//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the LoopInfo class that is used to identify natural loops // and determine the loop depth of various nodes of the CFG. Note that natural // loops may actually be several loops that share the same header node. // // This analysis calculates the nesting structure of loops in a function. For // each natural loop identified, this analysis identifies natural loops // contained entirely within the loop and the basic blocks the make up the loop. // // It can calculate on the fly various bits of information, for example: // // * whether there is a preheader for the loop // * the number of back edges to the header // * whether or not a particular block branches out of the loop // * the successor blocks of the loop // * the loop depth // * the trip count // * etc... // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_LOOP_INFO_H #define LLVM_ANALYSIS_LOOP_INFO_H #include "llvm/Pass.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Streams.h" #include #include template static void RemoveFromVector(std::vector &V, T *N) { typename std::vector::iterator I = std::find(V.begin(), V.end(), N); assert(I != V.end() && "N is not in this list!"); V.erase(I); } namespace llvm { class DominatorTree; class LoopInfo; class PHINode; class Instruction; template class LoopInfoBase; //===----------------------------------------------------------------------===// /// LoopBase class - Instances of this class are used to represent loops that are /// detected in the flow graph /// template class LoopBase { LoopBase *ParentLoop; std::vector*> SubLoops; // Loops contained entirely within this one std::vector Blocks; // First entry is the header node LoopBase(const LoopBase &); // DO NOT IMPLEMENT const LoopBase &operator=(const LoopBase &); // DO NOT IMPLEMENT public: /// Loop ctor - This creates an empty loop. LoopBase() : ParentLoop(0) {} ~LoopBase() { for (unsigned i = 0, e = SubLoops.size(); i != e; ++i) delete SubLoops[i]; } unsigned getLoopDepth() const { unsigned D = 0; for (const LoopBase *CurLoop = this; CurLoop; CurLoop = CurLoop->ParentLoop) ++D; return D; } BlockT *getHeader() const { return Blocks.front(); } LoopBase *getParentLoop() const { return ParentLoop; } /// contains - Return true of the specified basic block is in this loop /// bool contains(const BlockT *BB) const { return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); } /// iterator/begin/end - Return the loops contained entirely within this loop. /// const std::vector*> &getSubLoops() const { return SubLoops; } typedef typename std::vector*>::const_iterator iterator; iterator begin() const { return SubLoops.begin(); } iterator end() const { return SubLoops.end(); } bool empty() const { return SubLoops.empty(); } /// getBlocks - Get a list of the basic blocks which make up this loop. /// const std::vector &getBlocks() const { return Blocks; } typedef typename std::vector::const_iterator block_iterator; block_iterator block_begin() const { return Blocks.begin(); } block_iterator block_end() const { return Blocks.end(); } /// isLoopExit - True if terminator in the block can branch to another block /// that is outside of the current loop. /// bool isLoopExit(const BlockT *BB) const { typedef GraphTraits BlockTraits; for (typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(const_cast(BB)), SE = BlockTraits::child_end(const_cast(BB)); SI != SE; ++SI) { if (!contains(*SI)) return true; } return false; } /// getNumBackEdges - Calculate the number of back edges to the loop header /// unsigned getNumBackEdges() const { unsigned NumBackEdges = 0; BlockT *H = getHeader(); typedef GraphTraits > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType I = InvBlockTraits::child_begin(const_cast(H)), E = InvBlockTraits::child_end(const_cast(H)); I != E; ++I) if (contains(*I)) ++NumBackEdges; return NumBackEdges; } /// isLoopInvariant - Return true if the specified value is loop invariant /// inline bool isLoopInvariant(Value *V) const { if (Instruction *I = dyn_cast(V)) return !contains(I->getParent()); return true; // All non-instructions are loop invariant } //===--------------------------------------------------------------------===// // APIs for simple analysis of the loop. // // Note that all of these methods can fail on general loops (ie, there may not // be a preheader, etc). For best success, the loop simplification and // induction variable canonicalization pass should be used to