//===-- StackProtector.cpp - Stack Protector Insertion --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass inserts stack protectors into functions which need them. A variable // with a random value in it is stored onto the stack before the local variables // are allocated. Upon exiting the block, the stored value is checked. If it's // changed, then there was some sort of violation and the program aborts. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "stack-protector" #include "llvm/CodeGen/StackProtector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/Support/CommandLine.h" #include using namespace llvm; STATISTIC(NumFunProtected, "Number of functions protected"); STATISTIC(NumAddrTaken, "Number of local variables that have their address" " taken."); static cl::opt EnableSelectionDAGSP("enable-selectiondag-sp", cl::init(true), cl::Hidden); char StackProtector::ID = 0; INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors", false, true) FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) { return new StackProtector(TM); } StackProtector::SSPLayoutKind StackProtector::getSSPLayout(const AllocaInst *AI) const { return AI ? Layout.lookup(AI) : SSPLK_None; } void StackProtector::adjustForColoring(const AllocaInst *From, const AllocaInst *To) { // When coloring replaces one alloca with another, transfer the SSPLayoutKind // tag from the remapped to the target alloca. The remapped alloca should // have a size smaller than or equal to the replacement alloca. SSPLayoutMap::iterator I = Layout.find(From); if (I != Layout.end()) { SSPLayoutKind Kind = I->second; Layout.erase(I); // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. I = Layout.find(To); if (I == Layout.end()) Layout.insert(std::make_pair(To, Kind)); else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) I->second = Kind; } } bool StackProtector::runOnFunction(Function &Fn) { F = &Fn; M = F->getParent(); DominatorTreeWrapperPass *DTWP = getAnalysisIfAvailable(); DT = DTWP ? &DTWP->getDomTree() : 0; TLI = TM->getTargetLowering(); if (!RequiresStackProtector()) return false; Attribute Attr = Fn.getAttributes().getAttribute( AttributeSet::FunctionIndex, "stack-protector-buffer-size"); if (Attr.isStringAttribute() && Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) return false; // Invalid integer string ++NumFunProtected; return InsertStackProtectors(); } /// \param [out] IsLarge is set to true if a protectable array is found and /// it is "large" ( >= ssp-buffer-size). In the case of a structure with /// multiple arrays, this gets set if any of them is large. bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, bool Strong, bool InStruct) const { if (!Ty) return false; if (ArrayType *AT = dyn_cast(Ty)) { if (!AT->getElementType()->isIntegerTy(8)) { // If we're on a non-Darwin platform or we're inside of a structure, don't // add stack protectors unless the array is a character array. // However, in strong mode any array, regardless of type and size, // triggers a protector. if (!Strong && (InStruct || !Trip.isOSDarwin())) return false; } // If an array has more than SSPBufferSize bytes of allocated space, then we // emit stack protectors. if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) { IsLarge = true; return true; } if (Strong) // Require a protector for all arrays in strong mode return true; } const StructType *ST = dyn_cast(Ty); if (!ST) return false; bool NeedsProtector = false; for (StructType::element_iterator I = ST->element_begin(), E = ST->element_end(); I != E; ++I) if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { // If the element is a protectable array and is large (>= SSPBufferSize) // then we are done. If the protectable array is not large, then // keep looking in case a subsequent element is a large array. if (IsLarge) return true; NeedsProtector = true; } return NeedsProtector; } bool StackProtector::HasAddressTaken(const Instruction *AI) { for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE; ++UI) { const User *U = *UI; if (const StoreInst *SI = dyn_cast(U)) { if (AI == SI->getValueOperand()) return true; } else if (const PtrToIntInst *SI = dyn_cast(U)) { if (AI == SI->getOperand(0)) return true; } else if (isa(U)) { return true; } else if (isa(U)) { return true; } else if (const SelectInst *SI = dyn_cast(U)) { if (HasAddressTaken(SI)) return true; } else if (const PHINode *PN = dyn_cast(U)) { // Keep track of what PHI nodes we have already visited to ensure // they are only visited once. if (VisitedPHIs.insert(PN)) if (HasAddressTaken(PN)) return true; } else if (const GetElementPtrInst *GEP = dyn_cast(U)) { if (HasAddressTaken(GEP)) return true; } else if (const BitCastInst *BI = dyn_cast(U)) { if (HasAddressTaken(BI)) return true; } } return false; } /// \brief Check whether or not this function needs a stack protector