//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===// // // This register allocator allocates registers to a basic block at a time, // attempting to keep values in registers and reusing registers as appropriate. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "Support/CommandLine.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include namespace { Statistic<> NumSpilled ("ra-local", "Number of registers spilled"); Statistic<> NumReloaded("ra-local", "Number of registers reloaded"); cl::opt DisableKill("no-kill", cl::Hidden, cl::desc("Disable register kill in local-ra")); class RA : public MachineFunctionPass { const TargetMachine *TM; MachineFunction *MF; const MRegisterInfo *RegInfo; LiveVariables *LV; // StackSlotForVirtReg - Maps SSA Regs => frame index where these values are // spilled std::map StackSlotForVirtReg; // Virt2PhysRegMap - This map contains entries for each virtual register // that is currently available in a physical register. // std::map Virt2PhysRegMap; // PhysRegsUsed - This map contains entries for each physical register that // currently has a value (ie, it is in Virt2PhysRegMap). The value mapped // to is the virtual register corresponding to the physical register (the // inverse of the Virt2PhysRegMap), or 0. The value is set to 0 if this // register is pinned because it is used by a future instruction. // std::map PhysRegsUsed; // PhysRegsUseOrder - This contains a list of the physical registers that // currently have a virtual register value in them. This list provides an // ordering of registers, imposing a reallocation order. This list is only // used if all registers are allocated and we have to spill one, in which // case we spill the least recently used register. Entries at the front of // the list are the least recently used registers, entries at the back are // the most recently used. // std::vector PhysRegsUseOrder; // VirtRegModified - This bitset contains information about which virtual // registers need to be spilled back to memory when their registers are // scavenged. If a virtual register has simply been rematerialized, there // is no reason to spill it to memory when we need the register back. // std::vector VirtRegModified; void markVirtRegModified(unsigned Reg, bool Val = true) { assert(Reg >= MRegisterInfo::FirstVirtualRegister && "Illegal VirtReg!"); Reg -= MRegisterInfo::FirstVirtualRegister; if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1); VirtRegModified[Reg] = Val; } bool isVirtRegModified(unsigned Reg) const { assert(Reg >= MRegisterInfo::FirstVirtualRegister && "Illegal VirtReg!"); assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size() && "Illegal virtual register!"); return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister]; } void MarkPhysRegRecentlyUsed(unsigned Reg) { assert(!PhysRegsUseOrder.empty() && "No registers used!"); if (PhysRegsUseOrder.back() == Reg) return; // Already most recently used for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i) if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) { unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1); // Add it to the end of the list PhysRegsUseOrder.push_back(RegMatch); if (RegMatch == Reg) return; // Found an exact match, exit early } } public: virtual const char *getPassName() const { return "Local Register Allocator"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { if (!DisableKill) AU.addRequired(); AU.addRequiredID(PHIEliminationID); MachineFunctionPass::getAnalysisUsage(AU); } private: /// runOnMachineFunction - Register allocate the whole function bool runOnMachineFunction(MachineFunction &Fn); /// AllocateBasicBlock - Register allocate the specified basic block. void AllocateBasicBlock(MachineBasicBlock &MBB); /// areRegsEqual - This method returns true if the specified registers are /// related to each other. To do this, it checks to see if they are equal /// or if the first register is in the alias set of the second register. /// bool areRegsEqual(unsigned R1, unsigned R2) const { if (R1 == R2) return true; if (const unsigned *AliasSet = RegInfo->getAliasSet(R2)) for (unsigned i = 0; AliasSet[i]; ++i) if (AliasSet[i] == R1) return true; return false; } /// getStackSpaceFor - This returns the frame index of the specified virtual /// register on the stack, allocating space if neccesary. int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); void removePhysReg(unsigned PhysReg); /// spillVirtReg - This method spills the value specified by PhysReg into /// the virtual register slot specified by VirtReg. It then updates the RA /// data structures to indicate the fact that PhysReg is now available. /// void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned VirtReg, unsigned PhysReg); /// spillPhysReg - This method spills the specified physical register into /// the virtual register slot associated with it. /// void spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned PhysReg); /// assignVirtToPhysReg - This method updates local state so that we know /// that PhysReg is the proper container for VirtReg now. The physical /// register must not be used for anything else when this is called. /// void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); /// liberatePhysReg - Make sure the specified physical register is available /// for use. If there is currently a value in it, it is either moved out of /// the way or spilled to memory. /// void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned PhysReg); /// isPhysRegAvailable - Return true if the specified physical register is /// free and available for use. This also includes checking to see if /// aliased registers are all free... /// bool isPhysRegAvailable(unsigned PhysReg) const; /// getFreeReg - Look to see if there is a free register available in the /// specified register class. If not, return 0. /// unsigned getFreeReg(const TargetRegisterClass *RC); /// getReg - Find a physical register to hold the specified virtual /// register. If all compatible physical registers are used, this method /// spills the last used virtual register to the stack, and uses that /// register. /// unsigned getReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned VirtReg); /// reloadVirtReg - This method loads the specified virtual register into a /// physical register, returning the physical register chosen. This updates /// the regalloc data structures to reflect the fact that the virtual reg is /// now alive in a physical register, and the previous one isn't. /// unsigned reloadVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned VirtReg); }; } /// getStackSpaceFor - This allocates space for the specified virtual /// register to be held on the stack. int RA::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { // Find the location VirtReg would belong... std::map::iterator I = StackSlotForVirtReg.lower_bound(VirtReg); if (I != StackSlotForVirtReg.end() && I->first == VirtReg) return I->second; // Already has space allocated? // Allocate a new stack object for this spill location... int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC); // Assign the slot... StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx)); return FrameIdx; } /// removePhysReg - This method marks the specified physical register as no /// longer being in use. /// void RA::removePhysReg(unsigned PhysReg) { PhysRegsUsed.erase(PhysReg); // PhyReg no longer used std::vector::iterator It = std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg); assert(It != PhysRegsUseOrder.end() && "Spilled a physical register, but it was not in use list!"); PhysRegsUseOrder.erase(It); } /// spillVirtReg - This method spills the value specified by PhysReg into the /// virtual register slot specified by VirtReg. It then updates the RA data /// structures to indicate the fact that PhysReg is now available. /// void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned VirtReg, unsigned PhysReg) { // If this is just a marker register, we don't need to spill it. if (VirtReg != 0) { const TargetRegisterClass *RegClass = MF->getSSARegMap()->getRegClass(VirtReg); int FrameIndex = getStackSpaceFor(VirtReg, RegClass); // If we need to spill this value, do so now... if (isVirtRegModified(VirtReg)) { // Add move instruction(s) RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RegClass); ++NumSpilled; // Update statistics } Virt2PhysRegMap.erase(VirtReg); // VirtReg no longer available } removePhysReg(PhysReg); } /// spillPhysReg - This method spills the specified physical register into the /// virtual register slot associated with it. /// void RA::spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned PhysReg) { std::map::iterator PI = PhysRegsUsed.find(PhysReg); if (PI != PhysRegsUsed.end()) { // Only spill it if it's used! spillVirtReg(MBB, I, PI->second, PhysReg); } else if (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg)) { // If the selected register aliases any other registers, we must make // sure that one of the aliases isn't alive... for (unsigned i = 0; AliasSet[i]; ++i) { PI = PhysRegsUsed.find(AliasSet[i]); if (PI != PhysRegsUsed.end()) // Spill aliased register... spillVirtReg(MBB, I, PI->second, AliasSet[i]); } } } /// assignVirtToPhysReg - This method updates local state so that we know /// that PhysReg is the proper container for VirtReg now. The physical /// register must not be used for anything else when this is called. /// void RA::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() && "Phys reg already assigned!"); // Update information to note the fact that this register was just used, and // it holds VirtReg. PhysRegsUsed[PhysReg] = VirtReg; Virt2PhysRegMap[VirtReg] = PhysReg; PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg } /// isPhysRegAvailable - Return true if the specified physical register is free /// and available for use. This also includes checking to see if aliased /// registers are all free... /// bool RA::isPhysRegAvailable(unsigned PhysReg) const { if (PhysRegsUsed.count(PhysReg)) return false; // If the selected register aliases any other allocated registers, it is // not free! if (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg)) for (unsigned i = 0; AliasSet[i]; ++i) if (PhysRegsUsed.count(AliasSet[i])) // Aliased register in use? return false; // Can't use this reg then. return true; } /// getFreeReg - Look to see if there is a free register available in the /// specified register class. If not, return 