normalize loops // for easy analysis. These methods assume canonical loops. /// getExitingBlocks - Return all blocks inside the loop that have successors /// outside of the loop. These are the blocks _inside of the current loop_ /// which branch out. The returned list is always unique. /// void getExitingBlocks(SmallVectorImpl &ExitingBlocks) const { // Sort the blocks vector so that we can use binary search to do quick // lookups. SmallVector LoopBBs(block_begin(), block_end()); std::sort(LoopBBs.begin(), LoopBBs.end()); typedef GraphTraits BlockTraits; for (typename std::vector::const_iterator BI = Blocks.begin(), BE = Blocks.end(); BI != BE; ++BI) for (typename BlockTraits::ChildIteratorType I = BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); I != E; ++I) if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) { // Not in current loop? It must be an exit block. ExitingBlocks.push_back(*BI); break; } } /// getExitBlocks - Return all of the successor blocks of this loop. These /// are the blocks _outside of the current loop_ which are branched to. /// void getExitBlocks(SmallVectorImpl &ExitBlocks) const { // Sort the blocks vector so that we can use binary search to do quick // lookups. SmallVector LoopBBs(block_begin(), block_end()); std::sort(LoopBBs.begin(), LoopBBs.end()); typedef GraphTraits BlockTraits; for (typename std::vector::const_iterator BI = Blocks.begin(), BE = Blocks.end(); BI != BE; ++BI) for (typename BlockTraits::ChildIteratorType I = BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); I != E; ++I) if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) // Not in current loop? It must be an exit block. ExitBlocks.push_back(*I); } /// getUniqueExitBlocks - Return all unique successor blocks of this loop. /// These are the blocks _outside of the current loop_ which are branched to. /// This assumes that loop is in canonical form. /// void getUniqueExitBlocks(SmallVectorImpl &ExitBlocks) const { // Sort the blocks vector so that we can use binary search to do quick // lookups. SmallVector LoopBBs(block_begin(), block_end()); std::sort(LoopBBs.begin(), LoopBBs.end()); std::vector switchExitBlocks; for (typename std::vector::const_iterator BI = Blocks.begin(), BE = Blocks.end(); BI != BE; ++BI) { BlockT *current = *BI; switchExitBlocks.clear(); typedef GraphTraits BlockTraits; typedef GraphTraits > InvBlockTraits; for (typename BlockTraits::ChildIteratorType I = BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); I != E; ++I) { if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) // If block is inside the loop then it is not a exit block. continue; typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(*I); BlockT *firstPred = *PI; // If current basic block is this exit block's first predecessor // then only insert exit block in to the output ExitBlocks vector. // This ensures that same exit block is not inserted twice into // ExitBlocks vector. if (current != firstPred) continue; // If a terminator has more then two successors, for example SwitchInst, // then it is possible that there are multiple edges from current block // to one exit block. if (std::distance(BlockTraits::child_begin(current), BlockTraits::child_end(current)) <= 2) { ExitBlocks.push_back(*I); continue; } // In case of multiple edges from current block to exit block, collect // only one edge in ExitBlocks. Use switchExitBlocks to keep track of // duplicate edges. if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) == switchExitBlocks.end()) { switchExitBlocks.push_back(*I); ExitBlocks.push_back(*I); } } } } /// getLoopPreheader - If there is a preheader for this loop, return it. A /// loop has a preheader if there is only one edge to the header of the loop /// from outside of the loop. If this is the case, the block branching to the /// header of the loop is the preheader node. /// /// This method returns null if there is no preheader for the loop. /// BlockT *getLoopPreheader() const { // Keep track of nodes outside the loop branching to the header... BlockT *Out = 0; // Loop over the predecessors of the header node... BlockT *Header = getHeader(); typedef GraphTraits BlockTraits; typedef GraphTraits > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(Header), PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) if (!contains(*PI)) { // If the block is not in the loop... if (Out && Out != *PI) return 0; // Multiple predecessors outside the loop Out = *PI; } // Make sure