//===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Custom DAG lowering for R600 // //===----------------------------------------------------------------------===// #include "R600ISelLowering.h" #include "R600Defines.h" #include "R600InstrInfo.h" #include "R600MachineFunctionInfo.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Function.h" using namespace llvm; R600TargetLowering::R600TargetLowering(TargetMachine &TM) : AMDGPUTargetLowering(TM), Gen(TM.getSubtarget().getGeneration()) { addRegisterClass(MVT::v4f32, &AMDGPU::R600_Reg128RegClass); addRegisterClass(MVT::f32, &AMDGPU::R600_Reg32RegClass); addRegisterClass(MVT::v4i32, &AMDGPU::R600_Reg128RegClass); addRegisterClass(MVT::i32, &AMDGPU::R600_Reg32RegClass); addRegisterClass(MVT::v2f32, &AMDGPU::R600_Reg64RegClass); addRegisterClass(MVT::v2i32, &AMDGPU::R600_Reg64RegClass); computeRegisterProperties(); // Set condition code actions setCondCodeAction(ISD::SETO, MVT::f32, Expand); setCondCodeAction(ISD::SETUO, MVT::f32, Expand); setCondCodeAction(ISD::SETLT, MVT::f32, Expand); setCondCodeAction(ISD::SETLE, MVT::f32, Expand); setCondCodeAction(ISD::SETOLT, MVT::f32, Expand); setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); setCondCodeAction(ISD::SETONE, MVT::f32, Expand); setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); setCondCodeAction(ISD::SETUGE, MVT::f32, Expand); setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); setCondCodeAction(ISD::SETULT, MVT::f32, Expand); setCondCodeAction(ISD::SETULE, MVT::f32, Expand); setCondCodeAction(ISD::SETLE, MVT::i32, Expand); setCondCodeAction(ISD::SETLT, MVT::i32, Expand); setCondCodeAction(ISD::SETULE, MVT::i32, Expand); setCondCodeAction(ISD::SETULT, MVT::i32, Expand); setOperationAction(ISD::FCOS, MVT::f32, Custom); setOperationAction(ISD::FSIN, MVT::f32, Custom); setOperationAction(ISD::SETCC, MVT::v4i32, Expand); setOperationAction(ISD::SETCC, MVT::v2i32, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Expand); setOperationAction(ISD::BR_CC, MVT::f32, Expand); setOperationAction(ISD::FSUB, MVT::f32, Expand); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i1, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SETCC, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom); setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::v2i32, Expand); setOperationAction(ISD::SELECT, MVT::v2f32, Expand); setOperationAction(ISD::SELECT, MVT::v4i32, Expand); setOperationAction(ISD::SELECT, MVT::v4f32, Expand); // Legalize loads and stores to the private address space. setOperationAction(ISD::LOAD, MVT::i32, Custom); setOperationAction(ISD::LOAD, MVT::v2i32, Custom); setOperationAction(ISD::LOAD, MVT::v4i32, Custom); // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address // spaces, so it is custom lowered to handle those where it isn't. setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom); setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom); setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom); setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom); setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom); setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom); setOperationAction(ISD::STORE, MVT::i8, Custom); setOperationAction(ISD::STORE, MVT::i32, Custom); setOperationAction(ISD::STORE, MVT::v2i32, Custom); setOperationAction(ISD::STORE, MVT::v4i32, Custom); setTruncStoreAction(MVT::i32, MVT::i8, Custom); setTruncStoreAction(MVT::i32, MVT::i16, Custom); setOperationAction(ISD::LOAD, MVT::i32, Custom); setOperationAction(ISD::LOAD, MVT::v4i32, Custom); setOperationAction(ISD::FrameIndex, MVT::i32, Custom); setTargetDAGCombine(ISD::FP_ROUND); setTargetDAGCombine(ISD::FP_TO_SINT); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); setTargetDAGCombine(ISD::SELECT_CC); setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setBooleanContents(ZeroOrNegativeOneBooleanContent); setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); setSchedulingPreference(Sched::Source); } MachineBasicBlock * R600TargetLowering::EmitInstrWithCustomInserter( MachineInstr * MI, MachineBasicBlock * BB) const { MachineFunction * MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); MachineBasicBlock::iterator I = *MI; const R600InstrInfo *TII = static_cast(MF->getTarget().getInstrInfo()); switch (MI->getOpcode()) { default: // Replace LDS_*_RET instruction that don't have any uses with the // equivalent LDS_*_NORET instruction. if (TII->isLDSRetInstr(MI->getOpcode())) { int DstIdx = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst); assert(DstIdx != -1); MachineInstrBuilder NewMI; if (!MRI.use_empty(MI->getOperand(DstIdx).getReg())) return BB; NewMI = BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::getLDSNoRetOp(MI->getOpcode()))); for (unsigned i = 1, e = MI->getNumOperands(); i < e; ++i) { NewMI.addOperand(MI->getOperand(i)); } } else { return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); } break; case AMDGPU::CLAMP_R600: { MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I, AMDGPU::MOV, MI->getOperand(0).getReg(), MI->getOperand(1).getReg()); TII->addFlag(NewMI, 0, MO_FLAG_CLAMP); break; } case AMDGPU::FABS_R600: { MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I, AMDGPU::MOV, MI->getOperand(0).getReg(), MI->getOperand(1).getReg()); TII->addFlag(NewMI, 0, MO_FLAG_ABS); break; } case AMDGPU::FNEG_R600: { MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I, AMDGPU::MOV, MI->getOperand(0).getReg(), MI->getOperand(1).getReg()); TII->addFlag(NewMI, 0, MO_FLAG_NEG); break; } case AMDGPU::MASK_WRITE: { unsigned maskedRegister = MI->getOperand(0).getReg(); assert(TargetRegisterInfo::isVirtualRegister(maskedRegister)); MachineInstr * defInstr = MRI.getVRegDef(maskedRegister); TII->addFlag(defInstr, 0, MO_FLAG_MASK); break; } case AMDGPU::MOV_IMM_F32: TII->buildMovImm(*BB, I, MI->getOperand(0).getReg(), MI->getOperand(1).getFPImm()->getValueAPF() .bitcastToAPInt().getZExtValue()); break; case AMDGPU::MOV_IMM_I32: TII->buildMovImm(*BB, I, MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); break; case AMDGPU::CONST_COPY: { MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, MI, AMDGPU::MOV, MI->getOperand(0).getReg(), AMDGPU::ALU_CONST); TII->setImmOperand(NewMI, AMDGPU::OpName::src0_sel, MI->getOperand(1).getImm()); break; } case AMDGPU::RAT_WRITE_CACHELESS_32_eg: case AMDGPU::RAT_WRITE_CACHELESS_64_eg: case AMDGPU::RAT_WRITE_CACHELESS_128_eg: { unsigned EOP = (std::next(I)->getOpcode() == AMDGPU::RETURN) ? 