based /// upon the stack protector level. /// /// We use two heuristics: a standard (ssp) and strong (sspstrong). /// The standard heuristic which will add a guard variable to functions that /// call alloca with a either a variable size or a size >= SSPBufferSize, /// functions with character buffers larger than SSPBufferSize, and functions /// with aggregates containing character buffers larger than SSPBufferSize. The /// strong heuristic will add a guard variables to functions that call alloca /// regardless of size, functions with any buffer regardless of type and size, /// functions with aggregates that contain any buffer regardless of type and /// size, and functions that contain stack-based variables that have had their /// address taken. bool StackProtector::RequiresStackProtector() { bool Strong = false; bool NeedsProtector = false; if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::StackProtectReq)) { NeedsProtector = true; Strong = true; // Use the same heuristic as strong to determine SSPLayout } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::StackProtectStrong)) Strong = true; else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::StackProtect)) return false; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { BasicBlock *BB = I; for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { if (AllocaInst *AI = dyn_cast(II)) { if (AI->isArrayAllocation()) { // SSP-Strong: Enable protectors for any call to alloca, regardless // of size. if (Strong) return true; if (const ConstantInt *CI = dyn_cast(AI->getArraySize())) { if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { // A call to alloca with size >= SSPBufferSize requires // stack protectors. Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); NeedsProtector = true; } else if (Strong) { // Require protectors for all alloca calls in strong mode. Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); NeedsProtector = true; } } else { // A call to alloca with a variable size requires protectors. Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); NeedsProtector = true; } continue; } bool IsLarge = false; if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray : SSPLK_SmallArray)); NeedsProtector = true; continue; } if (Strong && HasAddressTaken(AI)) { ++NumAddrTaken; Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); NeedsProtector = true; } } } } return NeedsProtector; } static bool InstructionWillNotHaveChain(const Instruction *I) { return !I->mayHaveSideEffects() && !I->mayReadFromMemory() && isSafeToSpeculativelyExecute(I); } /// Identify if RI has a previous instruction in the "Tail Position" and return /// it. Otherwise return 0. /// /// This is based off of the code in llvm::isInTailCallPosition. The difference /// is that it inverts the first part of llvm::isInTailCallPosition since /// isInTailCallPosition is checking if a call is in a tail call position, and /// we are searching for an unknown tail call that might be in the tail call /// position. Once we find the call though, the code uses the same refactored /// code, returnTypeIsEligibleForTailCall. static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI, const TargetLoweringBase *TLI) { // Establish a reasonable upper bound on the maximum amount of instructions we // will look through to find a tail call. unsigned SearchCounter = 0; const unsigned MaxSearch = 4; bool NoInterposingChain = true; for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend(); I != E && SearchCounter < MaxSearch; ++I) { Instruction *Inst = &*I; // Skip over debug intrinsics and do not allow them to affect our MaxSearch // counter. if (isa(Inst)) continue; // If we find a call and the following conditions are satisifed, then we // have found a tail call that satisfies at least the target independent // requirements of a tail call: // // 1. The call site has the tail marker. // // 2. The call site either will not cause the creation of a chain or if a // chain is necessary there are no instructions in between the callsite and // the call which would create an interposing chain. // // 3. The return type of the function does not impede tail call // optimization. if (CallInst *CI = dyn_cast(Inst)) { if (CI->isTailCall() && (InstructionWillNotHaveChain(CI) || NoInterposingChain) && returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI)) return CI; } // If we did not find a call see if we have an instruction that may create // an interposing chain. NoInterposingChain = NoInterposingChain && InstructionWillNotHaveChain(Inst); // Increment max search. SearchCounter++; } return 0; } /// Insert code into the entry block that stores the __stack_chk_guard /// variable onto the stack: /// /// entry: /// StackGuardSlot = alloca i8* /// StackGuard = load __stack_chk_guard /// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot) /// /// Returns