there is only one exit out of the preheader. assert(Out && "Header of loop has no predecessors from outside loop?"); typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out); ++SI; if (SI != BlockTraits::child_end(Out)) return 0; // Multiple exits from the block, must not be a preheader. // If there is exactly one preheader, return it. If there was zero, then Out // is still null. return Out; } /// getLoopLatch - If there is a latch block for this loop, return it. A /// latch block is the canonical backedge for a loop. A loop header in normal /// form has two edges into it: one from a preheader and one from a latch /// block. BlockT *getLoopLatch() const { BlockT *Header = getHeader(); typedef GraphTraits > InvBlockTraits; typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(Header); typename InvBlockTraits::ChildIteratorType PE = InvBlockTraits::child_end(Header); if (PI == PE) return 0; // no preds? BlockT *Latch = 0; if (contains(*PI)) Latch = *PI; ++PI; if (PI == PE) return 0; // only one pred? if (contains(*PI)) { if (Latch) return 0; // multiple backedges Latch = *PI; } ++PI; if (PI != PE) return 0; // more than two preds return Latch; } /// getCanonicalInductionVariable - Check to see if the loop has a canonical /// induction variable: an integer recurrence that starts at 0 and increments /// by one each time through the loop. If so, return the phi node that /// corresponds to it. /// inline PHINode *getCanonicalInductionVariable() const { BlockT *H = getHeader(); BlockT *Incoming = 0, *Backedge = 0; typedef GraphTraits > InvBlockTraits; typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H); assert(PI != InvBlockTraits::child_end(H) && "Loop must have at least one backedge!"); Backedge = *PI++; if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop Incoming = *PI++; if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges? if (contains(Incoming)) { if (contains(Backedge)) return 0; std::swap(Incoming, Backedge); } else if (!contains(Backedge)) return 0; // Loop over all of the PHI nodes, looking for a canonical indvar. for (typename BlockT::iterator I = H->begin(); isa(I); ++I) { PHINode *PN = cast(I); if (Instruction *Inc = dyn_cast(PN->getIncomingValueForBlock(Backedge))) if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) if (ConstantInt *CI = dyn_cast(Inc->getOperand(1))) if (CI->equalsInt(1)) return PN; } return 0; } /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds /// the canonical induction variable value for the "next" iteration of the /// loop. This always succeeds if getCanonicalInductionVariable succeeds. /// inline Instruction *getCanonicalInductionVariableIncrement() const { if (PHINode *PN = getCanonicalInductionVariable()) { bool P1InLoop = contains(PN->getIncomingBlock(1)); return cast(PN->getIncomingValue(P1InLoop)); } return 0; } /// getTripCount - Return a loop-invariant LLVM value indicating the number of /// times the loop will be executed. Note that this means that the backedge /// of the loop executes N-1 times. If the trip-count cannot be determined, /// this returns null. /// inline Value *getTripCount() const { // Canonical loops will end with a 'cmp ne I, V', where I is the incremented // canonical induction variable and V is the trip count of the loop. Instruction *Inc = getCanonicalInductionVariableIncrement(); if (Inc == 0) return 0; PHINode *IV = cast(Inc->getOperand(0)); BlockT *BackedgeBlock = IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); if (BranchInst *BI = dyn_cast(BackedgeBlock->getTerminator())) if (BI->isConditional()) { if (ICmpInst *ICI = dyn_cast(BI->getCondition())) { if (ICI->getOperand(0) == Inc) if (BI->getSuccessor(0) == getHeader()) { if (ICI->getPredicate() == ICmpInst::ICMP_NE) return ICI->getOperand(1); } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { return ICI->getOperand(1); } } } return 0; } /// isLCSSAForm - Return true if the Loop is in LCSSA form inline bool isLCSSAForm() const { // Sort the blocks vector so that we can use binary search to do quick // lookups. SmallPtrSet LoopBBs(block_begin(), block_end()); for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { BlockT *BB = *BI; for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E; ++I) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { BlockT *UserBB = cast(*UI)->getParent(); if (PHINode *P = dyn_cast(*UI)) { unsigned OperandNo = UI.getOperandNo(); UserBB = P->getIncomingBlock(OperandNo/2); } // Check the current