1 : 0; BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI->getOpcode())) .addOperand(MI->getOperand(0)) .addOperand(MI->getOperand(1)) .addImm(EOP); // Set End of program bit break; } case AMDGPU::TXD: { unsigned T0 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass); unsigned T1 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass); MachineOperand &RID = MI->getOperand(4); MachineOperand &SID = MI->getOperand(5); unsigned TextureId = MI->getOperand(6).getImm(); unsigned SrcX = 0, SrcY = 1, SrcZ = 2, SrcW = 3; unsigned CTX = 1, CTY = 1, CTZ = 1, CTW = 1; switch (TextureId) { case 5: // Rect CTX = CTY = 0; break; case 6: // Shadow1D SrcW = SrcZ; break; case 7: // Shadow2D SrcW = SrcZ; break; case 8: // ShadowRect CTX = CTY = 0; SrcW = SrcZ; break; case 9: // 1DArray SrcZ = SrcY; CTZ = 0; break; case 10: // 2DArray CTZ = 0; break; case 11: // Shadow1DArray SrcZ = SrcY; CTZ = 0; break; case 12: // Shadow2DArray CTZ = 0; break; } BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_H), T0) .addOperand(MI->getOperand(3)) .addImm(SrcX) .addImm(SrcY) .addImm(SrcZ) .addImm(SrcW) .addImm(0) .addImm(0) .addImm(0) .addImm(0) .addImm(1) .addImm(2) .addImm(3) .addOperand(RID) .addOperand(SID) .addImm(CTX) .addImm(CTY) .addImm(CTZ) .addImm(CTW); BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_V), T1) .addOperand(MI->getOperand(2)) .addImm(SrcX) .addImm(SrcY) .addImm(SrcZ) .addImm(SrcW) .addImm(0) .addImm(0) .addImm(0) .addImm(0) .addImm(1) .addImm(2) .addImm(3) .addOperand(RID) .addOperand(SID) .addImm(CTX) .addImm(CTY) .addImm(CTZ) .addImm(CTW); BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SAMPLE_G)) .addOperand(MI->getOperand(0)) .addOperand(MI->getOperand(1)) .addImm(SrcX) .addImm(SrcY) .addImm(SrcZ) .addImm(SrcW) .addImm(0) .addImm(0) .addImm(0) .addImm(0) .addImm(1) .addImm(2) .addImm(3) .addOperand(RID) .addOperand(SID) .addImm(CTX) .addImm(CTY) .addImm(CTZ) .addImm(CTW) .addReg(T0, RegState::Implicit) .addReg(T1, RegState::Implicit); break; } case AMDGPU::TXD_SHADOW: { unsigned T0 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass); unsigned T1 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass); MachineOperand &RID = MI->getOperand(4); MachineOperand &SID = MI->getOperand(5); unsigned TextureId = MI->getOperand(6).getImm(); unsigned SrcX = 0, SrcY = 1, SrcZ = 2, SrcW = 3; unsigned CTX = 1, CTY = 1, CTZ = 1, CTW = 1; switch (TextureId) { case 5: // Rect CTX = CTY = 0; break; case 6: // Shadow1D SrcW = SrcZ; break; case 7: // Shadow2D SrcW = SrcZ; break; case 8: // ShadowRect CTX = CTY = 0; SrcW = SrcZ; break; case 9: // 1DArray SrcZ = SrcY; CTZ = 0; break; case 10: // 2DArray CTZ = 0; break; case 11: // Shadow1DArray SrcZ = SrcY; CTZ = 0; break; case 12: // Shadow2DArray CTZ = 0; break; } BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_H), T0) .addOperand(MI->getOperand(3)) .addImm(SrcX) .addImm(SrcY) .addImm(SrcZ) .addImm(SrcW) .addImm(0) .addImm(0) .addImm(0) .addImm(0) .addImm(1) .addImm(2) .addImm(3) .addOperand(RID) .addOperand(SID) .addImm(CTX) .addImm(CTY) .addImm(CTZ) .addImm(CTW); BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_V), T1) .addOperand(MI->getOperand(2)) .addImm(SrcX) .addImm(SrcY) .addImm(SrcZ) .addImm(SrcW) .addImm(0) .addImm(0) .addImm(0) .addImm(0) .addImm(1) .addImm(2) .addImm(3) .addOperand(RID) .addOperand(SID) .addImm(CTX) .addImm(CTY) .addImm(CTZ) .addImm(CTW); BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SAMPLE_C_G)) .addOperand(MI->getOperand(0)) .addOperand(MI->getOperand(1)) .addImm(SrcX) .addImm(SrcY) .addImm(SrcZ) .addImm(SrcW) .addImm(0) .addImm(0) .addImm(0) .addImm(0) .addImm(1) .addImm(2) .addImm(3) .addOperand(RID) .addOperand(SID) .addImm(CTX) .addImm(CTY) .addImm(CTZ) .addImm(CTW) .addReg(T0, RegState::Implicit) .addReg(T1, RegState::Implicit); break; } case AMDGPU::BRANCH: BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP)) .addOperand(MI->getOperand(0)); break; case AMDGPU::BRANCH_COND_f32: { MachineInstr *NewMI = BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X), AMDGPU::PREDICATE_BIT) .addOperand(MI->getOperand(1)) .addImm(OPCODE_IS_NOT_ZERO) .addImm(0); // Flags TII->addFlag(NewMI, 0, MO_FLAG_PUSH); BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND)) .addOperand(MI->getOperand(0)) .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill); break; } case AMDGPU::BRANCH_COND_i32: { MachineInstr *NewMI = BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X), AMDGPU::PREDICATE_BIT) .addOperand(MI->getOperand(1)) .addImm(OPCODE_IS_NOT_ZERO_INT) .addImm(0); // Flags TII->addFlag(NewMI, 0, MO_FLAG_PUSH); BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND)) .addOperand(MI->getOperand(0)) .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill); break; } case AMDGPU::EG_ExportSwz: case AMDGPU::R600_ExportSwz: { // Instruction is left unmodified if its not the last one of its type bool isLastInstructionOfItsType = true; unsigned InstExportType = MI->getOperand(1).getImm(); for (MachineBasicBlock::iterator NextExportInst = std::next(I), EndBlock = BB->end(); NextExportInst != EndBlock; NextExportInst = std::next(NextExportInst)) { if (NextExportInst->getOpcode() == AMDGPU::EG_ExportSwz || NextExportInst->getOpcode() == AMDGPU::R600_ExportSwz) { unsigned CurrentInstExportType = NextExportInst->getOperand(1) .getImm(); if (CurrentInstExportType == InstExportType) { isLastInstructionOfItsType = false; break; } } } bool EOP = (std::next(I)->getOpcode() == AMDGPU::RETURN) ? 1 : 0; if (!EOP && !isLastInstructionOfItsType) return BB; unsigned CfInst = (MI->getOpcode() == AMDGPU::EG_ExportSwz)? 84 : 40; BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI->getOpcode())) .addOperand(MI->getOperand(0)) .addOperand(MI->getOperand(1)) .addOperand(MI->getOperand(2)) .addOperand(MI->getOperand(3)) .addOperand(MI->getOperand(4)) .addOperand(MI->getOperand(5)) .addOperand(MI->getOperand(6)) .addImm(CfInst) .addImm(EOP); break; } case AMDGPU::RETURN: { // RETURN instructions must have the live-out registers as implicit uses, // otherwise they appear dead. R600MachineFunctionInfo *MFI = MF->getInfo(); MachineInstrBuilder MIB(*MF, MI); for (unsigned i = 0, e = MFI->LiveOuts.size(); i != e; ++i) MIB.addReg(MFI->LiveOuts[i], RegState::Implicit); return BB; } } MI->eraseFromParent(); return BB; } //===----------------------------------------------------------------------===// // Custom DAG Lowering Operations //===----------------------------------------------------------------------===// SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); R600MachineFunctionInfo *MFI = MF.getInfo(); switch (Op.getOpcode()) { default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); case ISD::FCOS: case ISD::FSIN: return LowerTrig(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::LOAD: return LowerLOAD(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG); case ISD::INTRINSIC_VOID: { SDValue Chain = Op.getOperand(0); unsigned IntrinsicID = cast(Op.getOperand(1))->getZExtValue(); switch (IntrinsicID) { case AMDGPUIntrinsic::AMDGPU_store_output: { int64_t RegIndex = cast(Op.getOperand(3))->getZExtValue(); unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister(RegIndex); MFI->LiveOuts.push_back(Reg); return DAG.getCopyToReg(Chain, SDLoc(Op), Reg, Op.getOperand(2)); } case AMDGPUIntrinsic::R600_store_swizzle: { const SDValue Args[8] = { Chain, Op.getOperand(2), // Export Value Op.getOperand(3), // ArrayBase Op.getOperand(4), // Type DAG.getConstant(0, MVT::i32), // SWZ_X DAG.getConstant(1, MVT::i32), // SWZ_Y DAG.getConstant(2, MVT::i32), // SWZ_Z DAG.getConstant(3, MVT::i32) // SWZ_W }; return DAG.getNode(AMDGPUISD::EXPORT, SDLoc(Op), Op.getValueType(), Args, 8); } // default for switch(IntrinsicID) default: break; } // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode()) break; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IntrinsicID = cast(Op.getOperand(0))->getZExtValue(); EVT VT = Op.getValueType(); SDLoc DL(Op); switch(IntrinsicID) { default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); case AMDGPUIntrinsic::R600_load_input: { int64_t RegIndex = cast(Op.getOperand(1))->getZExtValue(); unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister(RegIndex); MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &MRI = MF.getRegInfo(); MRI.addLiveIn(Reg); return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()), Reg, VT); } case AMDGPUIntrinsic::R600_interp_input: { int slot = cast(Op.getOperand(1))->getZExtValue(); int ijb = cast(Op.getOperand(2))->getSExtValue(); MachineSDNode *interp; if (ijb < 0) { const MachineFunction &MF = DAG.getMachineFunction(); const R600InstrInfo *TII = static_cast(MF.getTarget().getInstrInfo()); interp = DAG.getMachineNode(AMDGPU::INTERP_VEC_LOAD, DL, MVT::v4f32, DAG.getTargetConstant(slot / 4 , MVT::i32)); return DAG.getTargetExtractSubreg( TII->getRegisterInfo().getSubRegFromChannel(slot % 4), DL, MVT::f32, SDValue(interp, 0)); } MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned RegisterI = AMDGPU::R600_TReg32RegClass.getRegister(2 * ijb); unsigned RegisterJ = AMDGPU::R600_TReg32RegClass.getRegister(2 * ijb + 1); MRI.addLiveIn(RegisterI); MRI.addLiveIn(RegisterJ); SDValue RegisterINode = DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()), RegisterI, MVT::f32); SDValue RegisterJNode = DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()), RegisterJ, MVT::f32); if (slot % 4 < 2) interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_XY, DL, MVT::f32, MVT::f32, DAG.getTargetConstant(slot / 4 , MVT::i32), RegisterJNode, RegisterINode); else interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_ZW, DL, MVT::f32, MVT::f32, DAG.getTargetConstant(slot / 4 , MVT::i32), RegisterJNode, RegisterINode); return SDValue(interp, slot % 2); } case AMDGPUIntrinsic::R600_interp_xy: case AMDGPUIntrinsic::R600_interp_zw: { int slot = cast(Op.getOperand(1))->getZExtValue(); MachineSDNode *interp; SDValue RegisterINode = Op.getOperand(2); SDValue RegisterJNode = Op.getOperand(3); if (IntrinsicID == AMDGPUIntrinsic::R600_interp_xy) interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_XY, DL, MVT::f32, MVT::f32, DAG.getTargetConstant(slot, MVT::i32), RegisterJNode, RegisterINode); else interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_ZW, DL, MVT::f32, MVT::f32, DAG.getTargetConstant(slot, MVT::i32), RegisterJNode, RegisterINode); return DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, SDValue(interp, 0), SDValue(interp, 1)); } case AMDGPUIntrinsic::R600_tex: case AMDGPUIntrinsic::R600_texc: case AMDGPUIntrinsic::R600_txl: case AMDGPUIntrinsic::R600_txlc: case AMDGPUIntrinsic::R600_txb: case AMDGPUIntrinsic::R600_txbc: case AMDGPUIntrinsic::R600_txf: case AMDGPUIntrinsic::R600_txq: case AMDGPUIntrinsic::R600_ddx: case AMDGPUIntrinsic::R600_ddy: case AMDGPUIntrinsic::R600_ldptr: { unsigned TextureOp; switch (IntrinsicID) { case AMDGPUIntrinsic::R600_tex: TextureOp = 0; break; case AMDGPUIntrinsic::R600_texc: TextureOp = 1; break; case AMDGPUIntrinsic::R600_txl: TextureOp = 2; break; case AMDGPUIntrinsic::R600_txlc: TextureOp = 3; break; case AMDGPUIntrinsic::R600_txb: TextureOp = 4; break; case AMDGPUIntrinsic::R600_txbc: TextureOp = 5; break; case AMDGPUIntrinsic::R600_txf: TextureOp = 6; break; case AMDGPUIntrinsic::R600_txq: TextureOp = 7; break; case AMDGPUIntrinsic::R600_ddx: TextureOp = 8; break; case AMDGPUIntrinsic::R600_ddy: TextureOp = 9; break; case AMDGPUIntrinsic::R600_ldptr: TextureOp = 10; break; default: llvm_unreachable("Unknow Texture Operation"); } SDValue TexArgs[19] = { DAG.getConstant(TextureOp, MVT::i32), Op.getOperand(1), DAG.getConstant(0, MVT::i32), DAG.getConstant(1, MVT::i32), DAG.getConstant(2, MVT::i32), DAG.getConstant(3, MVT::i32), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), DAG.getConstant(0, MVT::i32), DAG.getConstant(1, MVT::i32), DAG.getConstant(2, MVT::i32), DAG.getConstant(3, MVT::i32), Op.getOperand(5), Op.getOperand(6), Op.getOperand(7), Op.getOperand(8), Op.getOperand(9), Op.getOperand(10) }; return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs, 19); } case AMDGPUIntrinsic::AMDGPU_dp4: { SDValue Args[8] = { DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), DAG.getConstant(0, MVT::i32)), DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), DAG.getConstant(0, MVT::i32)), DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), DAG.getConstant(1, MVT::i32)), DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), DAG.getConstant(1, MVT::i32)), DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), DAG.getConstant(2, MVT::i32)), DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), DAG.getConstant(2, MVT::i32)), DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), DAG.getConstant(3, MVT::i32)), DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), DAG.getConstant(3, MVT::i32)) }; return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args, 8); } case Intrinsic::r600_read_ngroups_x: return LowerImplicitParameter(DAG, VT, DL, 0); case Intrinsic::r600_read_ngroups_y: return LowerImplicitParameter(DAG, VT, DL, 1); case Intrinsic::r600_read_ngroups_z: return LowerImplicitParameter(DAG, VT, DL, 2); case Intrinsic::r600_read_global_size_x: return LowerImplicitParameter(DAG, VT, DL, 3); case Intrinsic::r600_read_global_size_y: return LowerImplicitParameter(DAG, VT, DL, 4); case Intrinsic::r600_read_global_size_z: return LowerImplicitParameter(DAG, VT, DL, 5); case Intrinsic::r600_read_local_size_x: return LowerImplicitParameter(DAG, VT, DL, 6); case Intrinsic::r600_read_local_size_y: return LowerImplicitParameter(DAG, VT, DL, 7); case Intrinsic::r600_read_local_size_z: return LowerImplicitParameter(DAG, VT, DL, 8); case Intrinsic::r600_read_tgid_x: return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass, AMDGPU::T1_X, VT); case