Visit all instructions... creating the new instructions that we need and // unlinking the old instructions from the function... // #ifdef DEBUG_TRANSFORM_PROGRESS for (unsigned i = 0, e = InstToFix.size(); i != e; ++i) { cerr << "Fixing: " << InstToFix[i]; NIC.visit(InstToFix[i]); } #else NIC.visit(InstToFix.begin(), InstToFix.end()); #endif // Make all instructions we will delete "let go" of their operands... so that // we can safely delete Arguments whose types have changed... // for_each(InstToFix.begin(), InstToFix.end(), mem_fun(&Instruction::dropAllReferences)); // Loop through all of the pointer arguments coming into the function, // replacing them with arguments of POINTERTYPE to match the function type of // the function. // FunctionType::ParamTypes::const_iterator TI = F->getFunctionType()->getParamTypes().begin(); for (Function::ArgumentListType::iterator I = F->getArgumentList().begin(), E = F->getArgumentList().end(); I != E; ++I, ++TI) { Argument *Arg = *I; if (Arg->getType() != *TI) { assert(isa(Arg->getType()) && *TI == POINTERTYPE); Argument *NewArg = new Argument(*TI, Arg->getName()); XFormMap[Arg] = NewArg; // Map old arg into new arg... // Replace the old argument and then delete it... delete F->getArgumentList().replaceWith(I, NewArg); } } // Now that all of the new instructions have been created, we can update all // of the references to dummy values to be references to the actual values // that are computed. // NIC.updateReferences(); #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "TRANSFORMED FUNCTION:\n" << F; #endif // Delete all of the "instructions to fix" for_each(InstToFix.begin(), InstToFix.end(), deleter); // Eliminate pool base loads that we can easily prove are redundant if (!DisableRLE) PoolBaseLoadEliminator(PoolDescs).visit(F); // Since we have liberally hacked the function to pieces, we want to inform // the datastructure pass that its internal representation is out of date. // DS->invalidateFunction(F); } // transformFunction - Transform the specified function the specified way. It // we have already transformed that function that way, don't do anything. The // nodes in the TransformFunctionInfo come out of callers data structure graph. // void PoolAllocate::transformFunction(TransformFunctionInfo &TFI, FunctionDSGraph &CallerIPGraph, map &CallerPoolDesc) { if (getTransformedFunction(TFI)) return; // Function xformation already done? #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "********** Entering transformFunction for " << TFI.Func->getName() << ":\n"; for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) cerr << " ArgInfo[" << i << "] = " << TFI.ArgInfo[i].ArgNo << "\n"; cerr << "\n"; #endif const FunctionType *OldFuncType = TFI.Func->getFunctionType(); assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!"); // Build the type for the new function that we are transforming vector ArgTys; ArgTys.reserve(OldFuncType->getNumParams()+TFI.ArgInfo.size()); for (unsigned i = 0, e = OldFuncType->getNumParams(); i != e; ++i) ArgTys.push_back(OldFuncType->getParamType(i)); const Type *RetType = OldFuncType->getReturnType(); // Add one pool pointer for every argument that needs to be supplemented. for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) { if (TFI.ArgInfo[i].ArgNo == -1) RetType = POINTERTYPE; // Return a pointer else ArgTys[TFI.ArgInfo[i].ArgNo] = POINTERTYPE; // Pass a pointer ArgTys.push_back(PointerType::get(CallerPoolDesc.find(TFI.ArgInfo[i].Node) ->second.PoolType)); } // Build the new function type... const FunctionType *NewFuncType = FunctionType::get(RetType, ArgTys, OldFuncType->isVarArg()); // The new function is internal, because we know that only we can call it. // This also helps subsequent IP transformations to eliminate duplicated pool // pointers (which look like the same value is always passed into a parameter, // allowing it to be easily eliminated). // Function *NewFunc = new Function(NewFuncType, true, TFI.Func->getName()+".poolxform"); CurModule->getFunctionList().push_back(NewFunc); #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "Created function prototype: " << NewFunc << "\n"; #endif // Add the newly formed function to the TransformedFunctions table so that // infinite recursion does not occur! // TransformedFunctions[TFI] = NewFunc; // Add arguments to the function... starting with all of the old arguments vector