block, as a fast-path. Most values are used in the // same block they are defined in. if (UserBB != BB && !LoopBBs.count(UserBB)) return false; } } return true; } //===--------------------------------------------------------------------===// // APIs for updating loop information after changing the CFG // /// addBasicBlockToLoop - This method is used by other analyses to update loop /// information. NewBB is set to be a new member of the current loop. /// Because of this, it is added as a member of all parent loops, and is added /// to the specified LoopInfo object as being in the current basic block. It /// is not valid to replace the loop header with this method. /// void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase &LI); /// replaceChildLoopWith - This is used when splitting loops up. It replaces /// the OldChild entry in our children list with NewChild, and updates the /// parent pointer of OldChild to be null and the NewChild to be this loop. /// This updates the loop depth of the new child. void replaceChildLoopWith(LoopBase *OldChild, LoopBase *NewChild) { assert(OldChild->ParentLoop == this && "This loop is already broken!"); assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); typename std::vector*>::iterator I = std::find(SubLoops.begin(), SubLoops.end(), OldChild); assert(I != SubLoops.end() && "OldChild not in loop!"); *I = NewChild; OldChild->ParentLoop = 0; NewChild->ParentLoop = this; } /// addChildLoop - Add the specified loop to be a child of this loop. This /// updates the loop depth of the new child. /// void addChildLoop(LoopBase *NewChild) { assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); NewChild->ParentLoop = this; SubLoops.push_back(NewChild); } /// removeChildLoop - This removes the specified child from being a subloop of /// this loop. The loop is not deleted, as it will presumably be inserted /// into another loop. LoopBase *removeChildLoop(iterator I) { assert(I != SubLoops.end() && "Cannot remove end iterator!"); LoopBase *Child = *I; assert(Child->ParentLoop == this && "Child is not a child of this loop!"); SubLoops.erase(SubLoops.begin()+(I-begin())); Child->ParentLoop = 0; return Child; } /// addBlockEntry - This adds a basic block directly to the basic block list. /// This should only be used by transformations that create new loops. Other /// transformations should use addBasicBlockToLoop. void addBlockEntry(BlockT *BB) { Blocks.push_back(BB); } /// moveToHeader - This method is used to move BB (which must be part of this /// loop) to be the loop header of the loop (the block that dominates all /// others). void moveToHeader(BlockT *BB) { if (Blocks[0] == BB) return; for (unsigned i = 0; ; ++i) { assert(i != Blocks.size() && "Loop does not contain BB!"); if (Blocks[i] == BB) { Blocks[i] = Blocks[0]; Blocks[0] = BB; return; } } } /// removeBlockFromLoop - This removes the specified basic block from the /// current loop, updating the Blocks as appropriate. This does not update /// the mapping in the LoopInfo class. void removeBlockFromLoop(BlockT *BB) { RemoveFromVector(Blocks, BB); } /// verifyLoop - Verify loop structure void verifyLoop() const { #ifndef NDEBUG assert (getHeader() && "Loop header is missing"); assert (getLoopPreheader() && "Loop preheader is missing"); assert (getLoopLatch() && "Loop latch is missing"); for (typename std::vector*>::const_iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I) (*I)->verifyLoop(); #endif } void print(std::ostream &OS, unsigned Depth = 0) const { OS << std::string(Depth*2, ' ') << "Loop Containing: "; for (unsigned i = 0; i < getBlocks().size(); ++i) { if (i) OS << ","; WriteAsOperand(OS, getBlocks()[i], false); } OS << "\n"; for (iterator I = begin(), E = end(); I != E; ++I) (*I)->print(OS, Depth+2); } void print(std::ostream *O, unsigned Depth = 0) const { if (O) print(*O, Depth); } void dump() const { print(cerr); } private: friend class LoopInfoBase; LoopBase(BlockT *BB) : ParentLoop(0) { Blocks.push_back(BB); } }; typedef LoopBase Loop; //===----------------------------------------------------------------------===// /// LoopInfo - This class builds and contains all of the top level loop /// structures in the specified function. /// template class LoopInfoBase { // BBMap - Mapping of basic blocks to the inner most loop they occur in std::map*> BBMap; std::vector*> TopLevelLoops; friend class LoopBase; public: LoopInfoBase() { } ~LoopInfoBase() { releaseMemory(); } void releaseMemory() { for (typename std::vector* >::iterator I = TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I) delete *I; // Delete all of the loops... BBMap.clear(); // Reset internal state of analysis TopLevelLoops.clear(); } /// iterator/begin/end - The interface to the top-level loops in the current /// function. /// typedef typename std::vector*>::const_iterator iterator; iterator begin() const { return TopLevelLoops.begin(); } iterator end() const { return TopLevelLoops.end(); } /// getLoopFor - Return the inner most loop that BB lives in. If a basic /// block is in no loop (for example the entry node), null is returned. /// LoopBase *getLoopFor(const BlockT *BB) const { typename std::map*>::const_iterator I= BBMap.find(const_cast(BB)); return I != BBMap.end() ? I->second : 0; } /// operator[] - same as getLoopFor... /// const LoopBase *operator[](const BlockT *BB) const { return getLoopFor(BB); } /// getLoopDepth - Return the loop nesting level of the specified block... /// unsigned getLoopDepth(const BlockT *BB) const { const LoopBase *L = getLoopFor(BB); return L ? L->getLoopDepth() : 0; } // isLoopHeader - True if the block is a loop header node bool isLoopHeader(BlockT *BB) const { const LoopBase *L = getLoopFor(BB); return L && L->getHeader() == BB; } /// removeLoop - This removes the specified top-level loop from this loop info /// object. The loop is not deleted, as it will presumably be inserted into /// another loop. LoopBase *removeLoop(iterator I) { assert(I != end() && "Cannot remove end iterator!"); LoopBase *L = *I; assert(L->getParentLoop() == 0 && "Not a top-level loop!"); TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); return L; } /// changeLoopFor - Change the top-level loop that contains BB to the /// specified loop. This should be used by transformations that restructure /// the loop hierarchy tree. void changeLoopFor(BlockT *BB, LoopBase *L) { LoopBase *&OldLoop = BBMap[BB]; assert(OldLoop && "Block not in a loop yet!"); OldLoop = L; } /// changeTopLevelLoop - Replace the specified loop in the top-level loops /// list with the indicated loop. void changeTopLevelLoop(LoopBase *OldLoop, LoopBase *NewLoop) { typename std::vector*>::iterator I = std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop); assert(I != TopLevelLoops.end() && "Old loop not at top level!"); *I = NewLoop; assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 && "Loops already embedded into a subloop!"); } /// addTopLevelLoop - This adds the specified loop to the collection of /// top-level loops. void addTopLevelLoop(LoopBase *New) { assert(New->getParentLoop() == 0 && "Loop already in subloop!"); TopLevelLoops.push_back(New); } /// removeBlock - This method completely removes BB from all data structures, /// including all of the Loop objects it is nested in and our mapping from /// BasicBlocks to loops. void removeBlock(BlockT *BB) { typename std::map*>::iterator I = BBMap.find(BB); if (I != BBMap.end()) { for (LoopBase *L = I->second; L; L = L->getParentLoop()) L->removeBlockFromLoop(BB); BBMap.erase(I); } } // Internals static bool isNotAlreadyContainedIn(LoopBase *SubLoop, LoopBase *ParentLoop) { if (SubLoop == 0) return true; if (SubLoop == ParentLoop) return false; return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); } void Calculate(DominatorTreeBase &DT) { BlockT *RootNode = DT.getRootNode()->getBlock(); for (df_iterator NI = df_begin(RootNode), NE = df_end(RootNode); NI != NE; ++NI) if (LoopBase *L = ConsiderForLoop(*NI, DT)) TopLevelLoops.push_back(L); } LoopBase *ConsiderForLoop(BlockT *BB, DominatorTreeBase &DT) { if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node? std::vector TodoStack; // Scan the predecessors of BB, checking to see if BB dominates any of // them. This identifies backedges which target this node... typedef GraphTraits > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType I = InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB); I != E; ++I) if (DT.dominates(BB, *I)) // If BB dominates it's predecessor... TodoStack.push_back(*I); if (TodoStack.empty()) return 0; // No backedges to this block... // Create a new loop to represent this basic block... LoopBase *L = new LoopBase(BB); BBMap[BB] = L; BlockT *EntryBlock = BB->getParent()->begin(); while (!TodoStack.empty()) { // Process all the nodes in the loop BlockT *X = TodoStack.back(); TodoStack.pop_back(); if (!L->contains(X) && // As of yet unprocessed?? DT.dominates(EntryBlock, X)) { // X