//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the SDNode class and derived classes, which are used to // represent the nodes and operations present in a SelectionDAG. These nodes // and operations are machine code level operations, with some similarities to // the GCC RTL representation. // // Clients should include the SelectionDAG.h file instead of this file directly. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H #define LLVM_CODEGEN_SELECTIONDAGNODES_H #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Value.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/iterator" #include "llvm/Support/DataTypes.h" #include #include namespace llvm { class SelectionDAG; class GlobalValue; class MachineBasicBlock; class SDNode; template struct simplify_type; /// ISD namespace - This namespace contains an enum which represents all of the /// SelectionDAG node types and value types. /// namespace ISD { //===--------------------------------------------------------------------===// /// ISD::NodeType enum - This enum defines all of the operators valid in a /// SelectionDAG. /// enum NodeType { // EntryToken - This is the marker used to indicate the start of the region. EntryToken, // Token factor - This node is takes multiple tokens as input and produces a // single token result. This is used to represent the fact that the operand // operators are independent of each other. TokenFactor, // Various leaf nodes. Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool, BasicBlock, ExternalSymbol, // CopyToReg - This node has chain and child nodes, and an associated // register number. The instruction selector must guarantee that the value // of the value node is available in the register stored in the RegSDNode // object. CopyToReg, // CopyFromReg - This node indicates that the input value is a virtual or // physical register that is defined outside of the scope of this // SelectionDAG. The register is available from the RegSDNode object. CopyFromReg, // ImplicitDef - This node indicates that the specified register is // implicitly defined by some operation (e.g. its a live-in argument). This // register is indicated in the RegSDNode object. The only operand to this // is the token chain coming in, the only result is the token chain going // out. ImplicitDef, // UNDEF - An undefined node UNDEF, // EXTRACT_ELEMENT - This is used to get the first or second (determined by // a Constant, which is required to be operand #1), element of the aggregate // value specified as operand #0. This is only for use before legalization, // for values that will be broken into multiple registers. EXTRACT_ELEMENT, // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given // two values of the same integer value type, this produces a value twice as // big. Like EXTRACT_ELEMENT, this can only be used before legalization. BUILD_PAIR, // Simple binary arithmetic operators. ADD, SUB, MUL, SDIV, UDIV, SREM, UREM, // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing // an unsigned/signed value of type i[2*n], then return the top part. MULHU, MULHS, // Bitwise operators. AND, OR, XOR, SHL, SRA, SRL, // Counting operators CTTZ, CTLZ, CTPOP, // Select operator. SELECT, // SetCC operator - This evaluates to a boolean (i1) true value if the // condition is true. These nodes are instances of the // SetCCSDNode class, which contains the condition code as extra // state. SETCC, // ADD_PARTS/SUB_PARTS - These operators take two logical operands which are // broken into a multiple pieces each, and return the resulting pieces of // doing an atomic add/sub operation. This is used to handle add/sub of // expanded types. The operation ordering is: // [Lo,Hi] = op [LoLHS,HiLHS], [LoRHS,HiRHS] ADD_PARTS, SUB_PARTS, // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded // integer shift operations, just like ADD/SUB_PARTS. The operation // ordering is: // [Lo,Hi] = op [LoLHS,HiLHS], Amt SHL_PARTS, SRA_PARTS, SRL_PARTS, // Conversion operators. These are all single input single output // operations. For all of these, the result type must be strictly // wider or narrower (depending on the operation) than the source // type. // SIGN_EXTEND - Used for integer types, replicating the sign bit // into new bits. SIGN_EXTEND, // ZERO_EXTEND - Used for integer types, zeroing the new bits. ZERO_EXTEND, // TRUNCATE - Completely drop the high bits. TRUNCATE, // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign // depends on the first letter) to floating point. SINT_TO_FP, UINT_TO_FP, // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to // sign extend a small value in a large integer register (e.g. sign // extending the low 8 bits of a 32-bit register to fill the top 24 bits // with the 