0. /// unsigned RA::getFreeReg(const TargetRegisterClass *RC) { // Get iterators defining the range of registers that are valid to allocate in // this class, which also specifies the preferred allocation order. TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); for (; RI != RE; ++RI) if (isPhysRegAvailable(*RI)) { // Is reg unused? assert(*RI != 0 && "Cannot use register!"); return *RI; // Found an unused register! } return 0; } /// liberatePhysReg - Make sure the specified physical register is available for /// use. If there is currently a value in it, it is either moved out of the way /// or spilled to memory. /// void RA::liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned PhysReg) { // FIXME: This code checks to see if a register is available, but it really // wants to know if a reg is available BEFORE the instruction executes. If // called after killed operands are freed, it runs the risk of reallocating a // used operand... #if 0 if (isPhysRegAvailable(PhysReg)) return; // Already available... // Check to see if the register is directly used, not indirectly used through // aliases. If aliased registers are the ones actually used, we cannot be // sure that we will be able to save the whole thing if we do a reg-reg copy. std::map::iterator PRUI = PhysRegsUsed.find(PhysReg); if (PRUI != PhysRegsUsed.end()) { unsigned VirtReg = PRUI->second; // The virtual register held... // Check to see if there is a compatible register available. If so, we can // move the value into the new register... // const TargetRegisterClass *RC = RegInfo->getRegClass(PhysReg); if (unsigned NewReg = getFreeReg(RC)) { // Emit the code to copy the value... RegInfo->copyRegToReg(MBB, I, NewReg, PhysReg, RC); // Update our internal state to indicate that PhysReg is available and Reg // isn't. Virt2PhysRegMap.erase(VirtReg); removePhysReg(PhysReg); // Free the physreg // Move reference over to new register... assignVirtToPhysReg(VirtReg, NewReg); return; } } #endif spillPhysReg(MBB, I, PhysReg); } /// getReg - Find a physical register to hold the specified virtual /// register. If all compatible physical registers are used, this method spills /// the last used virtual register to the stack, and uses that register. /// unsigned RA::getReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned VirtReg) { const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg); // First check to see if we have a free register of the requested type... unsigned PhysReg = getFreeReg(RC); // If we didn't find an unused register, scavenge one now! if (PhysReg == 0) { assert(!PhysRegsUseOrder.empty() && "No allocated registers??"); // Loop over all of the preallocated registers from the least recently used // to the most recently used. When we find one that is capable of holding // our register, use it. for (unsigned i = 0; PhysReg == 0; ++i) { assert(i != PhysRegsUseOrder.size() && "Couldn't find a register of the appropriate class!"); unsigned R = PhysRegsUseOrder[i]; // If the current register is compatible, use it. if (RegInfo->getRegClass(R) == RC) { PhysReg = R; break; } else { // If one of the registers aliased to the current register is // compatible, use it. if (const unsigned *AliasSet = RegInfo->getAliasSet(R)) for (unsigned a = 0; AliasSet[a]; ++a) if (RegInfo->getRegClass(AliasSet[a]) == RC) { PhysReg = AliasSet[a]; // Take an aliased register break; } } } assert(PhysReg && "Physical register not assigned!?!?"); // At this point PhysRegsUseOrder[i] is the least recently used register of // compatible register class. Spill it to memory and reap its remains. spillPhysReg(MBB, I, PhysReg); } // Now that we know which register we need to assign this to, do it now! assignVirtToPhysReg(VirtReg, PhysReg); return PhysReg; } /// reloadVirtReg - This method loads the specified virtual register into a /// physical register, returning the physical register chosen. This updates the /// regalloc data structures to reflect the fact that the virtual reg is now /// alive in a physical register, and the previous one isn't. /// unsigned RA::reloadVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, unsigned VirtReg) { std::map::iterator It = Virt2PhysRegMap.find(VirtReg); if (It != Virt2PhysRegMap.end()) { MarkPhysRegRecentlyUsed(It->second); return It->second; // Already have this value available! } unsigned PhysReg = getReg(MBB, I, VirtReg); const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg); int FrameIndex = getStackSpaceFor(VirtReg, RC); markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded // Add move instruction(s) RegInfo->loadRegFromStackSlot(MBB, I, PhysReg, FrameIndex, RC); ++NumReloaded; // Update statistics return PhysReg; } void RA::AllocateBasicBlock(MachineBasicBlock &MBB) { // loop over each instruction MachineBasicBlock::iterator I = MBB.begin(); for (; I != MBB.end(); ++I) { MachineInstr *MI = *I; const TargetInstrDescriptor &TID = TM->getInstrInfo().get(MI->getOpcode()); // Loop over the implicit uses, making sure that they are at the head of the // use order list, so they don't get reallocated. if (const unsigned *ImplicitUses = TID.ImplicitUses) for (unsigned i = 0; ImplicitUses[i]; ++i) MarkPhysRegRecentlyUsed(ImplicitUses[i]); // Get the