ArgMap; for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) { const Argument *OFA = TFI.Func->getArgumentList()[i]; Argument *NFA = new Argument(OFA->getType(), OFA->getName()); NewFunc->getArgumentList().push_back(NFA); ArgMap.push_back(NFA); // Keep track of the arguments } // Now add all of the arguments corresponding to pools passed in... for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) { CallArgInfo &AI = TFI.ArgInfo[i]; string Name; if (AI.ArgNo == -1) Name = "ret"; else Name = ArgMap[AI.ArgNo]->getName(); // Get the arg name const Type *Ty = PointerType::get(CallerPoolDesc[AI.Node].PoolType); Argument *NFA = new Argument(Ty, Name+".pool"); NewFunc->getArgumentList().push_back(NFA); } // Now clone the body of the old function into the new function... CloneFunctionInto(NewFunc, TFI.Func, ArgMap); // Okay, now we have a function that is identical to the old one, except that // it has extra arguments for the pools coming in. Now we have to get the // data structure graph for the function we are replacing, and figure out how // our graph nodes map to the graph nodes in the dest function. // FunctionDSGraph &DSGraph = DS->getClosedDSGraph(NewFunc); // NodeMapping - Multimap from callers graph to called graph. We are // guaranteed that the called function graph has more nodes than the caller, // or exactly the same number of nodes. This is because the called function // might not know that two nodes are merged when considering the callers // context, but the caller obviously does. Because of this, a single node in // the calling function's data structure graph can map to multiple nodes in // the called functions graph. // map NodeMapping; CalculateNodeMapping(NewFunc, TFI, CallerIPGraph, DSGraph, NodeMapping); // Print out the node mapping... #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "\nNode mapping for call of " << NewFunc->getName() << "\n"; for (map::iterator I = NodeMapping.begin(); I != NodeMapping.end(); ++I) { cerr << "Map: "; I->first->print(cerr); cerr << "To: "; I->second.print(cerr); cerr << "\n"; } #endif // Fill in the PoolDescriptor information for the transformed function so that // it can determine which value holds the pool descriptor for each data // structure node that it accesses. // map PoolDescs; #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "\nCalculating the pool descriptor map:\n"; #endif // Calculate as much of the pool descriptor map as possible. Since we have // the node mapping between the caller and callee functions, and we have the // pool descriptor information of the caller, we can calculate a partical pool // descriptor map for the called function. // // The nodes that we do not have complete information for are the ones that // are accessed by loading pointers derived from arguments passed in, but that // are not passed in directly. In this case, we have all of the information // except a pool value. If the called function refers to this pool, the pool // value will be loaded from the pool graph and added to the map as neccesary. // for (map::iterator I = NodeMapping.begin(); I != NodeMapping.end(); ++I) { DSNode *CallerNode = I->first; PoolInfo &CallerPI = CallerPoolDesc[CallerNode]; // Check to see if we have a node pointer passed in for this value... Value *CalleeValue = 0; for (unsigned a = 0, ae = TFI.ArgInfo.size(); a != ae; ++a) if (TFI.ArgInfo[a].Node == CallerNode) { // Calculate the argument number that the pool is to the function // call... The call instruction should not have the pool operands added // yet. unsigned ArgNo = TFI.Call->getNumOperands()-1+a; #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "Should be argument #: " << ArgNo << "[i = " << a << "]\n"; #endif assert(ArgNo < NewFunc->getArgumentList().size() && "Call already has pool arguments added??"); // Map the pool argument into the called function... CalleeValue = NewFunc->getArgumentList()[ArgNo]; break; // Found value, quit loop } // Loop over all of the data structure nodes that this incoming node maps to // Creating a PoolInfo structure for them. for (unsigned i = 0, e = I->second.size(); i != e; ++i) { assert(I->second[i].Index == 0 && "Doesn't handle subindexing yet!"); DSNode *CalleeNode = I->second[i].Node; // Add the descriptor. We already know everything about it by now, much // of it is the same as the caller info. // PoolDescs.insert(make_pair(CalleeNode, PoolInfo(CalleeNode, CalleeValue, CallerPI.NewType, CallerPI.PoolType))); } } // We