7th bit). The size of the smaller type is indicated by the // ExtraValueType in the MVTSDNode for the operator. SIGN_EXTEND_INREG, // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned // integer. FP_TO_SINT, FP_TO_UINT, // FP_ROUND - Perform a rounding operation from the current // precision down to the specified precision (currently always 64->32). FP_ROUND, // FP_ROUND_INREG - This operator takes a floating point register, and // rounds it to a floating point value. It then promotes it and returns it // in a register of the same size. This operation effectively just discards // excess precision. The type to round down to is specified by the // ExtraValueType in the MVTSDNode (currently always 64->32->64). FP_ROUND_INREG, // FP_EXTEND - Extend a smaller FP type into a larger FP type. FP_EXTEND, // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation, // absolute value, square root, sine and cosine operations. FNEG, FABS, FSQRT, FSIN, FCOS, // Other operators. LOAD and STORE have token chains as their first // operand, then the same operands as an LLVM load/store instruction. LOAD, STORE, // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators are instances of the // MVTSDNode. All of these load a value from memory and extend them to a // larger value (e.g. load a byte into a word register). All three of these // have two operands, a chain and a pointer to load from. The extra value // type is the source type being loaded. // // SEXTLOAD loads the integer operand and sign extends it to a larger // integer result type. // ZEXTLOAD loads the integer operand and zero extends it to a larger // integer result type. // EXTLOAD is used for two things: floating point extending loads, and // integer extending loads where it doesn't matter what the high // bits are set to. The code generator is allowed to codegen this // into whichever operation is more efficient. EXTLOAD, SEXTLOAD, ZEXTLOAD, // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a // value and stores it to memory in one operation. This can be used for // either integer or floating point operands, and the stored type // represented as the 'extra' value type in the MVTSDNode representing the // operator. This node has the same three operands as a standard store. TRUNCSTORE, // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned // to a specified boundary. The first operand is the token chain, the // second is the number of bytes to allocate, and the third is the alignment // boundary. DYNAMIC_STACKALLOC, // Control flow instructions. These all have token chains. // BR - Unconditional branch. The first operand is the chain // operand, the second is the MBB to branch to. BR, // BRCOND - Conditional branch. The first operand is the chain, // the second is the condition, the third is the block to branch // to if the condition is true. BRCOND, // BRCONDTWOWAY - Two-way conditional branch. The first operand is the // chain, the second is the condition, the third is the block to branch to // if true, and the forth is the block to branch to if false. Targets // usually do not implement this, preferring to have legalize demote the // operation to BRCOND/BR pairs when necessary. BRCONDTWOWAY, // RET - Return from function. The first operand is the chain, // and any subsequent operands are the return values for the // function. This operation can have variable number of operands. RET, // CALL - Call to a function pointer. The first operand is the chain, the // second is the destination function pointer (a GlobalAddress for a direct // call). Arguments have already been lowered to explicit DAGs according to // the calling convention in effect here. TAILCALL is the same as CALL, but // the callee is known not to access the stack of the caller. CALL, TAILCALL, // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest // correspond to the operands of the LLVM intrinsic functions. The only // result is a token chain. The alignment argument is guaranteed to be a // Constant node. MEMSET, MEMMOVE, MEMCPY, // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of // a call sequence, and carry arbitrary information that target might want // to know. The first operand is a chain, the rest are specified by the // target and not touched by the DAG optimizers. CALLSEQ_START, // Beginning of a call sequence CALLSEQ_END, // End of a call sequence // SRCVALUE - This corresponds to a Value*, and is used to associate memory // locations with their value. This allows one use alias analysis // information in the backend. SRCVALUE, // PCMARKER - This corresponds to the pcmarker intrinsic. PCMARKER, // READPORT, WRITEPORT, READIO, WRITEIO - These correspond to the LLVM // intrinsics of the same name. The