is reachable from entry block? // Check to see if this block already belongs to a loop. If this occurs // then we have a case where a loop that is supposed to be a child of the // current loop was processed before the current loop. When this occurs, // this child loop gets added to a part of the current loop, making it a // sibling to the current loop. We have to reparent this loop. if (LoopBase *SubLoop = const_cast*>(getLoopFor(X))) if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) { // Remove the subloop from it's current parent... assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L); LoopBase *SLP = SubLoop->ParentLoop; // SubLoopParent typename std::vector*>::iterator I = std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop); assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?"); SLP->SubLoops.erase(I); // Remove from parent... // Add the subloop to THIS loop... SubLoop->ParentLoop = L; L->SubLoops.push_back(SubLoop); } // Normal case, add the block to our loop... L->Blocks.push_back(X); typedef GraphTraits > InvBlockTraits; // Add all of the predecessors of X to the end of the work stack... TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X), InvBlockTraits::child_end(X)); } } // If there are any loops nested within this loop, create them now! for (typename std::vector::iterator I = L->Blocks.begin(), E = L->Blocks.end(); I != E; ++I) if (LoopBase *NewLoop = ConsiderForLoop(*I, DT)) { L->SubLoops.push_back(NewLoop); NewLoop->ParentLoop = L; } // Add the basic blocks that comprise this loop to the BBMap so that this // loop can be found for them. // for (typename std::vector::iterator I = L->Blocks.begin(), E = L->Blocks.end(); I != E; ++I) { typename std::map*>::iterator BBMI = BBMap.lower_bound(*I); if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet... BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level } // Now that we have a list of all of the child loops of this loop, check to // see if any of them should actually be nested inside of each other. We can // accidentally pull loops our of their parents, so we must make sure to // organize the loop nests correctly now. { std::map*> ContainingLoops; for (unsigned i = 0; i != L->SubLoops.size(); ++i) { LoopBase *Child = L->SubLoops[i]; assert(Child->getParentLoop() == L && "Not proper child loop?"); if (LoopBase *ContainingLoop = ContainingLoops[Child->getHeader()]) { // If there is already a loop which contains this loop, move this loop // into the containing loop. MoveSiblingLoopInto(Child, ContainingLoop); --i; // The loop got removed from the SubLoops list. } else { // This is currently considered to be a top-level loop. Check to see if // any of the contained blocks are loop headers for subloops we have // already processed. for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) { LoopBase *&BlockLoop = ContainingLoops[Child->Blocks[b]]; if (BlockLoop == 0) { // Child block not processed yet... BlockLoop = Child; } else if (BlockLoop != Child) { LoopBase *SubLoop = BlockLoop; // Reparent all of the blocks which used to belong to BlockLoops for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j) ContainingLoops[SubLoop->Blocks[j]] = Child; // There is already a loop which contains this block, that means // that we should reparent the loop which the block is currently // considered to belong to to be a child of this loop. MoveSiblingLoopInto(SubLoop, Child); --i; // We just shrunk the SubLoops list. } } } } } return L; } /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of /// the NewParent Loop, instead of being a sibling of it. void MoveSiblingLoopInto(LoopBase *NewChild, LoopBase *NewParent) { LoopBase *OldParent = NewChild->getParentLoop(); assert(OldParent && OldParent == NewParent->getParentLoop() && NewChild != NewParent && "Not sibling loops!"); // Remove NewChild from being a child of OldParent typename std::vector*>::iterator I = std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild); assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??"); OldParent->SubLoops.erase(I); // Remove from parent's subloops list NewChild->ParentLoop = 0; InsertLoopInto(NewChild, NewParent); } /// InsertLoopInto - This inserts loop L into the specified parent loop. If the /// parent loop contains a loop which should contain L, the loop gets inserted /// into L instead. void InsertLoopInto(LoopBase *L, LoopBase *Parent) { BlockT *LHeader = L->getHeader(); assert(Parent->contains(LHeader) && "This