must destroy the node mapping so that we don't have latent references // into the data structure graph for the new function. Otherwise we get // assertion failures when transformFunctionBody tries to invalidate the // graph. // NodeMapping.clear(); // Now that we know everything we need about the function, transform the body // now! // transformFunctionBody(NewFunc, DSGraph, PoolDescs); #ifdef DEBUG_TRANSFORM_PROGRESS cerr << "Function after transformation:\n" << NewFunc; #endif } static unsigned countPointerTypes(const Type *Ty) { if (isa(Ty)) { return 1; } else if (StructType *STy = dyn_cast(Ty)) { unsigned Num = 0; for (unsigned i = 0, e = STy->getElementTypes().size(); i != e; ++i) Num += countPointerTypes(STy->getElementTypes()[i]); return Num; } else if (ArrayType *ATy = dyn_cast(Ty)) { return countPointerTypes(ATy->getElementType()); } else { assert(Ty->isPrimitiveType() && "Unknown derived type!"); return 0; } } // CreatePools - Insert instructions into the function we are processing to // create all of the memory pool objects themselves. This also inserts // destruction code. Add an alloca for each pool that is allocated to the // PoolDescs vector. // void PoolAllocate::CreatePools(Function *F, const vector &Allocs, map &PoolDescs) { // Find all of the return nodes in the function... vector ReturnNodes; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) if (isa((*I)->getTerminator())) ReturnNodes.push_back(*I); #ifdef DEBUG_CREATE_POOLS cerr << "Allocs that we are pool allocating:\n"; for (unsigned i = 0, e = Allocs.size(); i != e; ++i) Allocs[i]->dump(); #endif map AbsPoolTyMap; // First pass over the allocations to process... for (unsigned i = 0, e = Allocs.size(); i != e; ++i) { // Create the pooldescriptor mapping... with null entries for everything // except the node & NewType fields. // map::iterator PI = PoolDescs.insert(make_pair(Allocs[i], PoolInfo(Allocs[i]))).first; // Add a symbol table entry for the new type if there was one for the old // type... string OldName = CurModule->getTypeName(Allocs[i]->getType()); if (OldName.empty()) OldName = "node"; CurModule->addTypeName(OldName+".p", PI->second.NewType); // Create the abstract pool types that will need to be resolved in a second // pass once an abstract type is created for each pool. // // Can only handle limited shapes for now... const Type *OldNodeTy = Allocs[i]->getType(); vector PoolTypes; // Pool type is the first element of the pool descriptor type... PoolTypes.push_back(getPoolType(PoolDescs[Allocs[i]].NewType)); unsigned NumPointers = countPointerTypes(OldNodeTy); while (NumPointers--) // Add a different opaque type for each pointer PoolTypes.push_back(OpaqueType::get()); assert(Allocs[i]->getNumLinks() == PoolTypes.size()-1 && "Node should have same number of pointers as pool!"); StructType *PoolType = StructType::get(PoolTypes); // Add a symbol table entry for the pooltype if possible... CurModule->addTypeName(OldName+".pool", PoolType); // Create the pool type, with opaque values for pointers... AbsPoolTyMap.insert(make_pair(Allocs[i], PoolType)); #ifdef DEBUG_CREATE_POOLS cerr << "POOL TY: " << AbsPoolTyMap.find(Allocs[i])->second.get() << "\n"; #endif } // Now that we have types for all of the pool types, link them all together. for (unsigned i = 0, e = Allocs.size(); i != e; ++i) { PATypeHolder &PoolTyH = AbsPoolTyMap.find(Allocs[i])->second; // Resolve all of the outgoing pointer types of this pool node... for (unsigned p = 0, pe = Allocs[i]->getNumLinks(); p != pe; ++p) { PointerValSet &PVS = Allocs[i]->getLink(p); assert(!PVS.empty() && "Outgoing edge is empty, field unused, can" " probably just leave the type opaque or something dumb."); unsigned Out; for (Out = 0; AbsPoolTyMap.count(PVS[Out].Node) == 0; ++Out) assert(Out != PVS.size() && "No edge to an outgoing allocation node!?"); assert(PVS[Out].Index == 0 && "Subindexing not implemented yet!"); // The actual struct type could change each time through the loop, so it's // NOT loop invariant. StructType *PoolTy = cast(PoolTyH.get()); // Get the opaque type... DerivedType *ElTy = cast(PoolTy->getElementTypes()[p+1].get()); #ifdef DEBUG_CREATE_POOLS cerr << "Refining " << ElTy << " of " << PoolTy << " to " << AbsPoolTyMap.find(PVS[Out].Node)->second.get() << "\n"; #endif const Type *RefPoolTy = AbsPoolTyMap.find(PVS[Out].Node)->second.get(); ElTy->refineAbstractTypeTo(PointerType::get(RefPoolTy)); #ifdef