first operand is a token chain, the // other operands match the intrinsic. These produce a token chain in // addition to a value (if any). READPORT, WRITEPORT, READIO, WRITEIO, // BUILTIN_OP_END - This must be the last enum value in this list. BUILTIN_OP_END, }; //===--------------------------------------------------------------------===// /// ISD::CondCode enum - These are ordered carefully to make the bitfields /// below work out, when considering SETFALSE (something that never exists /// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal /// to. If the "N" column is 1, the result of the comparison is undefined if /// the input is a NAN. /// /// All of these (except for the 'always folded ops') should be handled for /// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT, /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used. /// /// Note that these are laid out in a specific order to allow bit-twiddling /// to transform conditions. enum CondCode { // Opcode N U L G E Intuitive operation SETFALSE, // 0 0 0 0 Always false (always folded) SETOEQ, // 0 0 0 1 True if ordered and equal SETOGT, // 0 0 1 0 True if ordered and greater than SETOGE, // 0 0 1 1 True if ordered and greater than or equal SETOLT, // 0 1 0 0 True if ordered and less than SETOLE, // 0 1 0 1 True if ordered and less than or equal SETONE, // 0 1 1 0 True if ordered and operands are unequal SETO, // 0 1 1 1 True if ordered (no nans) SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y) SETUEQ, // 1 0 0 1 True if unordered or equal SETUGT, // 1 0 1 0 True if unordered or greater than SETUGE, // 1 0 1 1 True if unordered, greater than, or equal SETULT, // 1 1 0 0 True if unordered or less than SETULE, // 1 1 0 1 True if unordered, less than, or equal SETUNE, // 1 1 1 0 True if unordered or not equal SETTRUE, // 1 1 1 1 Always true (always folded) // Don't care operations: undefined if the input is a nan. SETFALSE2, // 1 X 0 0 0 Always false (always folded) SETEQ, // 1 X 0 0 1 True if equal SETGT, // 1 X 0 1 0 True if greater than SETGE, // 1 X 0 1 1 True if greater than or equal SETLT, // 1 X 1 0 0 True if less than SETLE, // 1 X 1 0 1 True if less than or equal SETNE, // 1 X 1 1 0 True if not equal SETTRUE2, // 1 X 1 1 1 Always true (always folded) SETCC_INVALID, // Marker value. }; /// isSignedIntSetCC - Return true if this is a setcc instruction that /// performs a signed comparison when used with integer operands. inline bool isSignedIntSetCC(CondCode Code) { return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE; } /// isUnsignedIntSetCC - Return true if this is a setcc instruction that /// performs an unsigned comparison when used with integer operands. inline bool isUnsignedIntSetCC(CondCode Code) { return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE; } /// isTrueWhenEqual - Return true if the specified condition returns true if /// the two operands to the condition are equal. Note that if one of the two /// operands is a NaN, this value is meaningless. inline bool isTrueWhenEqual(CondCode Cond) { return ((int)Cond & 1) != 0; } /// getUnorderedFlavor - This function returns 0 if the condition is always /// false if an operand is a NaN, 1 if the condition is always true if the /// operand is a NaN, and 2 if the condition is undefined if the operand is a /// NaN. inline unsigned getUnorderedFlavor(CondCode Cond) { return ((int)Cond >> 3) & 3; } /// getSetCCInverse - Return the operation corresponding to !(X op Y), where /// 'op' is a valid SetCC operation. CondCode getSetCCInverse(CondCode Operation, bool isInteger); /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) /// when given the operation for (X op Y). CondCode getSetCCSwappedOperands(CondCode Operation); /// getSetCCOrOperation - Return the result of a logical OR between different /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This /// function returns SETCC_INVALID if it is not possible to represent the /// resultant comparison. CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger); /// getSetCCAndOperation - Return the result of a logical AND between /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This /// function returns SETCC_INVALID if it is not possible to represent the /// resultant comparison. CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger); } // end llvm::ISD namespace //===----------------------------------------------------------------------===// /// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple /// values as the result of a computation. Many nodes return multiple values, /// from loads (which define a token and a return value) to ADDC (which returns /// a result and a carry value), to calls (which may return an arbitrary number /// of values). /// /// As such, each use of a SelectionDAG computation must indicate the node that /// computes it as well as which return value to use from that node. This pair /// of information is represented with the SDOperand value type. /// class SDOperand { public: SDNode *Val; // The node defining the value we are using. unsigned ResNo; // Which return value of the node we are using. SDOperand() : Val(0) {} SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {} bool operator==(const SDOperand &O) const { return Val == O.Val && ResNo == O.ResNo; } bool operator!