used operands into registers. This has the potiential to spill // incoming values if we are out of registers. // for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) if (MI->getOperand(i).opIsUse() && MI->getOperand(i).isVirtualRegister()) { unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum(); unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg); MI->SetMachineOperandReg(i, PhysSrcReg); // Assign the input register } if (!DisableKill) { // If this instruction is the last user of anything in registers, kill the // value, freeing the register being used, so it doesn't need to be // spilled to memory. // for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), KE = LV->killed_end(MI); KI != KE; ++KI) { unsigned VirtReg = KI->second; unsigned PhysReg = VirtReg; if (VirtReg >= MRegisterInfo::FirstVirtualRegister) { std::map::iterator I = Virt2PhysRegMap.find(VirtReg); assert(I != Virt2PhysRegMap.end()); PhysReg = I->second; Virt2PhysRegMap.erase(I); } if (PhysReg) { DEBUG(std::cerr << "V: " << VirtReg << " P: " << PhysReg << " Killed by: " << *MI); removePhysReg(PhysReg); } } } // Loop over all of the operands of the instruction, spilling registers that // are defined, and marking explicit destinations in the PhysRegsUsed map. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) if ((MI->getOperand(i).opIsDefOnly() || MI->getOperand(i).opIsDefAndUse()) && MI->getOperand(i).isPhysicalRegister()) { unsigned Reg = MI->getOperand(i).getAllocatedRegNum(); spillPhysReg(MBB, I, Reg); // Spill any existing value in the reg PhysRegsUsed[Reg] = 0; // It is free and reserved now PhysRegsUseOrder.push_back(Reg); } // Loop over the implicit defs, spilling them as well. if (const unsigned *ImplicitDefs = TID.ImplicitDefs) for (unsigned i = 0; ImplicitDefs[i]; ++i) { unsigned Reg = ImplicitDefs[i]; spillPhysReg(MBB, I, Reg); PhysRegsUseOrder.push_back(Reg); PhysRegsUsed[Reg] = 0; // It is free and reserved now } // Okay, we have allocated all of the source operands and spilled any values // that would be destroyed by defs of this instruction. Loop over the // implicit defs and assign them to a register, spilling incoming values if // we need to scavenge a register. // for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) if ((MI->getOperand(i).opIsDefOnly() || MI->getOperand(i).opIsDefAndUse()) && MI->getOperand(i).isVirtualRegister()) { unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum(); unsigned DestPhysReg; // If DestVirtReg already has a value, forget about it. Why doesn't // getReg do this right? std::map::iterator DestI = Virt2PhysRegMap.find(DestVirtReg); if (DestI != Virt2PhysRegMap.end()) { unsigned PhysReg = DestI->second; Virt2PhysRegMap.erase(DestI); removePhysReg(PhysReg); } if (TM->getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) { // must be same register number as the first operand // This maps a = b + c into b += c, and saves b into a's spot assert(MI->getOperand(1).isRegister() && MI->getOperand(1).getAllocatedRegNum() && MI->getOperand(1).opIsUse() && "Two address instruction invalid!"); DestPhysReg = MI->getOperand(1).getAllocatedRegNum(); liberatePhysReg(MBB, I, DestPhysReg); assignVirtToPhysReg(DestVirtReg, DestPhysReg); } else { DestPhysReg = getReg(MBB, I, DestVirtReg); } markVirtRegModified(DestVirtReg); MI->SetMachineOperandReg(i, DestPhysReg); // Assign the output register } if (!DisableKill) { // If this instruction defines any registers that are immediately dead, // kill them now. // for (LiveVariables::killed_iterator KI = LV->dead_begin(MI), KE = LV->dead_end(MI); KI != KE; ++KI) { unsigned VirtReg = KI->second; unsigned PhysReg = VirtReg; if (VirtReg >= MRegisterInfo::FirstVirtualRegister) { std::map::iterator I = Virt2PhysRegMap.find(VirtReg); assert(I != Virt2PhysRegMap.end()); PhysReg = I->second; Virt2PhysRegMap.erase(I); } if (PhysReg) { DEBUG(std::cerr << "V: " << VirtReg << " P: " << PhysReg << " dead after: " << *MI); removePhysReg(PhysReg); } } } } // Rewind the iterator to point to the first flow control instruction... const TargetInstrInfo &TII = TM->getInstrInfo(); I = MBB.end(); while (I != MBB.begin() && TII.isTerminatorInstr((*(I-1))->getOpcode())) --I; // Spill all physical registers holding virtual registers now. while (!PhysRegsUsed.empty()) spillVirtReg(MBB, I, PhysRegsUsed.begin()->second, PhysRegsUsed.begin()->first); for (std::map::iterator I = Virt2PhysRegMap.begin(), E = Virt2PhysRegMap.end(); I != E; ++I) std::cerr << "Register still mapped: " << I->first << " -> " << I->second << "\n"; assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?"); assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?"); } /// runOnMachineFunction - Register allocate the whole function /// bool RA::runOnMachineFunction(MachineFunction &Fn) { DEBUG(std::cerr << "Machine Function " << "\n"); MF = &Fn; TM = &Fn.getTarget(); RegInfo = TM->getRegisterInfo(); if (!DisableKill) LV = &getAnalysis(); // Loop over all of the basic blocks, eliminating virtual register references for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) AllocateBasicBlock(*MBB); StackSlotForVirtReg.clear(); VirtRegModified.clear(); return true; } Pass *createLocalRegisterAllocator() { return new RA(); }