DEBUG_CREATE_POOLS cerr << "Result pool type is: " << PoolTyH.get() << "\n"; #endif } } // Create the code that goes in the entry and exit nodes for the function... vector EntryNodeInsts; for (unsigned i = 0, e = Allocs.size(); i != e; ++i) { PoolInfo &PI = PoolDescs[Allocs[i]]; // Fill in the pool type for this pool... PI.PoolType = AbsPoolTyMap.find(Allocs[i])->second.get(); assert(!PI.PoolType->isAbstract() && "Pool type should not be abstract anymore!"); // Add an allocation and a free for each pool... AllocaInst *PoolAlloc = new AllocaInst(PointerType::get(PI.PoolType), 0, CurModule->getTypeName(PI.PoolType)); PI.Handle = PoolAlloc; EntryNodeInsts.push_back(PoolAlloc); AllocationInst *AI = Allocs[i]->getAllocation(); // Initialize the pool. We need to know how big each allocation is. For // our purposes here, we assume we are allocating a scalar, or array of // constant size. // unsigned ElSize = TargetData.getTypeSize(PI.NewType); vector Args; Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize)); Args.push_back(PoolAlloc); // Pool to initialize EntryNodeInsts.push_back(new CallInst(PoolInit, Args)); // Add code to destroy the pool in all of the exit nodes of the function... Args.clear(); Args.push_back(PoolAlloc); // Pool to initialize for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) { Instruction *Destroy = new CallInst(PoolDestroy, Args); // Insert it before the return instruction... BasicBlock *RetNode = ReturnNodes[EN]; RetNode->getInstList().insert(RetNode->end()-1, Destroy); } } // Now that all of the pool descriptors have been created, link them together // so that called functions can get links as neccesary... // for (unsigned i = 0, e = Allocs.size(); i != e; ++i) { PoolInfo &PI = PoolDescs[Allocs[i]]; // For every pointer in the data structure, initialize a link that // indicates which pool to access... // vector Indices(2); Indices[0] = ConstantUInt::get(Type::UIntTy, 0); for (unsigned l = 0, le = PI.Node->getNumLinks(); l != le; ++l) // Only store an entry for the field if the field is used! if (!PI.Node->getLink(l).empty()) { assert(PI.Node->getLink(l).size() == 1 && "Should have only one link!"); PointerVal PV = PI.Node->getLink(l)[0]; assert(PV.Index == 0 && "Subindexing not supported yet!"); PoolInfo &LinkedPool = PoolDescs[PV.Node]; Indices[1] = ConstantUInt::get(Type::UByteTy, 1+l); EntryNodeInsts.push_back(new StoreInst(LinkedPool.Handle, PI.Handle, Indices)); } } // Insert the entry node code into the entry block... F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1, EntryNodeInsts.begin(), EntryNodeInsts.end()); } // addPoolPrototypes - Add prototypes for the pool functions to the specified // module and update the Pool* instance variables to point to them. // void PoolAllocate::addPoolPrototypes(Module *M) { // Get poolinit function... vector Args; Args.push_back(Type::UIntTy); // Num bytes per element FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, true); PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy); // Get pooldestroy function... Args.pop_back(); // Only takes a pool... FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, true); PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy); // Get the poolalloc function... FunctionType *PoolAllocTy = FunctionType::get(POINTERTYPE, Args, true); PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy); // Get the poolfree function... Args.push_back(POINTERTYPE); // Pointer to free FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, true); PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy); Args[0] = Type::UIntTy; // Number of slots to allocate FunctionType *PoolAllocArrayTy = FunctionType::get(POINTERTYPE, Args, true); PoolAllocArray = M->getOrInsertFunction("poolallocarray", PoolAllocArrayTy); } bool PoolAllocate::run(Module *M) { addPoolPrototypes(M); CurModule = M; DS = &getAnalysis(); bool Changed = false; // We cannot use an iterator here because it will get invalidated when we add // functions to the module later... for (unsigned i = 0; i != M->size(); ++i) if (!M->getFunctionList()[i]->isExternal()) { Changed |= processFunction(M->getFunctionList()[i]); if (Changed) { cerr << "Only processing one function\n"; break; } } CurModule = 0; DS = 0; return false; } // createPoolAllocatePass - Global function to access the functionality of this // pass... // Pass *createPoolAllocatePass() { return new PoolAllocate(); }