=(const SDOperand &O) const { return !operator==(O); } bool operator<(const SDOperand &O) const { return Val < O.Val || (Val == O.Val && ResNo < O.ResNo); } SDOperand getValue(unsigned R) const { return SDOperand(Val, R); } /// getValueType - Return the ValueType of the referenced return value. /// inline MVT::ValueType getValueType() const; // Forwarding methods - These forward to the corresponding methods in SDNode. inline unsigned getOpcode() const; inline unsigned getNodeDepth() const; inline unsigned getNumOperands() const; inline const SDOperand &getOperand(unsigned i) const; /// hasOneUse - Return true if there is exactly one operation using this /// result value of the defining operator. inline bool hasOneUse() const; }; /// simplify_type specializations - Allow casting operators to work directly on /// SDOperands as if they were SDNode*'s. template<> struct simplify_type { typedef SDNode* SimpleType; static SimpleType getSimplifiedValue(const SDOperand &Val) { return static_cast(Val.Val); } }; template<> struct simplify_type { typedef SDNode* SimpleType; static SimpleType getSimplifiedValue(const SDOperand &Val) { return static_cast(Val.Val); } }; /// SDNode - Represents one node in the SelectionDAG. /// class SDNode { /// NodeType - The operation that this node performs. /// unsigned short NodeType; /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1. This /// means that leaves have a depth of 1, things that use only leaves have a /// depth of 2, etc. unsigned short NodeDepth; /// Operands - The values that are used by this operation. /// std::vector Operands; /// Values - The types of the values this node defines. SDNode's may define /// multiple values simultaneously. std::vector Values; /// Uses - These are all of the SDNode's that use a value produced by this /// node. std::vector Uses; public: //===--------------------------------------------------------------------===// // Accessors // unsigned getOpcode() const { return NodeType; } size_t use_size() const { return Uses.size(); } bool use_empty() const { return Uses.empty(); } bool hasOneUse() const { return Uses.size() == 1; } /// getNodeDepth - Return the distance from this node to the leaves in the /// graph. The leaves have a depth of 1. unsigned getNodeDepth() const { return NodeDepth; } typedef std::vector::const_iterator use_iterator; use_iterator use_begin() const { return Uses.begin(); } use_iterator use_end() const { return Uses.end(); } /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the /// indicated value. This method ignores uses of other values defined by this /// operation. bool hasNUsesOfValue(unsigned NUses, unsigned Value); /// getNumOperands - Return the number of values used by this operation. /// unsigned getNumOperands() const { return Operands.size(); } const SDOperand &getOperand(unsigned Num) { assert(Num < Operands.size() && "Invalid child # of SDNode!"); return Operands[Num]; } const SDOperand &getOperand(unsigned Num) const { assert(Num < Operands.size() && "Invalid child # of SDNode!"); return Operands[Num]; } /// getNumValues - Return the number of values defined/returned by this /// operator. /// unsigned getNumValues() const { return Values.size(); } /// getValueType - Return the type of a specified result. /// MVT::ValueType getValueType(unsigned ResNo) const { assert(ResNo < Values.size() && "Illegal result number!"); return Values[ResNo]; } /// getOperationName - Return the opcode of this operation for printing. /// const char* getOperationName() const; void dump() const; static bool classof(const SDNode *) { return true; } /// setAdjCallChain - This method should only be used by the legalizer. void setAdjCallChain(SDOperand N); protected: friend class SelectionDAG; SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) { Values.reserve(1); Values.push_back(VT); } SDNode(unsigned NT, SDOperand Op) : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) { Operands.reserve(1); Operands.push_back(Op); Op.Val->Uses.push_back(this); } SDNode(unsigned NT, SDOperand N1, SDOperand N2) : NodeType(NT) { if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth()) NodeDepth = N1.Val->getNodeDepth()+1; else