true if the platform/triple supports the stackprotectorcreate pseudo /// node. static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, const TargetLoweringBase *TLI, const Triple &Trip, AllocaInst *&AI, Value *&StackGuardVar) { bool SupportsSelectionDAGSP = false; PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); unsigned AddressSpace, Offset; if (TLI->getStackCookieLocation(AddressSpace, Offset)) { Constant *OffsetVal = ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset); StackGuardVar = ConstantExpr::getIntToPtr( OffsetVal, PointerType::get(PtrTy, AddressSpace)); } else if (Trip.getOS() == llvm::Triple::OpenBSD) { StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy); cast(StackGuardVar) ->setVisibility(GlobalValue::HiddenVisibility); } else { SupportsSelectionDAGSP = true; StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy); } IRBuilder<> B(&F->getEntryBlock().front()); AI = B.CreateAlloca(PtrTy, 0, "StackGuardSlot"); LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard"); B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI, AI); return SupportsSelectionDAGSP; } /// InsertStackProtectors - Insert code into the prologue and epilogue of the /// function. /// /// - The prologue code loads and stores the stack guard onto the stack. /// - The epilogue checks the value stored in the prologue against the original /// value. It calls __stack_chk_fail if they differ. bool StackProtector::InsertStackProtectors() { bool HasPrologue = false; bool SupportsSelectionDAGSP = EnableSelectionDAGSP && !TM->Options.EnableFastISel; AllocaInst *AI = 0; // Place on stack that stores the stack guard. Value *StackGuardVar = 0; // The stack guard variable. for (Function::iterator I = F->begin(), E = F->end(); I != E;) { BasicBlock *BB = I++; ReturnInst *RI = dyn_cast(BB->getTerminator()); if (!RI) continue; if (!HasPrologue) { HasPrologue = true; SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar); } if (SupportsSelectionDAGSP) { // Since we have a potential tail call, insert the special stack check // intrinsic. Instruction *InsertionPt = 0; if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) { InsertionPt = CI; } else { InsertionPt = RI; // At this point we know that BB has a return statement so it *DOES* // have a terminator. assert(InsertionPt != 0 && "BB must have a terminator instruction at " "this point."); } Function *Intrinsic = Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck); CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt); } else { // If we do not support SelectionDAG based tail calls, generate IR level // tail calls. // // For each block with a return instruction, convert this: // // return: // ... // ret ... // // into this: // // return: // ... // %1 = load __stack_chk_guard // %2 = load StackGuardSlot // %3 = cmp i1 %1, %2 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk // // SP_return: // ret ... // // CallStackCheckFailBlk: // call void @__stack_chk_fail() // unreachable // Create the FailBB. We duplicate the BB every time since the MI tail // merge pass will merge together all of the various BB into one including // fail BB generated by the stack protector pseudo instruction. BasicBlock *FailBB = CreateFailBB(); // Split the basic block before the return instruction. BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return"); // Update the dominator tree if we need to. if (DT && DT->isReachableFromEntry(BB)) { DT->addNewBlock(NewBB, BB); DT->addNewBlock(FailBB, BB); } // Remove default branch instruction to the new BB. BB->getTerminator()->eraseFromParent(); // Move the newly created basic block to the point right after the old // basic block so that it's in the "fall through" position. NewBB->moveAfter(BB); // Generate the stack protector instructions in the old basic block. IRBuilder<> B(BB); LoadInst *LI1 = B.CreateLoad(StackGuardVar); LoadInst *LI2 = B.CreateLoad(AI); Value *Cmp = B.CreateICmpEQ(LI1, LI2); B.CreateCondBr(Cmp, NewBB, FailBB); } } // Return if we didn't modify any basic blocks. I.e., there are no return // statements in the function. if (!HasPrologue) return false; return true; } /// CreateFailBB - Create a basic block to jump to when the stack protector /// check fails. BasicBlock *StackProtector::CreateFailBB() { LLVMContext &Context = F->getContext(); BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); IRBuilder<> B(FailBB); if (Trip.getOS() == llvm::Triple::OpenBSD) { Constant *StackChkFail = M->getOrInsertFunction( "__stack_smash_handler", Type::getVoidTy(Context), Type::getInt8PtrTy(Context), NULL); B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); } else { Constant *StackChkFail = M->getOrInsertFunction( "__stack_chk_fail", Type::getVoidTy(Context), NULL); B.CreateCall(StackChkFail); } B.CreateUnreachable(); return FailBB; }