loop should not be inserted here!"); // Check to see if it belongs in a child loop... for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i) if (Parent->SubLoops[i]->contains(LHeader)) { InsertLoopInto(L, Parent->SubLoops[i]); return; } // If not, insert it here! Parent->SubLoops.push_back(L); L->ParentLoop = Parent; } // Debugging void print(std::ostream &OS, const Module* ) const { for (unsigned i = 0; i < TopLevelLoops.size(); ++i) TopLevelLoops[i]->print(OS); #if 0 for (std::map::const_iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) OS << "BB '" << I->first->getName() << "' level = " << I->second->getLoopDepth() << "\n"; #endif } }; class LoopInfo : public FunctionPass { LoopInfoBase* LI; friend class LoopBase; public: static char ID; // Pass identification, replacement for typeid LoopInfo() : FunctionPass(intptr_t(&ID)) { LI = new LoopInfoBase(); } ~LoopInfo() { delete LI; } LoopInfoBase& getBase() { return *LI; } /// iterator/begin/end - The interface to the top-level loops in the current /// function. /// typedef std::vector::const_iterator iterator; inline iterator begin() const { return LI->begin(); } inline iterator end() const { return LI->end(); } /// getLoopFor - Return the inner most loop that BB lives in. If a basic /// block is in no loop (for example the entry node), null is returned. /// inline Loop *getLoopFor(const BasicBlock *BB) const { return LI->getLoopFor(BB); } /// operator[] - same as getLoopFor... /// inline const Loop *operator[](const BasicBlock *BB) const { return LI->getLoopFor(BB); } /// getLoopDepth - Return the loop nesting level of the specified block... /// inline unsigned getLoopDepth(const BasicBlock *BB) const { return LI->getLoopDepth(BB); } // isLoopHeader - True if the block is a loop header node inline bool isLoopHeader(BasicBlock *BB) const { return LI->isLoopHeader(BB); } /// runOnFunction - Calculate the natural loop information. /// virtual bool runOnFunction(Function &F); virtual void releaseMemory() { LI->releaseMemory(); } virtual void print(std::ostream &O, const Module* M = 0) const { if (O) LI->print(O, M); } virtual void getAnalysisUsage(AnalysisUsage &AU) const; /// removeLoop - This removes the specified top-level loop from this loop info /// object. The loop is not deleted, as it will presumably be inserted into /// another loop. inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); } /// changeLoopFor - Change the top-level loop that contains BB to the /// specified loop. This should be used by transformations that restructure /// the loop hierarchy tree. inline void changeLoopFor(BasicBlock *BB, Loop *L) { LI->changeLoopFor(BB, L); } /// changeTopLevelLoop - Replace the specified loop in the top-level loops /// list with the indicated loop. inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) { LI->changeTopLevelLoop(OldLoop, NewLoop); } /// addTopLevelLoop - This adds the specified loop to the collection of /// top-level loops. inline void addTopLevelLoop(Loop *New) { LI->addTopLevelLoop(New); } /// removeBlock - This method completely removes BB from all data structures, /// including all of the Loop objects it is nested in and our mapping from /// BasicBlocks to loops. void removeBlock(BasicBlock *BB) { LI->removeBlock(BB); } }; // Allow clients to walk the list of nested loops... template <> struct GraphTraits { typedef const Loop NodeType; typedef std::vector::const_iterator ChildIteratorType; static NodeType *getEntryNode(const Loop *L) { return L; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } }; template <> struct GraphTraits { typedef Loop NodeType; typedef std::vector::const_iterator ChildIteratorType; static NodeType *getEntryNode(Loop *L) { return L; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } }; template void LoopBase::addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase &LIB) { assert((Blocks.empty() || LIB[getHeader()] == this) && "Incorrect LI specified for this loop!"); assert(NewBB && "Cannot add a null basic block to the loop!"); assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!"); // Add the loop mapping to the LoopInfo object... LIB.BBMap[NewBB] = this; // Add the basic block to this loop and all parent loops... LoopBase *L = this; while (L) { L->Blocks.push_back(NewBB); L = L->getParentLoop(); } } } // End llvm namespace // Make sure that any clients of this file link in LoopInfo.cpp FORCE_DEFINING_FILE_TO_BE_LINKED(LoopInfo) #endif