Intrinsic::r600_read_tgid_y: return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass, AMDGPU::T1_Y, VT); case Intrinsic::r600_read_tgid_z: return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass, AMDGPU::T1_Z, VT); case Intrinsic::r600_read_tidig_x: return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass, AMDGPU::T0_X, VT); case Intrinsic::r600_read_tidig_y: return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass, AMDGPU::T0_Y, VT); case Intrinsic::r600_read_tidig_z: return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass, AMDGPU::T0_Z, VT); } // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode()) break; } } // end switch(Op.getOpcode()) return SDValue(); } void R600TargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { default: return; case ISD::FP_TO_UINT: Results.push_back(LowerFPTOUINT(N->getOperand(0), DAG)); return; case ISD::LOAD: { SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); Results.push_back(SDValue(Node, 0)); Results.push_back(SDValue(Node, 1)); // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode // function DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); return; } case ISD::STORE: SDNode *Node = LowerSTORE(SDValue(N, 0), DAG).getNode(); Results.push_back(SDValue(Node, 0)); return; } } SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { // On hw >= R700, COS/SIN input must be between -1. and 1. // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5) EVT VT = Op.getValueType(); SDValue Arg = Op.getOperand(0); SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT, DAG.getNode(ISD::FADD, SDLoc(Op), VT, DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg, DAG.getConstantFP(0.15915494309, MVT::f32)), DAG.getConstantFP(0.5, MVT::f32))); unsigned TrigNode; switch (Op.getOpcode()) { case ISD::FCOS: TrigNode = AMDGPUISD::COS_HW; break; case ISD::FSIN: TrigNode = AMDGPUISD::SIN_HW; break; default: llvm_unreachable("Wrong trig opcode"); } SDValue TrigVal = DAG.getNode(TrigNode, SDLoc(Op), VT, DAG.getNode(ISD::FADD, SDLoc(Op), VT, FractPart, DAG.getConstantFP(-0.5, MVT::f32))); if (Gen >= AMDGPUSubtarget::R700) return TrigVal; // On R600 hw, COS/SIN input must be between -Pi and Pi. return DAG.getNode(ISD::FMUL, SDLoc(Op), VT, TrigVal, DAG.getConstantFP(3.14159265359, MVT::f32)); } SDValue R600TargetLowering::LowerFPTOUINT(SDValue Op, SelectionDAG &DAG) const { return DAG.getNode( ISD::SETCC, SDLoc(Op), MVT::i1, Op, DAG.getConstantFP(0.0f, MVT::f32), DAG.getCondCode(ISD::SETNE) ); } SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT, SDLoc DL, unsigned DwordOffset) const { unsigned ByteOffset = DwordOffset * 4; PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()), AMDGPUAS::CONSTANT_BUFFER_0); // We shouldn't be using an offset wider than 16-bits for implicit parameters. assert(isInt<16>(ByteOffset)); return DAG.getLoad(VT, DL, DAG.getEntryNode(), DAG.getConstant(ByteOffset, MVT::i32), // PTR MachinePointerInfo(ConstantPointerNull::get(PtrType)), false, false, false, 0); } bool R600TargetLowering::isZero(SDValue Op) const { if(ConstantSDNode *Cst = dyn_cast(Op)) { return Cst->isNullValue(); } else if(ConstantFPSDNode *CstFP = dyn_cast(Op)){ return CstFP->isZero(); } else { return false; } } SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue True = Op.getOperand(2); SDValue False = Op.getOperand(3); SDValue CC = Op.getOperand(4); SDValue Temp; // LHS and RHS are guaranteed to be the same value type EVT CompareVT = LHS.getValueType(); // Check if we can lower this to a native operation. // Try to lower to a SET* instruction: // // SET* can match the following patterns: // // select_cc f32, f32, -1, 0, cc_supported // select_cc f32, f32, 1.0f, 0.0f, cc_supported // select_cc i32, i32, -1, 0, cc_supported // // Move hardware True/False values to the correct operand. ISD::CondCode CCOpcode = cast(CC)->get(); ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32); if (isHWTrueValue(False) && isHWFalseValue(True)) { if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) { std::swap(False, True); CC = DAG.getCondCode(InverseCC); } else { ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC); if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) { std::swap(False, True); std::swap(LHS, RHS); CC = DAG.getCondCode(SwapInvCC); } } } if (isHWTrueValue(True) && isHWFalseValue(False) && (CompareVT == VT || VT == MVT::i32)) { // This can be matched by a SET* instruction. return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC); } // Try to lower to a CND* instruction: // // CND* can match the following patterns: // // select_cc f32, 0.0, f32, f32, cc_supported // select_cc f32, 0.0, i32, i32, cc_supported // select_cc i32, 0, f32, f32, cc_supported // select_cc i32, 0, i32, i32, cc_supported // // Try to move the zero value to the RHS if (isZero(LHS)) { ISD::CondCode CCOpcode = cast(CC)->get(); // Try swapping the operands ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode); if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) { std::swap(LHS, RHS); CC = DAG.getCondCode(CCSwapped); } else { // Try inverting the conditon and then swapping the operands ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT.isInteger()); CCSwapped = ISD::getSetCCSwappedOperands(CCInv); if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) { std::swap(True, False); std::swap(LHS, RHS); CC = DAG.getCondCode(CCSwapped); } } } if (isZero(RHS)) { SDValue Cond = LHS; SDValue Zero = RHS; ISD::CondCode CCOpcode = cast(CC)->get(); if (CompareVT != VT) { // Bitcast True / False to the correct types. This will end up being // a nop, but it allows us to define only a single pattern in the // .TD files for each CND* instruction rather than having to have // one pattern for integer True/False and one for fp True/False True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True); False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False); } switch (CCOpcode) { case ISD::SETONE: case ISD::SETUNE: case ISD::SETNE: CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32); Temp = True; True = False; False = Temp; break; default: break; } SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, Cond, Zero, True, False, DAG.getCondCode(CCOpcode)); return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode); } // Possible Min/Max pattern SDValue MinMax = LowerMinMax(Op, DAG); if (MinMax.getNode()) { return MinMax; } // If we make it this for it means we have no native instructions to handle // this SELECT_CC, so we must lower it. SDValue HWTrue, HWFalse; if (CompareVT == MVT::f32) { HWTrue = DAG.getConstantFP(1.0f, CompareVT); HWFalse = DAG.getConstantFP(0.0f, CompareVT); } else if (CompareVT == MVT::i32) { HWTrue = DAG.getConstant(-1, CompareVT); HWFalse = DAG.getConstant(0, CompareVT); } else { llvm_unreachable("Unhandled value type in LowerSELECT_CC"); } // Lower this unsupported SELECT_CC into a combination of two supported // SELECT_CC operations. SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC); return DAG.getNode(ISD::SELECT_CC, DL, VT, Cond, HWFalse, True, False, DAG.getCondCode(ISD::SETNE)); } /// LLVM generates byte-addressed pointers. For indirect addressing, we need to /// convert these pointers to a register index. Each register holds /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used /// for indirect addressing. SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr, unsigned StackWidth, SelectionDAG &DAG) const { unsigned SRLPad; switch(StackWidth) { case 1: SRLPad = 2; break; case 2: SRLPad = 3; break; case 4: SRLPad = 4; break; default: llvm_unreachable("Invalid stack width"); } return DAG.getNode(ISD::SRL, SDLoc(Ptr), Ptr.getValueType(), Ptr, DAG.getConstant(SRLPad, MVT::i32)); } void R600TargetLowering::getStackAddress(unsigned StackWidth, unsigned ElemIdx, unsigned &Channel, unsigned &PtrIncr) const { switch (StackWidth) { default: case 1: Channel = 0; if (ElemIdx > 0) { PtrIncr = 1; } else { PtrIncr = 0; } break; case 2: Channel = ElemIdx % 2; if (ElemIdx == 2) { PtrIncr = 1; } else { PtrIncr = 0; } break; case 4: Channel = ElemIdx; PtrIncr = 0; break; } } SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); StoreSDNode *StoreNode = cast(Op); SDValue Chain = Op.getOperand(0); SDValue Value = Op.getOperand(1); SDValue Ptr = Op.getOperand(2); SDValue Result = AMDGPUTargetLowering::LowerSTORE(Op, DAG); if (Result.getNode()) { return Result; } if (StoreNode->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS) { if (StoreNode->isTruncatingStore()) { EVT VT = Value.getValueType(); assert(VT.bitsLE(MVT::i32)); EVT MemVT = StoreNode->getMemoryVT(); SDValue MaskConstant; if (MemVT == MVT::i8) { MaskConstant = DAG.getConstant(0xFF, MVT::i32); } else { assert(MemVT == MVT::i16); MaskConstant = DAG.getConstant(0xFFFF, MVT::i32); } SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, VT, Ptr, DAG.getConstant(2, MVT::i32)); SDValue ByteIndex = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), Ptr, DAG.getConstant(0x00000003, VT)); SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant); SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex, DAG.getConstant(3, VT)); SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, Shift); SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, Shift); // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32 // vector instead. SDValue Src[4] = { ShiftedValue, DAG.getConstant(0, MVT::i32), DAG.getConstant(0, MVT::i32), Mask }; SDValue Input = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, Src, 4); SDValue Args[3] = { Chain, Input, DWordAddr }; return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL, Op->getVTList(), Args, 3, MemVT, StoreNode->getMemOperand()); } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && Value.getValueType().bitsGE(MVT::i32)) { // Convert pointer from byte address to dword address. Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, Ptr.getValueType(), DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr, DAG.getConstant(2, MVT::i32))); if (StoreNode->isTruncatingStore() || StoreNode->isIndexed()) { llvm_unreachable("Truncated and indexed stores not supported yet"); } else { Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand()); } return Chain; } } EVT ValueVT = Value.getValueType(); if (StoreNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) { return SDValue(); } SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG); if (Ret.getNode()) { return Ret; } // Lowering for indirect addressing const MachineFunction &MF = DAG.getMachineFunction(); const AMDGPUFrameLowering *TFL = static_cast( getTargetMachine().getFrameLowering()); unsigned StackWidth = TFL->getStackWidth(MF); Ptr = stackPtrToRegIndex(Ptr, StackWidth, DAG); if (ValueVT.isVector()) { unsigned NumElemVT = ValueVT.getVectorNumElements(); EVT ElemVT = ValueVT.getVectorElementType(); SDValue Stores[4]; assert(NumElemVT >= StackWidth && "Stack width cannot be greater than " "vector width in load"); for (unsigned i = 0; i < NumElemVT; ++i) { unsigned Channel, PtrIncr; getStackAddress(StackWidth, i, Channel, PtrIncr); Ptr = DAG.getNode(ISD::ADD, DL, MVT::i32, Ptr, DAG.getConstant(PtrIncr, MVT::i32)); SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, DAG.getConstant(i, MVT::i32)); Stores[i] = DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, Chain, Elem, Ptr, DAG.getTargetConstant(Channel, MVT::i32)); } Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores, NumElemVT); } else { if (ValueVT == MVT::i8) { Value = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Value); } Chain = DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32)); // Channel } return Chain; } // return (512 + (kc_bank << 12) static int ConstantAddressBlock(unsigned AddressSpace) { switch (AddressSpace) { case AMDGPUAS::CONSTANT_BUFFER_0: return 512; case AMDGPUAS::CONSTANT_BUFFER_1: return 512 + 4096; case AMDGPUAS::CONSTANT_BUFFER_2: return 512 + 4096 * 2; case AMDGPUAS::CONSTANT_BUFFER_3: return 512 + 4096 * 3; case AMDGPUAS::CONSTANT_BUFFER_4: return 512 + 4096 * 4; case AMDGPUAS::CONSTANT_BUFFER_5: return 512 + 4096 * 5; case AMDGPUAS::CONSTANT_BUFFER_6: return 512 + 4096 * 6; case AMDGPUAS::CONSTANT_BUFFER_7: return 512 + 4096 * 7; case AMDGPUAS::CONSTANT_BUFFER_8: return 512 + 4096 * 8; case AMDGPUAS::CONSTANT_BUFFER_9: return 512 + 4096 * 9; case AMDGPUAS::CONSTANT_BUFFER_10: return 512 + 4096 * 10; case AMDGPUAS::CONSTANT_BUFFER_11: return 512 + 4096 * 11; case AMDGPUAS::CONSTANT_BUFFER_12: return 512 + 4096 * 12; case AMDGPUAS::CONSTANT_BUFFER_13: return 512 + 4096 * 13; case AMDGPUAS::CONSTANT_BUFFER_14: return 512 + 4096 * 14; case AMDGPUAS::CONSTANT_BUFFER_15: return 512 + 4096 * 15; default: return -1; } } SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); LoadSDNode *LoadNode = cast(Op); SDValue Chain = Op.getOperand(0); SDValue Ptr = Op.getOperand(1); SDValue LoweredLoad; SDValue Ret = AMDGPUTargetLowering::LowerLOAD(Op, DAG); if (Ret.getNode()) { SDValue Ops[2]; Ops[0] = Ret; Ops[1] = Chain; return DAG.getMergeValues(Ops, 2, DL); } if (LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && VT.isVector()) { SDValue MergedValues[2] = { SplitVectorLoad(Op, DAG), Chain }; return DAG.getMergeValues(MergedValues, 2, DL); } int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace()); if (ConstantBlock > -1 && ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) || (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) { SDValue Result; if (isa(LoadNode->getSrcValue()) || isa(LoadNode->getSrcValue()) || isa(Ptr)) { SDValue Slots[4]; for (unsigned i = 0; i < 