NodeDepth = N2.Val->getNodeDepth()+1; Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2); N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this); } SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3) : NodeType(NT) { unsigned ND = N1.Val->getNodeDepth(); if (ND < N2.Val->getNodeDepth()) ND = N2.Val->getNodeDepth(); if (ND < N3.Val->getNodeDepth()) ND = N3.Val->getNodeDepth(); NodeDepth = ND+1; Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2); Operands.push_back(N3); N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this); N3.Val->Uses.push_back(this); } SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4) : NodeType(NT) { unsigned ND = N1.Val->getNodeDepth(); if (ND < N2.Val->getNodeDepth()) ND = N2.Val->getNodeDepth(); if (ND < N3.Val->getNodeDepth()) ND = N3.Val->getNodeDepth(); if (ND < N4.Val->getNodeDepth()) ND = N4.Val->getNodeDepth(); NodeDepth = ND+1; Operands.reserve(4); Operands.push_back(N1); Operands.push_back(N2); Operands.push_back(N3); Operands.push_back(N4); N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this); N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this); } SDNode(unsigned NT, std::vector &Nodes) : NodeType(NT) { Operands.swap(Nodes); unsigned ND = 0; for (unsigned i = 0, e = Operands.size(); i != e; ++i) { Operands[i].Val->Uses.push_back(this); if (ND < Operands[i].Val->getNodeDepth()) ND = Operands[i].Val->getNodeDepth(); } NodeDepth = ND+1; } virtual ~SDNode() { // FIXME: Drop uses. } void setValueTypes(MVT::ValueType VT) { Values.reserve(1); Values.push_back(VT); } void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) { Values.reserve(2); Values.push_back(VT1); Values.push_back(VT2); } /// Note: this method destroys the vector passed in. void setValueTypes(std::vector &VTs) { std::swap(Values, VTs); } void removeUser(SDNode *User) { // Remove this user from the operand's use list. for (unsigned i = Uses.size(); ; --i) { assert(i != 0 && "Didn't find user!"); if (Uses[i-1] == User) { Uses.erase(Uses.begin()+i-1); break; } } } }; // Define inline functions from the SDOperand class. inline unsigned SDOperand::getOpcode() const { return Val->getOpcode(); } inline unsigned SDOperand::getNodeDepth() const { return Val->getNodeDepth(); } inline MVT::ValueType SDOperand::getValueType() const { return Val->getValueType(ResNo); } inline unsigned SDOperand::getNumOperands() const { return Val->getNumOperands(); } inline const SDOperand &SDOperand::getOperand(unsigned i) const { return Val->getOperand(i); } inline bool SDOperand::hasOneUse() const { return Val->hasNUsesOfValue(1, ResNo); } class ConstantSDNode : public SDNode { uint64_t Value; protected: friend class SelectionDAG; ConstantSDNode(uint64_t val, MVT::ValueType VT) : SDNode(ISD::Constant, VT), Value(val) { } public: uint64_t getValue() const { return Value; } int64_t getSignExtended() const { unsigned Bits = MVT::getSizeInBits(getValueType(0)); return ((int64_t)Value << (64-Bits)) >> (64-Bits); } bool isNullValue() const { return Value == 0; } bool isAllOnesValue() const { int NumBits = MVT::getSizeInBits(getValueType(0)); if (NumBits == 64) return Value+1 == 0; return Value == (1ULL << NumBits)-1; } static bool classof(const ConstantSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::Constant; } }; class ConstantFPSDNode : public SDNode { double Value; protected: friend class SelectionDAG; ConstantFPSDNode(double val, MVT::ValueType VT) : SDNode(ISD::ConstantFP, VT), Value(val) { } public: double getValue() const { return Value; } /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. bool isExactlyValue(double V) const { union { double V; uint64_t I; } T1; T1.V = Value; union { double V; uint64_t I; } T2; T2.V = V; return T1.I == T2.I; } static bool classof(const ConstantFPSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ConstantFP; } }; class GlobalAddressSDNode : public SDNode { GlobalValue *TheGlobal; protected: friend class SelectionDAG; GlobalAddressSDNode(const GlobalValue *GA, MVT::ValueType VT) : SDNode(ISD::GlobalAddress, VT) { TheGlobal = const_cast(GA); } public: GlobalValue *getGlobal() const { return TheGlobal; } static bool classof(const GlobalAddressSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::GlobalAddress; } }; class FrameIndexSDNode : public SDNode { int FI; protected: friend class SelectionDAG; FrameIndexSDNode(int fi, MVT::ValueType VT) : SDNode(ISD::FrameIndex, VT), FI(fi) {} public: int getIndex() const { return FI; } static bool classof(const FrameIndexSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::FrameIndex; } }; class ConstantPoolSDNode : public SDNode { unsigned CPI; protected: friend class SelectionDAG; ConstantPoolSDNode(unsigned cpi, MVT::ValueType