//===- BottomUpClosure.cpp - Compute bottom-up interprocedural closure ----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the BUDataStructures class, which represents the // Bottom-Up Interprocedural closure of the data structure graph over the // program. This is useful for applications like pool allocation, but **not** // applications like alias analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DataStructure.h" #include "llvm/Module.h" #include "Support/Statistic.h" #include "Support/Debug.h" #include "DSCallSiteIterator.h" using namespace llvm; namespace { Statistic<> MaxSCC("budatastructure", "Maximum SCC Size in Call Graph"); Statistic<> NumBUInlines("budatastructures", "Number of graphs inlined"); Statistic<> NumCallEdges("budatastructures", "Number of 'actual' call edges"); RegisterAnalysis X("budatastructure", "Bottom-up Data Structure Analysis"); } using namespace DS; // run - Calculate the bottom up data structure graphs for each function in the // program. // bool BUDataStructures::run(Module &M) { LocalDataStructures &LocalDSA = getAnalysis(); GlobalsGraph = new DSGraph(LocalDSA.getGlobalsGraph()); GlobalsGraph->setPrintAuxCalls(); Function *MainFunc = M.getMainFunction(); if (MainFunc) calculateReachableGraphs(MainFunc); // Calculate the graphs for any functions that are unreachable from main... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal() && !DSInfo.count(I)) { #ifndef NDEBUG if (MainFunc) std::cerr << "*** Function unreachable from main: " << I->getName() << "\n"; #endif calculateReachableGraphs(I); // Calculate all graphs... } NumCallEdges += ActualCallees.size(); // At the end of the BU phase, clone the BU graph for main into the globals // graph to make sure it has everything. if (MainFunc) { DSGraph &MainGraph = getOrCreateGraph(MainFunc); DSScalarMap &MainSM = MainGraph.getScalarMap(); ReachabilityCloner RC(*GlobalsGraph, MainGraph, DSGraph::StripAllocaBit); // Clone everything reachable from globals in the "main" graph into the // globals graph. for (DSScalarMap::global_iterator I = MainSM.global_begin(), E = MainSM.global_end(); I != E; ++I) RC.getClonedNH(MainSM[*I]); } // At the end of the bottom-up pass, the globals graph becomes complete. // FIXME: This is not the right way to do this, but it is sorta better than // nothing! In particular, externally visible globals and unresolvable call // nodes at the end of the BU phase should make things that they point to // incomplete in the globals graph. // GlobalsGraph->removeTriviallyDeadNodes(); GlobalsGraph->maskIncompleteMarkers(); return false; } void BUDataStructures::calculateReachableGraphs(Function *F) { std::vector Stack; hash_map ValMap; unsigned NextID = 1; calculateGraphs(F, Stack, NextID, ValMap); } DSGraph &BUDataStructures::getOrCreateGraph(Function *F) { // Has the graph already been created? DSGraph *&Graph = DSInfo[F]; if (Graph) return *Graph; // Copy the local version into DSInfo... Graph = new DSGraph(getAnalysis().getDSGraph(*F)); Graph->setGlobalsGraph(GlobalsGraph); Graph->setPrintAuxCalls(); // Start with a copy of the original call sites... Graph->getAuxFunctionCalls() = Graph->getFunctionCalls(); return *Graph; } unsigned BUDataStructures::calculateGraphs(Function *F, std::vector &Stack, unsigned &NextID, hash_map &ValMap) { assert(!ValMap.count(F) && "Shouldn't revisit functions!"); unsigned Min = NextID++, MyID = Min; ValMap[F] = Min; Stack.push_back(F); if (F->isExternal()) { // sprintf, fprintf, sscanf, etc... // No callees! Stack.pop_back(); ValMap[F] = ~0; return Min; } DSGraph &Graph = getOrCreateGraph(F); // The edges out of the current node are the call site targets... for (DSCallSiteIterator I = DSCallSiteIterator::begin_aux(Graph), E = DSCallSiteIterator::end_aux(Graph); I != E; ++I) { Function *Callee = *I; unsigned M; // Have we visited the destination function yet? hash_map::iterator It = ValMap.find(Callee); if (It == ValMap.end()) // No, visit it now. M = calculateGraphs(Callee, Stack, NextID, ValMap); else // Yes, get it's number. M = It->second; if (M < Min) Min = M; } assert(ValMap[F] == MyID && "SCC construction assumption wrong!"); if (Min != MyID) return Min; // This is part of a larger SCC! // If this is a new SCC, process it now. if (Stack.back() == F) { // Special case the single "SCC" case here. DEBUG(std::cerr << "Visiting single node SCC #: " << MyID << " fn: " << F->getName() << "\n"); Stack.pop_back(); DSGraph &G = getDSGraph(*F); DEBUG(std::cerr << " [BU] Calculating graph for: " << F->getName()<< "\n"); calculateGraph(G); DEBUG(std::cerr << " [BU] Done inlining: " << F->getName() << " [" << G.getGraphSize() << "+" << G.getAuxFunctionCalls().size() << "]\n"); if (MaxSCC < 1) MaxSCC = 1; // Should we revisit the graph? if (DSCallSiteIterator::begin_aux(G) != DSCallSiteIterator::end_aux(G)) { ValMap.erase(F); return calculateGraphs(F, Stack, NextID, ValMap); } else { ValMap[F] = ~0U; } return MyID; } else { // SCCFunctions - Keep track of the functions in the current SCC // hash_set SCCGraphs; Function *NF; std::vector::iterator FirstInSCC = Stack.end(); DSGraph *SCCGraph = 0; do { NF = *--FirstInSCC; ValMap[NF] = ~0U; // Figure out which graph is the largest one, in order to speed things up // a bit in situations where functions in the SCC have widely different // graph sizes. DSGraph &NFGraph = getDSGraph(*NF); SCCGraphs.insert(&NFGraph); if (!SCCGraph || SCCGraph->getGraphSize() < NFGraph.getGraphSize()) SCCGraph = &NFGraph; } while (NF != F); std::cerr << "Calculating graph for SCC #: " << MyID << " of size: " << SCCGraphs.size() << "\n"; // Compute the Max SCC Size... if (MaxSCC < SCCGraphs.size()) MaxSCC = SCCGraphs.size(); // First thing first, collapse all of the DSGraphs into a single graph for // the entire SCC. We computed the largest graph, so clone all of the other // (smaller) graphs into it. Discard all of the old graphs. // for (hash_set::iterator I = SCCGraphs.begin(), E = SCCGraphs.end(); I != E; ++I) { DSGraph &G = **I; if (&G != SCCGraph) { DSGraph::NodeMapTy NodeMap; SCCGraph->cloneInto(G, SCCGraph->getScalarMap(), SCCGraph->getReturnNodes(), NodeMap); // Update the DSInfo map and delete the old graph... for (DSGraph::ReturnNodesTy::iterator I = G.getReturnNodes().begin(), E = G.getReturnNodes().end(); I != E; ++I) DSInfo[I->first] = SCCGraph; delete &G; } } // Clean up the graph before we start inlining a bunch again... SCCGraph->removeDeadNodes(DSGraph::RemoveUnreachableGlobals); // Now that we have one big happy family, resolve all of the call sites in // the graph... calculateGraph(*SCCGraph); DEBUG(std::cerr << " [BU] Done inlining SCC [" << SCCGraph->getGraphSize() << "+" << SCCGraph->getAuxFunctionCalls().size() << "]\n"); std::cerr << "DONE with SCC #: " << MyID << "\n"; // We never have to revisit "SCC" processed functions... // Drop the stuff we don't need from the end of the stack Stack.erase(FirstInSCC, Stack.end()); return MyID; } return MyID; // == Min } // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // void BUDataStructures::releaseMemory() { for (hash_map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) { I->second->getReturnNodes().erase(I->first); if (I->second->getReturnNodes().empty()) delete I->second; } // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); delete GlobalsGraph; GlobalsGraph = 0; } void BUDataStructures::calculateGraph(DSGraph &Graph) { // Move our call site list into TempFCs so that inline call sites go into the // new call site list and doesn't invalidate our iterators! std::vector TempFCs; std::vector &AuxCallsList = Graph.getAuxFunctionCalls(); TempFCs.swap(AuxCallsList); DSGraph::ReturnNodesTy &ReturnNodes = Graph.getReturnNodes(); // Loop over all of the resolvable call sites unsigned LastCallSiteIdx = ~0U; for (DSCallSiteIterator I = DSCallSiteIterator::begin(TempFCs), E = DSCallSiteIterator::end(TempFCs); I != E; ++I) { // If we skipped over any call sites, they must be unresolvable, copy them // to the real call site list. LastCallSiteIdx++; for (; LastCallSiteIdx < I.getCallSiteIdx(); ++LastCallSiteIdx) AuxCallsList.push_back(TempFCs[LastCallSiteIdx]); LastCallSiteIdx = I.getCallSiteIdx(); // Resolve the current call... Function *Callee = *I; DSCallSite CS = I.getCallSite(); if (Callee->isExternal()) { // Ignore this case, simple varargs functions we cannot stub out! } else if (ReturnNodes.count(Callee)) { // Self recursion... simply link up the formal arguments with the // actual arguments... DEBUG(std::cerr << " Self Inlining: " << Callee->getName() << "\n"); // Handle self recursion by resolving the arguments and return value Graph.mergeInGraph(CS, *Callee, Graph, 0); } else { ActualCallees.insert(std::make_pair(CS.getCallSite().getInstruction(), Callee)); // Get the data structure graph for the called function. // DSGraph &GI = getDSGraph(*Callee); // Graph to inline DEBUG(std::cerr << " Inlining graph for " << Callee->getName() << "[" << GI.getGraphSize() << "+" << GI.getAuxFunctionCalls().size() << "] into '" << Graph.getFunctionNames() << "' [" << Graph.getGraphSize() << "+" << Graph.getAuxFunctionCalls().size() << "]\n"); Graph.mergeInGraph(CS, *Callee, GI, DSGraph::KeepModRefBits | DSGraph::StripAllocaBit | DSGraph::DontCloneCallNodes); ++NumBUInlines; #if 0 Graph.writeGraphToFile(std::cerr, "bu_" + F.getName() + "_after_" + Callee->getName()); #endif } } // Make sure to catch any leftover unresolvable calls... for (++LastCallSiteIdx; LastCallSiteIdx < TempFCs.size(); ++LastCallSiteIdx) AuxCallsList.push_back(TempFCs[LastCallSiteIdx]); TempFCs.clear(); // Re-materialize nodes from the globals graph. // Do not ignore globals inlined from callees -- they are not up-to-date! assert(Graph.getInlinedGlobals().empty()); Graph.updateFromGlobalGraph(); // Recompute the Incomplete markers Graph.maskIncompleteMarkers(); Graph.markIncompleteNodes(DSGraph::MarkFormalArgs); // Delete dead nodes. Treat globals that are unreachable but that can // reach live nodes as live. Graph.removeDeadNodes(DSGraph::KeepUnreachableGlobals); //Graph.writeGraphToFile(std::cerr, "bu_" + F.getName()); }