4; i++) { // We want Const position encoded with the following formula : // (((512 + (kc_bank << 12) + const_index) << 2) + chan) // const_index is Ptr computed by llvm using an alignment of 16. // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and // then div by 4 at the ISel step SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, DAG.getConstant(4 * i + ConstantBlock * 16, MVT::i32)); Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr); } EVT NewVT = MVT::v4i32; unsigned NumElements = 4; if (VT.isVector()) { NewVT = VT; NumElements = VT.getVectorNumElements(); } Result = DAG.getNode(ISD::BUILD_VECTOR, DL, NewVT, Slots, NumElements); } else { // non-constant ptr can't be folded, keeps it as a v4f32 load Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32, DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(4, MVT::i32)), DAG.getConstant(LoadNode->getAddressSpace() - AMDGPUAS::CONSTANT_BUFFER_0, MVT::i32) ); } if (!VT.isVector()) { Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result, DAG.getConstant(0, MVT::i32)); } SDValue MergedValues[2] = { Result, Chain }; return DAG.getMergeValues(MergedValues, 2, DL); } // For most operations returning SDValue() will result in the node being // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we // need to manually expand loads that may be legal in some address spaces and // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for // compute shaders, since the data is sign extended when it is uploaded to the // buffer. However SEXT loads from other address spaces are not supported, so // we need to expand them here. if (LoadNode->getExtensionType() == ISD::SEXTLOAD) { EVT MemVT = LoadNode->getMemoryVT(); assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8)); SDValue ShiftAmount = DAG.getConstant(VT.getSizeInBits() - MemVT.getSizeInBits(), MVT::i32); SDValue NewLoad = DAG.getExtLoad(ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT, LoadNode->isVolatile(), LoadNode->isNonTemporal(), LoadNode->getAlignment()); SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, NewLoad, ShiftAmount); SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Shl, ShiftAmount); SDValue MergedValues[2] = { Sra, Chain }; return DAG.getMergeValues(MergedValues, 2, DL); } if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) { return SDValue(); } // Lowering for indirect addressing const MachineFunction &MF = DAG.getMachineFunction(); const AMDGPUFrameLowering *TFL = static_cast( getTargetMachine().getFrameLowering()); unsigned StackWidth = TFL->getStackWidth(MF); Ptr = stackPtrToRegIndex(Ptr, StackWidth, DAG); if (VT.isVector()) { unsigned NumElemVT = VT.getVectorNumElements(); EVT ElemVT = VT.getVectorElementType(); SDValue Loads[4]; assert(NumElemVT >= StackWidth && "Stack width cannot be greater than " "vector width in load"); for (unsigned i = 0; i < NumElemVT; ++i) { unsigned Channel, PtrIncr; getStackAddress(StackWidth, i, Channel, PtrIncr); Ptr = DAG.getNode(ISD::ADD, DL, MVT::i32, Ptr, DAG.getConstant(PtrIncr, MVT::i32)); Loads[i] = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, ElemVT, Chain, Ptr, DAG.getTargetConstant(Channel, MVT::i32), Op.getOperand(2)); } for (unsigned i = NumElemVT; i < 4; ++i) { Loads[i] = DAG.getUNDEF(ElemVT); } EVT TargetVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, 4); LoweredLoad = DAG.getNode(ISD::BUILD_VECTOR, DL, TargetVT, Loads, 4); } else { LoweredLoad = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, VT, Chain, Ptr, DAG.getTargetConstant(0, MVT::i32), // Channel Op.getOperand(2)); } SDValue Ops[2]; Ops[0] = LoweredLoad; Ops[1] = Chain; return DAG.getMergeValues(Ops, 2, DL); } /// XXX Only kernel functions are supported, so we can assume for now that /// every function is a kernel function, but in the future we should use /// separate calling conventions for kernel and non-kernel functions. SDValue R600TargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); MachineFunction &MF = DAG.getMachineFunction(); unsigned ShaderType = MF.getInfo()->ShaderType; SmallVector LocalIns; getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins, LocalIns); AnalyzeFormalArguments(CCInfo, LocalIns); for (unsigned i = 0, e = Ins.size(); i < e; ++i) { CCValAssign &VA = ArgLocs[i]; EVT VT = Ins[i].VT; EVT MemVT = LocalIns[i].VT; if (ShaderType != ShaderType::COMPUTE) { unsigned Reg = MF.addLiveIn(VA.getLocReg(), &AMDGPU::R600_Reg128RegClass); SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT); InVals.push_back(Register); continue; } PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()), AMDGPUAS::CONSTANT_BUFFER_0); // The first 36 bytes of the input buffer contains information about // thread group and global sizes. SDValue Arg = DAG.getExtLoad(ISD::SEXTLOAD, DL, VT, Chain, DAG.getConstant(36 + VA.getLocMemOffset(), MVT::i32), MachinePointerInfo(UndefValue::get(PtrTy)), MemVT, false, false, 4); // 4 is the preferred alignment for // the CONSTANT memory space. InVals.push_back(Arg); } return Chain; } EVT R600TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { if (!VT.isVector()) return MVT::i32; return VT.changeVectorElementTypeToInteger(); } static SDValue CompactSwizzlableVector(SelectionDAG &DAG, SDValue VectorEntry, DenseMap &RemapSwizzle) { assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR); assert(RemapSwizzle.empty()); SDValue NewBldVec[4] = { VectorEntry.getOperand(0), VectorEntry.getOperand(1), VectorEntry.getOperand(2), VectorEntry.getOperand(3) }; for (unsigned i = 0; i < 4; i++) { if (NewBldVec[i].getOpcode() == ISD::UNDEF) // We mask write here to teach later passes that the ith element of this // vector is undef. Thus we can use it to reduce 128 bits reg usage, // break false dependencies and additionnaly make assembly easier to read. RemapSwizzle[i] = 7; // SEL_MASK_WRITE if (ConstantFPSDNode *C = dyn_cast(NewBldVec[i])) { if (C->isZero()) { RemapSwizzle[i] = 4; // SEL_0 NewBldVec[i] = DAG.getUNDEF(MVT::f32); } else if (C->isExactlyValue(1.0)) { RemapSwizzle[i] = 5; // SEL_1 NewBldVec[i] = DAG.getUNDEF(MVT::f32); } } if (NewBldVec[i].getOpcode() == ISD::UNDEF) continue; for (unsigned j = 0; j < i; j++) { if (NewBldVec[i] == NewBldVec[j]) { NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType()); RemapSwizzle[i] = j; break; } } } return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(VectorEntry), VectorEntry.getValueType(), NewBldVec, 4); } static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry, DenseMap &RemapSwizzle) { assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR); assert(RemapSwizzle.empty()); SDValue NewBldVec[4] = { VectorEntry.getOperand(0), VectorEntry.getOperand(1), VectorEntry.getOperand(2), VectorEntry.getOperand(3) }; bool isUnmovable[4] = { false, false, false, false }; for (unsigned i = 0; i < 4; i++) { RemapSwizzle[i] = i; if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { unsigned Idx = dyn_cast(NewBldVec[i].getOperand(1)) ->getZExtValue(); if (i == Idx) isUnmovable[Idx] = true; } } for (unsigned i = 0; i < 4; i++) { if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { unsigned Idx = dyn_cast(NewBldVec[i].getOperand(1)) ->getZExtValue(); if (isUnmovable[Idx]) continue; // Swap i and Idx std::swap(NewBldVec[Idx], NewBldVec[i]); std::swap(RemapSwizzle[i], RemapSwizzle[Idx]); break; } } return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(VectorEntry), VectorEntry.getValueType(), NewBldVec, 4); } SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4], SelectionDAG &DAG) const { assert(BuildVector.getOpcode() == ISD::BUILD_VECTOR); // Old -> New swizzle values DenseMap SwizzleRemap; BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap); for (unsigned i = 0; i < 4; i++) { unsigned Idx = dyn_cast(Swz[i])->getZExtValue(); if (SwizzleRemap.find(Idx) != SwizzleRemap.end()) Swz[i] = DAG.getConstant(SwizzleRemap[Idx], MVT::i32); } SwizzleRemap.clear(); BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap); for (unsigned i = 0; i < 4; i++) { unsigned Idx = dyn_cast(Swz[i])->getZExtValue(); if (SwizzleRemap.find(Idx) != SwizzleRemap.end()) Swz[i] = DAG.getConstant(SwizzleRemap[Idx], MVT::i32); } return BuildVector; } //===----------------------------------------------------------------------===// // Custom DAG Optimizations //===----------------------------------------------------------------------===// SDValue R600TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a) case ISD::FP_ROUND: { SDValue Arg = N->getOperand(0); if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) { return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), N->getValueType(0), Arg.getOperand(0)); } break; } // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) -> // (i32 select_cc f32, f32, -1, 0 cc) // // Mesa's GLSL frontend generates the above pattern a lot and we can lower // this to one of the SET*_DX10 instructions. case ISD::FP_TO_SINT: { SDValue FNeg = N->getOperand(0); if (FNeg.getOpcode() != ISD::FNEG) { return SDValue(); } SDValue SelectCC = FNeg.getOperand(0); if (SelectCC.getOpcode() != ISD::SELECT_CC || SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS SelectCC.getOperand(2).getValueType() != MVT::f32 || // True !isHWTrueValue(SelectCC.getOperand(2)) || !isHWFalseValue(SelectCC.getOperand(3))) { return SDValue(); } return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N->getValueType(0), SelectCC.getOperand(0), // LHS SelectCC.getOperand(1), // RHS DAG.getConstant(-1, MVT::i32), // True DAG.getConstant(0, MVT::i32), // Flase SelectCC.getOperand(4)); // CC break; } // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx // => build_vector elt0, ... , NewEltIdx, ... , eltN case ISD::INSERT_VECTOR_ELT: { SDValue InVec = N->getOperand(0); SDValue InVal = N->getOperand(1); SDValue EltNo = N->getOperand(2); SDLoc dl(N); // If the inserted element is an UNDEF, just use the input vector. if (InVal.getOpcode() == ISD::UNDEF) return InVec; EVT VT = InVec.getValueType(); // If we can't generate a legal BUILD_VECTOR, exit if (!isOperationLegal(ISD::BUILD_VECTOR, VT)) return SDValue(); // Check that we know which element is being inserted if (!isa(EltNo)) return SDValue(); unsigned Elt = cast(EltNo)->getZExtValue(); // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially // be converted to a BUILD_VECTOR). Fill in the Ops vector with the // vector elements. SmallVector Ops; if (InVec.getOpcode() == ISD::BUILD_VECTOR) { Ops.append(InVec.getNode()->op_begin(), InVec.getNode()->op_end()); } else if (InVec.getOpcode() == ISD::UNDEF) { unsigned NElts = VT.getVectorNumElements(); Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); } else { return SDValue(); } // Insert the element if (Elt < Ops.size()) { // All the operands of BUILD_VECTOR must have the same type; // we enforce that here. EVT OpVT = Ops[0].getValueType(); if (InVal.getValueType() != OpVT) InVal = OpVT.bitsGT(InVal.getValueType()) ? DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) : DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal); Ops[Elt] = InVal; } // Return the new vector return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); } // Extract_vec (Build_vector) generated by custom lowering // also needs to be customly combined case ISD::EXTRACT_VECTOR_ELT: { SDValue Arg = N->getOperand(0); if (Arg.getOpcode() == ISD::BUILD_VECTOR) { if (ConstantSDNode *Const = dyn_cast(N->getOperand(1))) { unsigned Element = Const->getZExtValue(); return Arg->getOperand(Element); } } if (Arg.getOpcode() == ISD::BITCAST && Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { if (ConstantSDNode *Const = dyn_cast(N->getOperand(1))) { unsigned Element = Const->getZExtValue(); return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getVTList(), Arg->getOperand(0).getOperand(Element)); } } } case ISD::SELECT_CC: { // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq -> // selectcc x, y, a, b, inv(cc) // // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne -> // selectcc x, y, a, b, cc SDValue LHS = N->getOperand(0); if (LHS.getOpcode() != ISD::SELECT_CC) { return SDValue(); } SDValue RHS = N->getOperand(1); SDValue True = N->getOperand(2); SDValue False = N->getOperand(3); ISD::CondCode NCC = cast(N->getOperand(4))->get(); if (LHS.getOperand(2).getNode() != True.getNode() || LHS.getOperand(3).getNode() != False.getNode() || RHS.getNode() != False.getNode()) { return SDValue(); } switch (NCC) { default: return SDValue(); case ISD::SETNE: return LHS; case ISD::SETEQ: { ISD::CondCode LHSCC = cast(LHS.getOperand(4))->get(); LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType().isInteger()); if (DCI.isBeforeLegalizeOps() || isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType())) return DAG.getSelectCC(SDLoc(N), LHS.getOperand(0), LHS.getOperand(1), LHS.getOperand(2), LHS.getOperand(3), LHSCC); break; } } return SDValue(); } case AMDGPUISD::EXPORT: { SDValue Arg = N->getOperand(1); if (Arg.getOpcode() != ISD::BUILD_VECTOR) break; SDValue NewArgs[8] = { N->getOperand(0), // Chain SDValue(), N->getOperand(2), // ArrayBase N->getOperand(3), // Type N->getOperand(4), // SWZ_X N->getOperand(5), // SWZ_Y N->getOperand(6), // SWZ_Z N->getOperand(7) // SWZ_W }; SDLoc DL(N); NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG); return DAG.getNode(AMDGPUISD::EXPORT, DL, N->getVTList(), NewArgs, 8); } case AMDGPUISD::TEXTURE_FETCH: { SDValue Arg = N->getOperand(1); if (Arg.getOpcode() != ISD::BUILD_VECTOR) break; SDValue