VT) : SDNode(ISD::ConstantPool, VT), CPI(cpi) {} public: unsigned getIndex() const { return CPI; } static bool classof(const ConstantPoolSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ConstantPool; } }; class BasicBlockSDNode : public SDNode { MachineBasicBlock *MBB; protected: friend class SelectionDAG; BasicBlockSDNode(MachineBasicBlock *mbb) : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {} public: MachineBasicBlock *getBasicBlock() const { return MBB; } static bool classof(const BasicBlockSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::BasicBlock; } }; class SrcValueSDNode : public SDNode { const Value *V; int offset; protected: friend class SelectionDAG; SrcValueSDNode(const Value* v, int o) : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {} public: const Value *getValue() const { return V; } int getOffset() const { return offset; } static bool classof(const SrcValueSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::SRCVALUE; } }; class RegSDNode : public SDNode { unsigned Reg; protected: friend class SelectionDAG; RegSDNode(unsigned Opc, SDOperand Chain, SDOperand Src, unsigned reg) : SDNode(Opc, Chain, Src), Reg(reg) { } RegSDNode(unsigned Opc, SDOperand Chain, unsigned reg) : SDNode(Opc, Chain), Reg(reg) {} public: unsigned getReg() const { return Reg; } static bool classof(const RegSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::CopyToReg || N->getOpcode() == ISD::CopyFromReg || N->getOpcode() == ISD::ImplicitDef; } }; class ExternalSymbolSDNode : public SDNode { const char *Symbol; protected: friend class SelectionDAG; ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT) : SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) { } public: const char *getSymbol() const { return Symbol; } static bool classof(const ExternalSymbolSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ExternalSymbol; } }; class SetCCSDNode : public SDNode { ISD::CondCode Condition; protected: friend class SelectionDAG; SetCCSDNode(ISD::CondCode Cond, SDOperand LHS, SDOperand RHS) : SDNode(ISD::SETCC, LHS, RHS), Condition(Cond) { } public: ISD::CondCode getCondition() const { return Condition; } static bool classof(const SetCCSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::SETCC; } }; /// MVTSDNode - This class is used for operators that require an extra /// value-type to be kept with the node. class MVTSDNode : public SDNode { MVT::ValueType ExtraValueType; protected: friend class SelectionDAG; MVTSDNode(unsigned Opc, MVT::ValueType VT1, SDOperand Op0, MVT::ValueType EVT) : SDNode(Opc, Op0), ExtraValueType(EVT) { setValueTypes(VT1); } MVTSDNode(unsigned Opc, MVT::ValueType VT1, MVT::ValueType VT2, SDOperand Op0, SDOperand Op1, SDOperand Op2, MVT::ValueType EVT) : SDNode(Opc, Op0, Op1, Op2), ExtraValueType(EVT) { setValueTypes(VT1, VT2); } MVTSDNode(unsigned Opc, MVT::ValueType VT, SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3, MVT::ValueType EVT) : SDNode(Opc, Op0, Op1, Op2, Op3), ExtraValueType(EVT) { setValueTypes(VT); } public: MVT::ValueType getExtraValueType() const { return ExtraValueType; } static bool classof(const MVTSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::SIGN_EXTEND_INREG || N->getOpcode() == ISD::FP_ROUND_INREG || N->getOpcode() == ISD::EXTLOAD || N->getOpcode() == ISD::SEXTLOAD || N->getOpcode() == ISD::ZEXTLOAD || N->getOpcode() == ISD::TRUNCSTORE; } }; class SDNodeIterator : public forward_iterator { SDNode *Node; unsigned Operand; SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {} public: bool operator==(const SDNodeIterator& x) const { return Operand == x.Operand; } bool operator!=(const SDNodeIterator& x) const { return !operator==(x); } const SDNodeIterator &operator=(const SDNodeIterator &I) { assert(I.Node == Node && "Cannot assign iterators to two different nodes!"); Operand = I.Operand; return *this; } pointer operator*() const { return Node->getOperand(Operand).Val; } pointer operator->() const { return operator*(); } SDNodeIterator& operator++() { // Preincrement ++Operand; return *this; } SDNodeIterator operator++(int) { // Postincrement SDNodeIterator tmp = *this; ++*this; return tmp; } static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); } static SDNodeIterator end (SDNode *N) { return SDNodeIterator(N, N->getNumOperands()); } unsigned getOperand() const { return Operand; } const SDNode *getNode() const { return Node; } }; template <> struct GraphTraits { typedef SDNode NodeType; typedef SDNodeIterator ChildIteratorType; static inline NodeType *getEntryNode(SDNode *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return SDNodeIterator::begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return SDNodeIterator::end(N); } }; } // end llvm namespace #endif