NewArgs[19] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), N->getOperand(4), N->getOperand(5), N->getOperand(6), N->getOperand(7), N->getOperand(8), N->getOperand(9), N->getOperand(10), N->getOperand(11), N->getOperand(12), N->getOperand(13), N->getOperand(14), N->getOperand(15), N->getOperand(16), N->getOperand(17), N->getOperand(18), }; NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG); return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, SDLoc(N), N->getVTList(), NewArgs, 19); } } return SDValue(); } static bool FoldOperand(SDNode *ParentNode, unsigned SrcIdx, SDValue &Src, SDValue &Neg, SDValue &Abs, SDValue &Sel, SDValue &Imm, SelectionDAG &DAG) { const R600InstrInfo *TII = static_cast(DAG.getTarget().getInstrInfo()); if (!Src.isMachineOpcode()) return false; switch (Src.getMachineOpcode()) { case AMDGPU::FNEG_R600: if (!Neg.getNode()) return false; Src = Src.getOperand(0); Neg = DAG.getTargetConstant(1, MVT::i32); return true; case AMDGPU::FABS_R600: if (!Abs.getNode()) return false; Src = Src.getOperand(0); Abs = DAG.getTargetConstant(1, MVT::i32); return true; case AMDGPU::CONST_COPY: { unsigned Opcode = ParentNode->getMachineOpcode(); bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1; if (!Sel.getNode()) return false; SDValue CstOffset = Src.getOperand(0); if (ParentNode->getValueType(0).isVector()) return false; // Gather constants values int SrcIndices[] = { TII->getOperandIdx(Opcode, AMDGPU::OpName::src0), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1), TII->getOperandIdx(Opcode, AMDGPU::OpName::src2), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W) }; std::vector Consts; for (unsigned i = 0; i < sizeof(SrcIndices) / sizeof(int); i++) { int OtherSrcIdx = SrcIndices[i]; int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx); if (OtherSrcIdx < 0 || OtherSelIdx < 0) continue; if (HasDst) { OtherSrcIdx--; OtherSelIdx--; } if (RegisterSDNode *Reg = dyn_cast(ParentNode->getOperand(OtherSrcIdx))) { if (Reg->getReg() == AMDGPU::ALU_CONST) { ConstantSDNode *Cst = dyn_cast( ParentNode->getOperand(OtherSelIdx)); Consts.push_back(Cst->getZExtValue()); } } } ConstantSDNode *Cst = dyn_cast(CstOffset); Consts.push_back(Cst->getZExtValue()); if (!TII->fitsConstReadLimitations(Consts)) { return false; } Sel = CstOffset; Src = DAG.getRegister(AMDGPU::ALU_CONST, MVT::f32); return true; } case AMDGPU::MOV_IMM_I32: case AMDGPU::MOV_IMM_F32: { unsigned ImmReg = AMDGPU::ALU_LITERAL_X; uint64_t ImmValue = 0; if (Src.getMachineOpcode() == AMDGPU::MOV_IMM_F32) { ConstantFPSDNode *FPC = dyn_cast(Src.getOperand(0)); float FloatValue = FPC->getValueAPF().convertToFloat(); if (FloatValue == 0.0) { ImmReg = AMDGPU::ZERO; } else if (FloatValue == 0.5) { ImmReg = AMDGPU::HALF; } else if (FloatValue == 1.0) { ImmReg = AMDGPU::ONE; } else { ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); } } else { ConstantSDNode *C = dyn_cast(Src.getOperand(0)); uint64_t Value = C->getZExtValue(); if (Value == 0) { ImmReg = AMDGPU::ZERO; } else if (Value == 1) { ImmReg = AMDGPU::ONE_INT; } else { ImmValue = Value; } } // Check that we aren't already using an immediate. // XXX: It's possible for an instruction to have more than one // immediate operand, but this is not supported yet. if (ImmReg == AMDGPU::ALU_LITERAL_X) { if (!Imm.getNode()) return false; ConstantSDNode *C = dyn_cast(Imm); assert(C); if (C->getZExtValue()) return false; Imm = DAG.getTargetConstant(ImmValue, MVT::i32); } Src = DAG.getRegister(ImmReg, MVT::i32); return true; } default: return false; } } /// \brief Fold the instructions after selecting them SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node, SelectionDAG &DAG) const { const R600InstrInfo *TII = static_cast(DAG.getTarget().getInstrInfo()); if (!Node->isMachineOpcode()) return Node; unsigned Opcode = Node->getMachineOpcode(); SDValue FakeOp; std::vector Ops; for(SDNode::op_iterator I = Node->op_begin(), E = Node->op_end(); I != E; ++I) Ops.push_back(*I); if (Opcode == AMDGPU::DOT_4) { int OperandIdx[] = { TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W) }; int NegIdx[] = { TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_W), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_W) }; int AbsIdx[] = { TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_W), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_X), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Y), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Z), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_W) }; for (unsigned i = 0; i < 8; i++) { if (OperandIdx[i] < 0) return Node; SDValue &Src = Ops[OperandIdx[i] - 1]; SDValue &Neg = Ops[NegIdx[i] - 1]; SDValue &Abs = Ops[AbsIdx[i] - 1]; bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1; int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]); if (HasDst) SelIdx--; SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG)) return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); } } else if (Opcode == AMDGPU::REG_SEQUENCE) { for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) { SDValue &Src = Ops[i]; if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG)) return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); } } else if (Opcode == AMDGPU::CLAMP_R600) { SDValue Src = Node->getOperand(0); if (!Src.isMachineOpcode() || !TII->hasInstrModifiers(Src.getMachineOpcode())) return Node; int ClampIdx = TII->getOperandIdx(Src.getMachineOpcode(), AMDGPU::OpName::clamp); if (ClampIdx < 0) return Node; std::vector Ops; unsigned NumOp = Src.getNumOperands(); for(unsigned i = 0; i < NumOp; ++i) Ops.push_back(Src.getOperand(i)); Ops[ClampIdx - 1] = DAG.getTargetConstant(1, MVT::i32); return DAG.getMachineNode(Src.getMachineOpcode(), SDLoc(Node), Node->getVTList(), Ops); } else { if (!TII->hasInstrModifiers(Opcode)) return Node; int OperandIdx[] = { TII->getOperandIdx(Opcode, AMDGPU::OpName::src0), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1), TII->getOperandIdx(Opcode, AMDGPU::OpName::src2) }; int NegIdx[] = { TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg), TII->getOperandIdx(Opcode, AMDGPU::OpName::src2_neg) }; int AbsIdx[] = { TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs), TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs), -1 }; for (unsigned i = 0; i < 3; i++) { if (OperandIdx[i] < 0) return Node; SDValue &Src = Ops[OperandIdx[i] - 1]; SDValue &Neg = Ops[NegIdx[i] - 1]; SDValue FakeAbs; SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs; bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1; int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]); int ImmIdx = TII->getOperandIdx(Opcode, AMDGPU::OpName::literal); if (HasDst) { SelIdx--; ImmIdx--; } SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; SDValue &Imm = Ops[ImmIdx]; if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG)) return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); } } return Node; }